linux-sg2042/mm/vmalloc.c

4496 lines
116 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 1993 Linus Torvalds
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
* Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
* Numa awareness, Christoph Lameter, SGI, June 2005
* Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
*/
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/set_memory.h>
#include <linux/debugobjects.h>
#include <linux/kallsyms.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/rbtree.h>
#include <linux/xarray.h>
#include <linux/io.h>
#include <linux/rcupdate.h>
#include <linux/pfn.h>
#include <linux/kmemleak.h>
#include <linux/atomic.h>
#include <linux/compiler.h>
#include <linux/memcontrol.h>
#include <linux/llist.h>
#include <linux/uio.h>
#include <linux/bitops.h>
#include <linux/rbtree_augmented.h>
#include <linux/overflow.h>
#include <linux/pgtable.h>
#include <linux/hugetlb.h>
#include <linux/sched/mm.h>
#include <asm/tlbflush.h>
#include <asm/shmparam.h>
#define CREATE_TRACE_POINTS
#include <trace/events/vmalloc.h>
#include "internal.h"
#include "pgalloc-track.h"
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
static int __init set_nohugeiomap(char *str)
{
ioremap_max_page_shift = PAGE_SHIFT;
return 0;
}
early_param("nohugeiomap", set_nohugeiomap);
#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
static bool __ro_after_init vmap_allow_huge = true;
static int __init set_nohugevmalloc(char *str)
{
vmap_allow_huge = false;
return 0;
}
early_param("nohugevmalloc", set_nohugevmalloc);
#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
static const bool vmap_allow_huge = false;
#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
bool is_vmalloc_addr(const void *x)
{
unsigned long addr = (unsigned long)kasan_reset_tag(x);
return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);
struct vfree_deferred {
struct llist_head list;
struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
/*** Page table manipulation functions ***/
static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
phys_addr_t phys_addr, pgprot_t prot,
unsigned int max_page_shift, pgtbl_mod_mask *mask)
{
pte_t *pte;
u64 pfn;
unsigned long size = PAGE_SIZE;
pfn = phys_addr >> PAGE_SHIFT;
pte = pte_alloc_kernel_track(pmd, addr, mask);
if (!pte)
return -ENOMEM;
do {
BUG_ON(!pte_none(ptep_get(pte)));
#ifdef CONFIG_HUGETLB_PAGE
size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
if (size != PAGE_SIZE) {
pte_t entry = pfn_pte(pfn, prot);
entry = arch_make_huge_pte(entry, ilog2(size), 0);
set_huge_pte_at(&init_mm, addr, pte, entry);
pfn += PFN_DOWN(size);
continue;
}
#endif
set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
pfn++;
} while (pte += PFN_DOWN(size), addr += size, addr != end);
*mask |= PGTBL_PTE_MODIFIED;
return 0;
}
static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
phys_addr_t phys_addr, pgprot_t prot,
unsigned int max_page_shift)
{
if (max_page_shift < PMD_SHIFT)
return 0;
if (!arch_vmap_pmd_supported(prot))
return 0;
if ((end - addr) != PMD_SIZE)
return 0;
if (!IS_ALIGNED(addr, PMD_SIZE))
return 0;
if (!IS_ALIGNED(phys_addr, PMD_SIZE))
return 0;
if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
return 0;
return pmd_set_huge(pmd, phys_addr, prot);
}
static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
phys_addr_t phys_addr, pgprot_t prot,
unsigned int max_page_shift, pgtbl_mod_mask *mask)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
if (!pmd)
return -ENOMEM;
do {
next = pmd_addr_end(addr, end);
if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
max_page_shift)) {
*mask |= PGTBL_PMD_MODIFIED;
continue;
}
if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
return -ENOMEM;
} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
return 0;
}
static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
phys_addr_t phys_addr, pgprot_t prot,
unsigned int max_page_shift)
{
if (max_page_shift < PUD_SHIFT)
return 0;
if (!arch_vmap_pud_supported(prot))
return 0;
if ((end - addr) != PUD_SIZE)
return 0;
if (!IS_ALIGNED(addr, PUD_SIZE))
return 0;
if (!IS_ALIGNED(phys_addr, PUD_SIZE))
return 0;
if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
return 0;
return pud_set_huge(pud, phys_addr, prot);
}
static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
phys_addr_t phys_addr, pgprot_t prot,
unsigned int max_page_shift, pgtbl_mod_mask *mask)
{
pud_t *pud;
unsigned long next;
pud = pud_alloc_track(&init_mm, p4d, addr, mask);
if (!pud)
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
max_page_shift)) {
*mask |= PGTBL_PUD_MODIFIED;
continue;
}
if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
max_page_shift, mask))
return -ENOMEM;
} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
return 0;
}
static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
phys_addr_t phys_addr, pgprot_t prot,
unsigned int max_page_shift)
{
if (max_page_shift < P4D_SHIFT)
return 0;
if (!arch_vmap_p4d_supported(prot))
return 0;
if ((end - addr) != P4D_SIZE)
return 0;
if (!IS_ALIGNED(addr, P4D_SIZE))
return 0;
if (!IS_ALIGNED(phys_addr, P4D_SIZE))
return 0;
if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
return 0;
return p4d_set_huge(p4d, phys_addr, prot);
}
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
phys_addr_t phys_addr, pgprot_t prot,
unsigned int max_page_shift, pgtbl_mod_mask *mask)
{
p4d_t *p4d;
unsigned long next;
p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
if (!p4d)
return -ENOMEM;
do {
next = p4d_addr_end(addr, end);
if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
max_page_shift)) {
*mask |= PGTBL_P4D_MODIFIED;
continue;
}
if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
max_page_shift, mask))
return -ENOMEM;
} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
return 0;
}
static int vmap_range_noflush(unsigned long addr, unsigned long end,
phys_addr_t phys_addr, pgprot_t prot,
unsigned int max_page_shift)
{
pgd_t *pgd;
unsigned long start;
unsigned long next;
int err;
pgtbl_mod_mask mask = 0;
might_sleep();
BUG_ON(addr >= end);
start = addr;
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, end);
err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
max_page_shift, &mask);
if (err)
break;
} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
arch_sync_kernel_mappings(start, end);
return err;
}
int ioremap_page_range(unsigned long addr, unsigned long end,
phys_addr_t phys_addr, pgprot_t prot)
{
int err;
err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
ioremap_max_page_shift);
flush_cache_vmap(addr, end);
if (!err)
err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
ioremap_max_page_shift);
return err;
}
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
pgtbl_mod_mask *mask)
{
pte_t *pte;
pte = pte_offset_kernel(pmd, addr);
do {
pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
WARN_ON(!pte_none(ptent) && !pte_present(ptent));
} while (pte++, addr += PAGE_SIZE, addr != end);
*mask |= PGTBL_PTE_MODIFIED;
}
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
pgtbl_mod_mask *mask)
{
pmd_t *pmd;
unsigned long next;
int cleared;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
cleared = pmd_clear_huge(pmd);
if (cleared || pmd_bad(*pmd))
*mask |= PGTBL_PMD_MODIFIED;
if (cleared)
continue;
if (pmd_none_or_clear_bad(pmd))
continue;
vunmap_pte_range(pmd, addr, next, mask);
cond_resched();
} while (pmd++, addr = next, addr != end);
}
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
pgtbl_mod_mask *mask)
{
pud_t *pud;
unsigned long next;
int cleared;
pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
cleared = pud_clear_huge(pud);
if (cleared || pud_bad(*pud))
*mask |= PGTBL_PUD_MODIFIED;
if (cleared)
continue;
if (pud_none_or_clear_bad(pud))
continue;
vunmap_pmd_range(pud, addr, next, mask);
} while (pud++, addr = next, addr != end);
}
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
pgtbl_mod_mask *mask)
{
p4d_t *p4d;
unsigned long next;
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
p4d_clear_huge(p4d);
if (p4d_bad(*p4d))
*mask |= PGTBL_P4D_MODIFIED;
if (p4d_none_or_clear_bad(p4d))
continue;
vunmap_pud_range(p4d, addr, next, mask);
} while (p4d++, addr = next, addr != end);
}
/*
* vunmap_range_noflush is similar to vunmap_range, but does not
* flush caches or TLBs.
*
* The caller is responsible for calling flush_cache_vmap() before calling
* this function, and flush_tlb_kernel_range after it has returned
* successfully (and before the addresses are expected to cause a page fault
* or be re-mapped for something else, if TLB flushes are being delayed or
* coalesced).
*
* This is an internal function only. Do not use outside mm/.
*/
void __vunmap_range_noflush(unsigned long start, unsigned long end)
{
unsigned long next;
pgd_t *pgd;
unsigned long addr = start;
pgtbl_mod_mask mask = 0;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_bad(*pgd))
mask |= PGTBL_PGD_MODIFIED;
if (pgd_none_or_clear_bad(pgd))
continue;
vunmap_p4d_range(pgd, addr, next, &mask);
} while (pgd++, addr = next, addr != end);
if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
arch_sync_kernel_mappings(start, end);
}
void vunmap_range_noflush(unsigned long start, unsigned long end)
{
kmsan_vunmap_range_noflush(start, end);
__vunmap_range_noflush(start, end);
}
/**
* vunmap_range - unmap kernel virtual addresses
* @addr: start of the VM area to unmap
* @end: end of the VM area to unmap (non-inclusive)
*
* Clears any present PTEs in the virtual address range, flushes TLBs and
* caches. Any subsequent access to the address before it has been re-mapped
* is a kernel bug.
*/
void vunmap_range(unsigned long addr, unsigned long end)
{
flush_cache_vunmap(addr, end);
vunmap_range_noflush(addr, end);
flush_tlb_kernel_range(addr, end);
}
static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, pgprot_t prot, struct page **pages, int *nr,
pgtbl_mod_mask *mask)
{
pte_t *pte;
/*
* nr is a running index into the array which helps higher level
* callers keep track of where we're up to.
*/
pte = pte_alloc_kernel_track(pmd, addr, mask);
if (!pte)
return -ENOMEM;
do {
struct page *page = pages[*nr];
if (WARN_ON(!pte_none(ptep_get(pte))))
return -EBUSY;
if (WARN_ON(!page))
return -ENOMEM;
if (WARN_ON(!pfn_valid(page_to_pfn(page))))
return -EINVAL;
set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
(*nr)++;
} while (pte++, addr += PAGE_SIZE, addr != end);
*mask |= PGTBL_PTE_MODIFIED;
return 0;
}
static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
unsigned long end, pgprot_t prot, struct page **pages, int *nr,
pgtbl_mod_mask *mask)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
if (!pmd)
return -ENOMEM;
do {
next = pmd_addr_end(addr, end);
if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
return -ENOMEM;
} while (pmd++, addr = next, addr != end);
return 0;
}
static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
unsigned long end, pgprot_t prot, struct page **pages, int *nr,
pgtbl_mod_mask *mask)
{
pud_t *pud;
unsigned long next;
pud = pud_alloc_track(&init_mm, p4d, addr, mask);
if (!pud)
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
return -ENOMEM;
} while (pud++, addr = next, addr != end);
return 0;
}
static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
unsigned long end, pgprot_t prot, struct page **pages, int *nr,
pgtbl_mod_mask *mask)
{
p4d_t *p4d;
unsigned long next;
p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
if (!p4d)
return -ENOMEM;
do {
next = p4d_addr_end(addr, end);
if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
return -ENOMEM;
} while (p4d++, addr = next, addr != end);
return 0;
}
static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
pgprot_t prot, struct page **pages)
{
unsigned long start = addr;
pgd_t *pgd;
unsigned long next;
int err = 0;
int nr = 0;
pgtbl_mod_mask mask = 0;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_bad(*pgd))
mask |= PGTBL_PGD_MODIFIED;
err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
if (err)
return err;
} while (pgd++, addr = next, addr != end);
if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
arch_sync_kernel_mappings(start, end);
return 0;
}
/*
* vmap_pages_range_noflush is similar to vmap_pages_range, but does not
* flush caches.
*
* The caller is responsible for calling flush_cache_vmap() after this
* function returns successfully and before the addresses are accessed.
*
* This is an internal function only. Do not use outside mm/.
*/
int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
pgprot_t prot, struct page **pages, unsigned int page_shift)
{
unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
WARN_ON(page_shift < PAGE_SHIFT);
if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
page_shift == PAGE_SHIFT)
return vmap_small_pages_range_noflush(addr, end, prot, pages);
for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
int err;
err = vmap_range_noflush(addr, addr + (1UL << page_shift),
page_to_phys(pages[i]), prot,
page_shift);
if (err)
return err;
addr += 1UL << page_shift;
}
return 0;
}
int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
pgprot_t prot, struct page **pages, unsigned int page_shift)
{
int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
page_shift);
if (ret)
return ret;
return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
}
/**
* vmap_pages_range - map pages to a kernel virtual address
* @addr: start of the VM area to map
* @end: end of the VM area to map (non-inclusive)
* @prot: page protection flags to use
* @pages: pages to map (always PAGE_SIZE pages)
* @page_shift: maximum shift that the pages may be mapped with, @pages must
* be aligned and contiguous up to at least this shift.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
static int vmap_pages_range(unsigned long addr, unsigned long end,
pgprot_t prot, struct page **pages, unsigned int page_shift)
{
int err;
err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
flush_cache_vmap(addr, end);
return err;
}
int is_vmalloc_or_module_addr(const void *x)
{
/*
* ARM, x86-64 and sparc64 put modules in a special place,
* and fall back on vmalloc() if that fails. Others
* just put it in the vmalloc space.
*/
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
unsigned long addr = (unsigned long)kasan_reset_tag(x);
if (addr >= MODULES_VADDR && addr < MODULES_END)
return 1;
#endif
return is_vmalloc_addr(x);
}
EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
/*
* Walk a vmap address to the struct page it maps. Huge vmap mappings will
* return the tail page that corresponds to the base page address, which
* matches small vmap mappings.
*/
struct page *vmalloc_to_page(const void *vmalloc_addr)
{
unsigned long addr = (unsigned long) vmalloc_addr;
struct page *page = NULL;
pgd_t *pgd = pgd_offset_k(addr);
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
/*
* XXX we might need to change this if we add VIRTUAL_BUG_ON for
* architectures that do not vmalloc module space
*/
VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
if (pgd_none(*pgd))
return NULL;
if (WARN_ON_ONCE(pgd_leaf(*pgd)))
return NULL; /* XXX: no allowance for huge pgd */
if (WARN_ON_ONCE(pgd_bad(*pgd)))
return NULL;
p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d))
return NULL;
if (p4d_leaf(*p4d))
return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
if (WARN_ON_ONCE(p4d_bad(*p4d)))
return NULL;
pud = pud_offset(p4d, addr);
if (pud_none(*pud))
return NULL;
if (pud_leaf(*pud))
return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
if (WARN_ON_ONCE(pud_bad(*pud)))
return NULL;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return NULL;
if (pmd_leaf(*pmd))
return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
if (WARN_ON_ONCE(pmd_bad(*pmd)))
return NULL;
ptep = pte_offset_kernel(pmd, addr);
pte = ptep_get(ptep);
if (pte_present(pte))
page = pte_page(pte);
return page;
}
EXPORT_SYMBOL(vmalloc_to_page);
/*
* Map a vmalloc()-space virtual address to the physical page frame number.
*/
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
{
return page_to_pfn(vmalloc_to_page(vmalloc_addr));
}
EXPORT_SYMBOL(vmalloc_to_pfn);
/*** Global kva allocator ***/
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
static DEFINE_SPINLOCK(vmap_area_lock);
static DEFINE_SPINLOCK(free_vmap_area_lock);
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
static struct rb_root vmap_area_root = RB_ROOT;
static bool vmap_initialized __read_mostly;
static struct rb_root purge_vmap_area_root = RB_ROOT;
static LIST_HEAD(purge_vmap_area_list);
static DEFINE_SPINLOCK(purge_vmap_area_lock);
/*
* This kmem_cache is used for vmap_area objects. Instead of
* allocating from slab we reuse an object from this cache to
* make things faster. Especially in "no edge" splitting of
* free block.
*/
static struct kmem_cache *vmap_area_cachep;
/*
* This linked list is used in pair with free_vmap_area_root.
* It gives O(1) access to prev/next to perform fast coalescing.
*/
static LIST_HEAD(free_vmap_area_list);
/*
* This augment red-black tree represents the free vmap space.
* All vmap_area objects in this tree are sorted by va->va_start
* address. It is used for allocation and merging when a vmap
* object is released.
*
* Each vmap_area node contains a maximum available free block
* of its sub-tree, right or left. Therefore it is possible to
* find a lowest match of free area.
*/
static struct rb_root free_vmap_area_root = RB_ROOT;
/*
* Preload a CPU with one object for "no edge" split case. The
* aim is to get rid of allocations from the atomic context, thus
* to use more permissive allocation masks.
*/
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
return (va->va_end - va->va_start);
}
static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
struct vmap_area *va;
va = rb_entry_safe(node, struct vmap_area, rb_node);
return va ? va->subtree_max_size : 0;
}
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
static void reclaim_and_purge_vmap_areas(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static void drain_vmap_area_work(struct work_struct *work);
static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
static atomic_long_t nr_vmalloc_pages;
unsigned long vmalloc_nr_pages(void)
{
return atomic_long_read(&nr_vmalloc_pages);
}
/* Look up the first VA which satisfies addr < va_end, NULL if none. */
static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
{
struct vmap_area *va = NULL;
struct rb_node *n = vmap_area_root.rb_node;
addr = (unsigned long)kasan_reset_tag((void *)addr);
while (n) {
struct vmap_area *tmp;
tmp = rb_entry(n, struct vmap_area, rb_node);
if (tmp->va_end > addr) {
va = tmp;
if (tmp->va_start <= addr)
break;
n = n->rb_left;
} else
n = n->rb_right;
}
return va;
}
static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
{
struct rb_node *n = root->rb_node;
addr = (unsigned long)kasan_reset_tag((void *)addr);
while (n) {
struct vmap_area *va;
va = rb_entry(n, struct vmap_area, rb_node);
if (addr < va->va_start)
n = n->rb_left;
else if (addr >= va->va_end)
n = n->rb_right;
else
return va;
}
return NULL;
}
/*
* This function returns back addresses of parent node
* and its left or right link for further processing.
*
* Otherwise NULL is returned. In that case all further
* steps regarding inserting of conflicting overlap range
* have to be declined and actually considered as a bug.
*/
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
struct rb_root *root, struct rb_node *from,
struct rb_node **parent)
{
struct vmap_area *tmp_va;
struct rb_node **link;
if (root) {
link = &root->rb_node;
if (unlikely(!*link)) {
*parent = NULL;
return link;
}
} else {
link = &from;
}
/*
* Go to the bottom of the tree. When we hit the last point
* we end up with parent rb_node and correct direction, i name
* it link, where the new va->rb_node will be attached to.
*/
do {
tmp_va = rb_entry(*link, struct vmap_area, rb_node);
/*
* During the traversal we also do some sanity check.
* Trigger the BUG() if there are sides(left/right)
* or full overlaps.
*/
if (va->va_end <= tmp_va->va_start)
link = &(*link)->rb_left;
else if (va->va_start >= tmp_va->va_end)
link = &(*link)->rb_right;
else {
WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
return NULL;
}
} while (*link);
*parent = &tmp_va->rb_node;
return link;
}
static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
struct list_head *list;
if (unlikely(!parent))
/*
* The red-black tree where we try to find VA neighbors
* before merging or inserting is empty, i.e. it means
* there is no free vmap space. Normally it does not
* happen but we handle this case anyway.
*/
return NULL;
list = &rb_entry(parent, struct vmap_area, rb_node)->list;
return (&parent->rb_right == link ? list->next : list);
}
static __always_inline void
__link_va(struct vmap_area *va, struct rb_root *root,
struct rb_node *parent, struct rb_node **link,
struct list_head *head, bool augment)
{
/*
* VA is still not in the list, but we can
* identify its future previous list_head node.
*/
if (likely(parent)) {
head = &rb_entry(parent, struct vmap_area, rb_node)->list;
if (&parent->rb_right != link)
head = head->prev;
}
/* Insert to the rb-tree */
rb_link_node(&va->rb_node, parent, link);
if (augment) {
/*
* Some explanation here. Just perform simple insertion
* to the tree. We do not set va->subtree_max_size to
* its current size before calling rb_insert_augmented().
* It is because we populate the tree from the bottom
* to parent levels when the node _is_ in the tree.
*
* Therefore we set subtree_max_size to zero after insertion,
* to let __augment_tree_propagate_from() puts everything to
* the correct order later on.
*/
rb_insert_augmented(&va->rb_node,
root, &free_vmap_area_rb_augment_cb);
va->subtree_max_size = 0;
} else {
rb_insert_color(&va->rb_node, root);
}
/* Address-sort this list */
list_add(&va->list, head);
}
static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
struct rb_node *parent, struct rb_node **link,
struct list_head *head)
{
__link_va(va, root, parent, link, head, false);
}
static __always_inline void
link_va_augment(struct vmap_area *va, struct rb_root *root,
struct rb_node *parent, struct rb_node **link,
struct list_head *head)
{
__link_va(va, root, parent, link, head, true);
}
static __always_inline void
__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
{
if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
return;
if (augment)
rb_erase_augmented(&va->rb_node,
root, &free_vmap_area_rb_augment_cb);
else
rb_erase(&va->rb_node, root);
list_del_init(&va->list);
RB_CLEAR_NODE(&va->rb_node);
}
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
__unlink_va(va, root, false);
}
static __always_inline void
unlink_va_augment(struct vmap_area *va, struct rb_root *root)
{
__unlink_va(va, root, true);
}
#if DEBUG_AUGMENT_PROPAGATE_CHECK
/*
* Gets called when remove the node and rotate.
*/
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
return max3(va_size(va),
get_subtree_max_size(va->rb_node.rb_left),
get_subtree_max_size(va->rb_node.rb_right));
}
static void
augment_tree_propagate_check(void)
{
struct vmap_area *va;
unsigned long computed_size;
list_for_each_entry(va, &free_vmap_area_list, list) {
computed_size = compute_subtree_max_size(va);
if (computed_size != va->subtree_max_size)
pr_emerg("tree is corrupted: %lu, %lu\n",
va_size(va), va->subtree_max_size);
}
}
#endif
/*
* This function populates subtree_max_size from bottom to upper
* levels starting from VA point. The propagation must be done
* when VA size is modified by changing its va_start/va_end. Or
* in case of newly inserting of VA to the tree.
*
* It means that __augment_tree_propagate_from() must be called:
* - After VA has been inserted to the tree(free path);
* - After VA has been shrunk(allocation path);
* - After VA has been increased(merging path).
*
* Please note that, it does not mean that upper parent nodes
* and their subtree_max_size are recalculated all the time up
* to the root node.
*
* 4--8
* /\
* / \
* / \
* 2--2 8--8
*
* For example if we modify the node 4, shrinking it to 2, then
* no any modification is required. If we shrink the node 2 to 1
* its subtree_max_size is updated only, and set to 1. If we shrink
* the node 8 to 6, then its subtree_max_size is set to 6 and parent
* node becomes 4--6.
*/
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
/*
* Populate the tree from bottom towards the root until
* the calculated maximum available size of checked node
* is equal to its current one.
*/
free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
#if DEBUG_AUGMENT_PROPAGATE_CHECK
augment_tree_propagate_check();
#endif
}
static void
insert_vmap_area(struct vmap_area *va,
struct rb_root *root, struct list_head *head)
{
struct rb_node **link;
struct rb_node *parent;
link = find_va_links(va, root, NULL, &parent);
if (link)
link_va(va, root, parent, link, head);
}
static void
insert_vmap_area_augment(struct vmap_area *va,
struct rb_node *from, struct rb_root *root,
struct list_head *head)
{
struct rb_node **link;
struct rb_node *parent;
if (from)
link = find_va_links(va, NULL, from, &parent);
else
link = find_va_links(va, root, NULL, &parent);
if (link) {
link_va_augment(va, root, parent, link, head);
augment_tree_propagate_from(va);
}
}
/*
* Merge de-allocated chunk of VA memory with previous
* and next free blocks. If coalesce is not done a new
* free area is inserted. If VA has been merged, it is
* freed.
*
* Please note, it can return NULL in case of overlap
* ranges, followed by WARN() report. Despite it is a
* buggy behaviour, a system can be alive and keep
* ongoing.
*/
static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area *va,
struct rb_root *root, struct list_head *head, bool augment)
{
struct vmap_area *sibling;
struct list_head *next;
struct rb_node **link;
struct rb_node *parent;
bool merged = false;
/*
* Find a place in the tree where VA potentially will be
* inserted, unless it is merged with its sibling/siblings.
*/
link = find_va_links(va, root, NULL, &parent);
if (!link)
return NULL;
/*
* Get next node of VA to check if merging can be done.
*/
next = get_va_next_sibling(parent, link);
if (unlikely(next == NULL))
goto insert;
/*
* start end
* | |
* |<------VA------>|<-----Next----->|
* | |
* start end
*/
if (next != head) {
sibling = list_entry(next, struct vmap_area, list);
if (sibling->va_start == va->va_end) {
sibling->va_start = va->va_start;
/* Free vmap_area object. */
kmem_cache_free(vmap_area_cachep, va);
/* Point to the new merged area. */
va = sibling;
merged = true;
}
}
/*
* start end
* | |
* |<-----Prev----->|<------VA------>|
* | |
* start end
*/
if (next->prev != head) {
sibling = list_entry(next->prev, struct vmap_area, list);
if (sibling->va_end == va->va_start) {
/*
* If both neighbors are coalesced, it is important
* to unlink the "next" node first, followed by merging
* with "previous" one. Otherwise the tree might not be
* fully populated if a sibling's augmented value is
* "normalized" because of rotation operations.
*/
if (merged)
__unlink_va(va, root, augment);
sibling->va_end = va->va_end;
/* Free vmap_area object. */
kmem_cache_free(vmap_area_cachep, va);
/* Point to the new merged area. */
va = sibling;
merged = true;
}
}
insert:
if (!merged)
__link_va(va, root, parent, link, head, augment);
return va;
}
static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area *va,
struct rb_root *root, struct list_head *head)
{
return __merge_or_add_vmap_area(va, root, head, false);
}
static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area *va,
struct rb_root *root, struct list_head *head)
{
va = __merge_or_add_vmap_area(va, root, head, true);
if (va)
augment_tree_propagate_from(va);
return va;
}
static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
unsigned long align, unsigned long vstart)
{
unsigned long nva_start_addr;
if (va->va_start > vstart)
nva_start_addr = ALIGN(va->va_start, align);
else
nva_start_addr = ALIGN(vstart, align);
/* Can be overflowed due to big size or alignment. */
if (nva_start_addr + size < nva_start_addr ||
nva_start_addr < vstart)
return false;
return (nva_start_addr + size <= va->va_end);
}
/*
* Find the first free block(lowest start address) in the tree,
* that will accomplish the request corresponding to passing
* parameters. Please note, with an alignment bigger than PAGE_SIZE,
* a search length is adjusted to account for worst case alignment
* overhead.
*/
static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root *root, unsigned long size,
unsigned long align, unsigned long vstart, bool adjust_search_size)
{
struct vmap_area *va;
struct rb_node *node;
unsigned long length;
/* Start from the root. */
node = root->rb_node;
/* Adjust the search size for alignment overhead. */
length = adjust_search_size ? size + align - 1 : size;
while (node) {
va = rb_entry(node, struct vmap_area, rb_node);
if (get_subtree_max_size(node->rb_left) >= length &&
vstart < va->va_start) {
node = node->rb_left;
} else {
if (is_within_this_va(va, size, align, vstart))
return va;
/*
* Does not make sense to go deeper towards the right
* sub-tree if it does not have a free block that is
* equal or bigger to the requested search length.
*/
if (get_subtree_max_size(node->rb_right) >= length) {
node = node->rb_right;
continue;
}
/*
* OK. We roll back and find the first right sub-tree,
* that will satisfy the search criteria. It can happen
* due to "vstart" restriction or an alignment overhead
* that is bigger then PAGE_SIZE.
*/
while ((node = rb_parent(node))) {
va = rb_entry(node, struct vmap_area, rb_node);
if (is_within_this_va(va, size, align, vstart))
return va;
if (get_subtree_max_size(node->rb_right) >= length &&
vstart <= va->va_start) {
/*
* Shift the vstart forward. Please note, we update it with
* parent's start address adding "1" because we do not want
* to enter same sub-tree after it has already been checked
* and no suitable free block found there.
*/
vstart = va->va_start + 1;
node = node->rb_right;
break;
}
}
}
}
return NULL;
}
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>
static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
unsigned long align, unsigned long vstart)
{
struct vmap_area *va;
list_for_each_entry(va, head, list) {
if (!is_within_this_va(va, size, align, vstart))
continue;
return va;
}
return NULL;
}
static void
find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
unsigned long size, unsigned long align)
{
struct vmap_area *va_1, *va_2;
unsigned long vstart;
unsigned int rnd;
get_random_bytes(&rnd, sizeof(rnd));
vstart = VMALLOC_START + rnd;
va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
if (va_1 != va_2)
pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
va_1, va_2, vstart);
}
#endif
enum fit_type {
NOTHING_FIT = 0,
FL_FIT_TYPE = 1, /* full fit */
LE_FIT_TYPE = 2, /* left edge fit */
RE_FIT_TYPE = 3, /* right edge fit */
NE_FIT_TYPE = 4 /* no edge fit */
};
static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
unsigned long nva_start_addr, unsigned long size)
{
enum fit_type type;
/* Check if it is within VA. */
if (nva_start_addr < va->va_start ||
nva_start_addr + size > va->va_end)
return NOTHING_FIT;
/* Now classify. */
if (va->va_start == nva_start_addr) {
if (va->va_end == nva_start_addr + size)
type = FL_FIT_TYPE;
else
type = LE_FIT_TYPE;
} else if (va->va_end == nva_start_addr + size) {
type = RE_FIT_TYPE;
} else {
type = NE_FIT_TYPE;
}
return type;
}
static __always_inline int
adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
struct vmap_area *va, unsigned long nva_start_addr,
unsigned long size)
{
struct vmap_area *lva = NULL;
enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
if (type == FL_FIT_TYPE) {
/*
* No need to split VA, it fully fits.
*
* | |
* V NVA V
* |---------------|
*/
unlink_va_augment(va, root);
kmem_cache_free(vmap_area_cachep, va);
} else if (type == LE_FIT_TYPE) {
/*
* Split left edge of fit VA.
*
* | |
* V NVA V R
* |-------|-------|
*/
va->va_start += size;
} else if (type == RE_FIT_TYPE) {
/*
* Split right edge of fit VA.
*
* | |
* L V NVA V
* |-------|-------|
*/
va->va_end = nva_start_addr;
} else if (type == NE_FIT_TYPE) {
/*
* Split no edge of fit VA.
*
* | |
* L V NVA V R
* |---|-------|---|
*/
lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
if (unlikely(!lva)) {
/*
* For percpu allocator we do not do any pre-allocation
* and leave it as it is. The reason is it most likely
* never ends up with NE_FIT_TYPE splitting. In case of
* percpu allocations offsets and sizes are aligned to
* fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
* are its main fitting cases.
*
* There are a few exceptions though, as an example it is
* a first allocation (early boot up) when we have "one"
* big free space that has to be split.
*
* Also we can hit this path in case of regular "vmap"
* allocations, if "this" current CPU was not preloaded.
* See the comment in alloc_vmap_area() why. If so, then
* GFP_NOWAIT is used instead to get an extra object for
* split purpose. That is rare and most time does not
* occur.
*
* What happens if an allocation gets failed. Basically,
* an "overflow" path is triggered to purge lazily freed
* areas to free some memory, then, the "retry" path is
* triggered to repeat one more time. See more details
* in alloc_vmap_area() function.
*/
lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
if (!lva)
return -1;
}
/*
* Build the remainder.
*/
lva->va_start = va->va_start;
lva->va_end = nva_start_addr;
/*
* Shrink this VA to remaining size.
*/
va->va_start = nva_start_addr + size;
} else {
return -1;
}
if (type != FL_FIT_TYPE) {
augment_tree_propagate_from(va);
if (lva) /* type == NE_FIT_TYPE */
insert_vmap_area_augment(lva, &va->rb_node, root, head);
}
return 0;
}
/*
* Returns a start address of the newly allocated area, if success.
* Otherwise a vend is returned that indicates failure.
*/
static __always_inline unsigned long
__alloc_vmap_area(struct rb_root *root, struct list_head *head,
unsigned long size, unsigned long align,
unsigned long vstart, unsigned long vend)
{
bool adjust_search_size = true;
unsigned long nva_start_addr;
struct vmap_area *va;
int ret;
/*
* Do not adjust when:
* a) align <= PAGE_SIZE, because it does not make any sense.
* All blocks(their start addresses) are at least PAGE_SIZE
* aligned anyway;
* b) a short range where a requested size corresponds to exactly
* specified [vstart:vend] interval and an alignment > PAGE_SIZE.
* With adjusted search length an allocation would not succeed.
*/
if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
adjust_search_size = false;
va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
if (unlikely(!va))
return vend;
if (va->va_start > vstart)
nva_start_addr = ALIGN(va->va_start, align);
else
nva_start_addr = ALIGN(vstart, align);
/* Check the "vend" restriction. */
if (nva_start_addr + size > vend)
return vend;
/* Update the free vmap_area. */
ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
if (WARN_ON_ONCE(ret))
return vend;
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
find_vmap_lowest_match_check(root, head, size, align);
#endif
return nva_start_addr;
}
/*
* Free a region of KVA allocated by alloc_vmap_area
*/
static void free_vmap_area(struct vmap_area *va)
{
/*
* Remove from the busy tree/list.
*/
spin_lock(&vmap_area_lock);
unlink_va(va, &vmap_area_root);
spin_unlock(&vmap_area_lock);
/*
* Insert/Merge it back to the free tree/list.
*/
spin_lock(&free_vmap_area_lock);
merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
spin_unlock(&free_vmap_area_lock);
}
static inline void
preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
{
struct vmap_area *va = NULL;
/*
* Preload this CPU with one extra vmap_area object. It is used
* when fit type of free area is NE_FIT_TYPE. It guarantees that
* a CPU that does an allocation is preloaded.
*
* We do it in non-atomic context, thus it allows us to use more
* permissive allocation masks to be more stable under low memory
* condition and high memory pressure.
*/
if (!this_cpu_read(ne_fit_preload_node))
va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
spin_lock(lock);
if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
kmem_cache_free(vmap_area_cachep, va);
}
/*
* Allocate a region of KVA of the specified size and alignment, within the
* vstart and vend.
*/
static struct vmap_area *alloc_vmap_area(unsigned long size,
unsigned long align,
unsigned long vstart, unsigned long vend,
int node, gfp_t gfp_mask,
unsigned long va_flags)
{
struct vmap_area *va;
unsigned long freed;
unsigned long addr;
int purged = 0;
int ret;
if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
return ERR_PTR(-EINVAL);
if (unlikely(!vmap_initialized))
return ERR_PTR(-EBUSY);
might_sleep();
gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
if (unlikely(!va))
return ERR_PTR(-ENOMEM);
/*
* Only scan the relevant parts containing pointers to other objects
* to avoid false negatives.
*/
kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
retry:
preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
size, align, vstart, vend);
spin_unlock(&free_vmap_area_lock);
trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
/*
* If an allocation fails, the "vend" address is
* returned. Therefore trigger the overflow path.
*/
if (unlikely(addr == vend))
goto overflow;
va->va_start = addr;
va->va_end = addr + size;
va->vm = NULL;
va->flags = va_flags;
spin_lock(&vmap_area_lock);
insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
spin_unlock(&vmap_area_lock);
BUG_ON(!IS_ALIGNED(va->va_start, align));
BUG_ON(va->va_start < vstart);
BUG_ON(va->va_end > vend);
ret = kasan_populate_vmalloc(addr, size);
if (ret) {
free_vmap_area(va);
return ERR_PTR(ret);
}
return va;
overflow:
if (!purged) {
reclaim_and_purge_vmap_areas();
purged = 1;
goto retry;
}
freed = 0;
blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
if (freed > 0) {
purged = 0;
goto retry;
}
if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
size);
kmem_cache_free(vmap_area_cachep, va);
return ERR_PTR(-EBUSY);
}
int register_vmap_purge_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
/*
* lazy_max_pages is the maximum amount of virtual address space we gather up
* before attempting to purge with a TLB flush.
*
* There is a tradeoff here: a larger number will cover more kernel page tables
* and take slightly longer to purge, but it will linearly reduce the number of
* global TLB flushes that must be performed. It would seem natural to scale
* this number up linearly with the number of CPUs (because vmapping activity
* could also scale linearly with the number of CPUs), however it is likely
* that in practice, workloads might be constrained in other ways that mean
* vmap activity will not scale linearly with CPUs. Also, I want to be
* conservative and not introduce a big latency on huge systems, so go with
* a less aggressive log scale. It will still be an improvement over the old
* code, and it will be simple to change the scale factor if we find that it
* becomes a problem on bigger systems.
*/
static unsigned long lazy_max_pages(void)
{
unsigned int log;
log = fls(num_online_cpus());
return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
/*
* Serialize vmap purging. There is no actual critical section protected
* by this lock, but we want to avoid concurrent calls for performance
* reasons and to make the pcpu_get_vm_areas more deterministic.
*/
static DEFINE_MUTEX(vmap_purge_lock);
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);
/*
* Purges all lazily-freed vmap areas.
*/
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
{
unsigned long resched_threshold;
unsigned int num_purged_areas = 0;
struct list_head local_purge_list;
struct vmap_area *va, *n_va;
lockdep_assert_held(&vmap_purge_lock);
spin_lock(&purge_vmap_area_lock);
purge_vmap_area_root = RB_ROOT;
list_replace_init(&purge_vmap_area_list, &local_purge_list);
spin_unlock(&purge_vmap_area_lock);
if (unlikely(list_empty(&local_purge_list)))
goto out;
start = min(start,
list_first_entry(&local_purge_list,
struct vmap_area, list)->va_start);
end = max(end,
list_last_entry(&local_purge_list,
struct vmap_area, list)->va_end);
flush_tlb_kernel_range(start, end);
resched_threshold = lazy_max_pages() << 1;
spin_lock(&free_vmap_area_lock);
list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
unsigned long orig_start = va->va_start;
unsigned long orig_end = va->va_end;
/*
* Finally insert or merge lazily-freed area. It is
* detached and there is no need to "unlink" it from
* anything.
*/
va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
&free_vmap_area_list);
if (!va)
continue;
if (is_vmalloc_or_module_addr((void *)orig_start))
kasan_release_vmalloc(orig_start, orig_end,
va->va_start, va->va_end);
atomic_long_sub(nr, &vmap_lazy_nr);
num_purged_areas++;
if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
cond_resched_lock(&free_vmap_area_lock);
}
spin_unlock(&free_vmap_area_lock);
out:
trace_purge_vmap_area_lazy(start, end, num_purged_areas);
return num_purged_areas > 0;
}
/*
* Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
*/
static void reclaim_and_purge_vmap_areas(void)
{
mutex_lock(&vmap_purge_lock);
purge_fragmented_blocks_allcpus();
__purge_vmap_area_lazy(ULONG_MAX, 0);
mutex_unlock(&vmap_purge_lock);
}
static void drain_vmap_area_work(struct work_struct *work)
{
unsigned long nr_lazy;
do {
mutex_lock(&vmap_purge_lock);
__purge_vmap_area_lazy(ULONG_MAX, 0);
mutex_unlock(&vmap_purge_lock);
/* Recheck if further work is required. */
nr_lazy = atomic_long_read(&vmap_lazy_nr);
} while (nr_lazy > lazy_max_pages());
}
/*
* Free a vmap area, caller ensuring that the area has been unmapped,
* unlinked and flush_cache_vunmap had been called for the correct
* range previously.
*/
static void free_vmap_area_noflush(struct vmap_area *va)
{
unsigned long nr_lazy_max = lazy_max_pages();
unsigned long va_start = va->va_start;
unsigned long nr_lazy;
if (WARN_ON_ONCE(!list_empty(&va->list)))
return;
nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
PAGE_SHIFT, &vmap_lazy_nr);
/*
* Merge or place it to the purge tree/list.
*/
spin_lock(&purge_vmap_area_lock);
merge_or_add_vmap_area(va,
&purge_vmap_area_root, &purge_vmap_area_list);
spin_unlock(&purge_vmap_area_lock);
trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
/* After this point, we may free va at any time */
if (unlikely(nr_lazy > nr_lazy_max))
schedule_work(&drain_vmap_work);
}
/*
* Free and unmap a vmap area
*/
static void free_unmap_vmap_area(struct vmap_area *va)
{
flush_cache_vunmap(va->va_start, va->va_end);
vunmap_range_noflush(va->va_start, va->va_end);
if (debug_pagealloc_enabled_static())
flush_tlb_kernel_range(va->va_start, va->va_end);
free_vmap_area_noflush(va);
}
struct vmap_area *find_vmap_area(unsigned long addr)
{
struct vmap_area *va;
spin_lock(&vmap_area_lock);
va = __find_vmap_area(addr, &vmap_area_root);
spin_unlock(&vmap_area_lock);
return va;
}
static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
{
struct vmap_area *va;
spin_lock(&vmap_area_lock);
va = __find_vmap_area(addr, &vmap_area_root);
if (va)
unlink_va(va, &vmap_area_root);
spin_unlock(&vmap_area_lock);
return va;
}
/*** Per cpu kva allocator ***/
/*
* vmap space is limited especially on 32 bit architectures. Ensure there is
* room for at least 16 percpu vmap blocks per CPU.
*/
/*
* If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
* to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
* instead (we just need a rough idea)
*/
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE (128UL*1024*1024)
#else
#define VMALLOC_SPACE (128UL*1024*1024*1024)
#endif
#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
#define VMAP_BBMAP_BITS \
VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
/*
* Purge threshold to prevent overeager purging of fragmented blocks for
* regular operations: Purge if vb->free is less than 1/4 of the capacity.
*/
#define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
#define VMAP_FLAGS_MASK 0x3
struct vmap_block_queue {
spinlock_t lock;
struct list_head free;
/*
* An xarray requires an extra memory dynamically to
* be allocated. If it is an issue, we can use rb-tree
* instead.
*/
struct xarray vmap_blocks;
};
struct vmap_block {
spinlock_t lock;
struct vmap_area *va;
unsigned long free, dirty;
DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
unsigned long dirty_min, dirty_max; /*< dirty range */
struct list_head free_list;
struct rcu_head rcu_head;
struct list_head purge;
};
/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
/*
* In order to fast access to any "vmap_block" associated with a
* specific address, we use a hash.
*
* A per-cpu vmap_block_queue is used in both ways, to serialize
* an access to free block chains among CPUs(alloc path) and it
* also acts as a vmap_block hash(alloc/free paths). It means we
* overload it, since we already have the per-cpu array which is
* used as a hash table. When used as a hash a 'cpu' passed to
* per_cpu() is not actually a CPU but rather a hash index.
*
* A hash function is addr_to_vb_xa() which hashes any address
* to a specific index(in a hash) it belongs to. This then uses a
* per_cpu() macro to access an array with generated index.
*
* An example:
*
* CPU_1 CPU_2 CPU_0
* | | |
* V V V
* 0 10 20 30 40 50 60
* |------|------|------|------|------|------|...<vmap address space>
* CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
*
* - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
* it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
*
* - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
* it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
*
* - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
* it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
*
* This technique almost always avoids lock contention on insert/remove,
* however xarray spinlocks protect against any contention that remains.
*/
static struct xarray *
addr_to_vb_xa(unsigned long addr)
{
int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
return &per_cpu(vmap_block_queue, index).vmap_blocks;
}
/*
* We should probably have a fallback mechanism to allocate virtual memory
* out of partially filled vmap blocks. However vmap block sizing should be
* fairly reasonable according to the vmalloc size, so it shouldn't be a
* big problem.
*/
static unsigned long addr_to_vb_idx(unsigned long addr)
{
addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
addr /= VMAP_BLOCK_SIZE;
return addr;
}
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
unsigned long addr;
addr = va_start + (pages_off << PAGE_SHIFT);
BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
return (void *)addr;
}
/**
* new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
* block. Of course pages number can't exceed VMAP_BBMAP_BITS
* @order: how many 2^order pages should be occupied in newly allocated block
* @gfp_mask: flags for the page level allocator
*
* Return: virtual address in a newly allocated block or ERR_PTR(-errno)
*/
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
{
struct vmap_block_queue *vbq;
struct vmap_block *vb;
struct vmap_area *va;
struct xarray *xa;
unsigned long vb_idx;
int node, err;
void *vaddr;
node = numa_node_id();
vb = kmalloc_node(sizeof(struct vmap_block),
gfp_mask & GFP_RECLAIM_MASK, node);
if (unlikely(!vb))
return ERR_PTR(-ENOMEM);
va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
VMALLOC_START, VMALLOC_END,
node, gfp_mask,
VMAP_RAM|VMAP_BLOCK);
if (IS_ERR(va)) {
kfree(vb);
return ERR_CAST(va);
}
vaddr = vmap_block_vaddr(va->va_start, 0);
spin_lock_init(&vb->lock);
vb->va = va;
/* At least something should be left free */
BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
vb->free = VMAP_BBMAP_BITS - (1UL << order);
vb->dirty = 0;
vb->dirty_min = VMAP_BBMAP_BITS;
vb->dirty_max = 0;
bitmap_set(vb->used_map, 0, (1UL << order));
INIT_LIST_HEAD(&vb->free_list);
xa = addr_to_vb_xa(va->va_start);
vb_idx = addr_to_vb_idx(va->va_start);
err = xa_insert(xa, vb_idx, vb, gfp_mask);
if (err) {
kfree(vb);
free_vmap_area(va);
return ERR_PTR(err);
}
vbq = raw_cpu_ptr(&vmap_block_queue);
spin_lock(&vbq->lock);
list_add_tail_rcu(&vb->free_list, &vbq->free);
spin_unlock(&vbq->lock);
return vaddr;
}
static void free_vmap_block(struct vmap_block *vb)
{
struct vmap_block *tmp;
struct xarray *xa;
xa = addr_to_vb_xa(vb->va->va_start);
tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
BUG_ON(tmp != vb);
spin_lock(&vmap_area_lock);
unlink_va(vb->va, &vmap_area_root);
spin_unlock(&vmap_area_lock);
free_vmap_area_noflush(vb->va);
kfree_rcu(vb, rcu_head);
}
static bool purge_fragmented_block(struct vmap_block *vb,
struct vmap_block_queue *vbq, struct list_head *purge_list,
bool force_purge)
{
if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
vb->dirty == VMAP_BBMAP_BITS)
return false;
/* Don't overeagerly purge usable blocks unless requested */
if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
return false;
/* prevent further allocs after releasing lock */
WRITE_ONCE(vb->free, 0);
/* prevent purging it again */
WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
vb->dirty_min = 0;
vb->dirty_max = VMAP_BBMAP_BITS;
spin_lock(&vbq->lock);
list_del_rcu(&vb->free_list);
spin_unlock(&vbq->lock);
list_add_tail(&vb->purge, purge_list);
return true;
}
static void free_purged_blocks(struct list_head *purge_list)
{
struct vmap_block *vb, *n_vb;
list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
list_del(&vb->purge);
free_vmap_block(vb);
}
}
static void purge_fragmented_blocks(int cpu)
{
LIST_HEAD(purge);
struct vmap_block *vb;
struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
rcu_read_lock();
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
unsigned long free = READ_ONCE(vb->free);
unsigned long dirty = READ_ONCE(vb->dirty);
if (free + dirty != VMAP_BBMAP_BITS ||
dirty == VMAP_BBMAP_BITS)
continue;
spin_lock(&vb->lock);
purge_fragmented_block(vb, vbq, &purge, true);
spin_unlock(&vb->lock);
}
rcu_read_unlock();
free_purged_blocks(&purge);
}
static void purge_fragmented_blocks_allcpus(void)
{
int cpu;
for_each_possible_cpu(cpu)
purge_fragmented_blocks(cpu);
}
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
struct vmap_block_queue *vbq;
struct vmap_block *vb;
void *vaddr = NULL;
unsigned int order;
BUG_ON(offset_in_page(size));
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
if (WARN_ON(size == 0)) {
/*
* Allocating 0 bytes isn't what caller wants since
* get_order(0) returns funny result. Just warn and terminate
* early.
*/
return NULL;
}
order = get_order(size);
rcu_read_lock();
vbq = raw_cpu_ptr(&vmap_block_queue);
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
unsigned long pages_off;
if (READ_ONCE(vb->free) < (1UL << order))
continue;
spin_lock(&vb->lock);
if (vb->free < (1UL << order)) {
spin_unlock(&vb->lock);
continue;
}
pages_off = VMAP_BBMAP_BITS - vb->free;
vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
WRITE_ONCE(vb->free, vb->free - (1UL << order));
bitmap_set(vb->used_map, pages_off, (1UL << order));
if (vb->free == 0) {
spin_lock(&vbq->lock);
list_del_rcu(&vb->free_list);
spin_unlock(&vbq->lock);
}
spin_unlock(&vb->lock);
break;
}
rcu_read_unlock();
/* Allocate new block if nothing was found */
if (!vaddr)
vaddr = new_vmap_block(order, gfp_mask);
return vaddr;
}
static void vb_free(unsigned long addr, unsigned long size)
{
unsigned long offset;
unsigned int order;
struct vmap_block *vb;
struct xarray *xa;
BUG_ON(offset_in_page(size));
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
flush_cache_vunmap(addr, addr + size);
order = get_order(size);
offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
xa = addr_to_vb_xa(addr);
vb = xa_load(xa, addr_to_vb_idx(addr));
spin_lock(&vb->lock);
bitmap_clear(vb->used_map, offset, (1UL << order));
spin_unlock(&vb->lock);
vunmap_range_noflush(addr, addr + size);
if (debug_pagealloc_enabled_static())
flush_tlb_kernel_range(addr, addr + size);
spin_lock(&vb->lock);
/* Expand the not yet TLB flushed dirty range */
vb->dirty_min = min(vb->dirty_min, offset);
vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
if (vb->dirty == VMAP_BBMAP_BITS) {
BUG_ON(vb->free);
spin_unlock(&vb->lock);
free_vmap_block(vb);
} else
spin_unlock(&vb->lock);
}
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
{
LIST_HEAD(purge_list);
int cpu;
if (unlikely(!vmap_initialized))
return;
mutex_lock(&vmap_purge_lock);
for_each_possible_cpu(cpu) {
struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
struct vmap_block *vb;
unsigned long idx;
rcu_read_lock();
xa_for_each(&vbq->vmap_blocks, idx, vb) {
spin_lock(&vb->lock);
/*
* Try to purge a fragmented block first. If it's
* not purgeable, check whether there is dirty
* space to be flushed.
*/
if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
unsigned long va_start = vb->va->va_start;
unsigned long s, e;
s = va_start + (vb->dirty_min << PAGE_SHIFT);
e = va_start + (vb->dirty_max << PAGE_SHIFT);
start = min(s, start);
end = max(e, end);
/* Prevent that this is flushed again */
vb->dirty_min = VMAP_BBMAP_BITS;
vb->dirty_max = 0;
flush = 1;
}
spin_unlock(&vb->lock);
}
rcu_read_unlock();
}
free_purged_blocks(&purge_list);
if (!__purge_vmap_area_lazy(start, end) && flush)
flush_tlb_kernel_range(start, end);
mutex_unlock(&vmap_purge_lock);
}
/**
* vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
*
* The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
* to amortize TLB flushing overheads. What this means is that any page you
* have now, may, in a former life, have been mapped into kernel virtual
* address by the vmap layer and so there might be some CPUs with TLB entries
* still referencing that page (additional to the regular 1:1 kernel mapping).
*
* vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
* be sure that none of the pages we have control over will have any aliases
* from the vmap layer.
*/
void vm_unmap_aliases(void)
{
unsigned long start = ULONG_MAX, end = 0;
int flush = 0;
_vm_unmap_aliases(start, end, flush);
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);
/**
* vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
* @mem: the pointer returned by vm_map_ram
* @count: the count passed to that vm_map_ram call (cannot unmap partial)
*/
void vm_unmap_ram(const void *mem, unsigned int count)
{
unsigned long size = (unsigned long)count << PAGE_SHIFT;
unsigned long addr = (unsigned long)kasan_reset_tag(mem);
struct vmap_area *va;
might_sleep();
BUG_ON(!addr);
BUG_ON(addr < VMALLOC_START);
BUG_ON(addr > VMALLOC_END);
BUG_ON(!PAGE_ALIGNED(addr));
kasan_poison_vmalloc(mem, size);
if (likely(count <= VMAP_MAX_ALLOC)) {
debug_check_no_locks_freed(mem, size);
vb_free(addr, size);
return;
}
va = find_unlink_vmap_area(addr);
if (WARN_ON_ONCE(!va))
return;
debug_check_no_locks_freed((void *)va->va_start,
(va->va_end - va->va_start));
free_unmap_vmap_area(va);
}
EXPORT_SYMBOL(vm_unmap_ram);
/**
* vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
* @pages: an array of pointers to the pages to be mapped
* @count: number of pages
* @node: prefer to allocate data structures on this node
*
* If you use this function for less than VMAP_MAX_ALLOC pages, it could be
* faster than vmap so it's good. But if you mix long-life and short-life
* objects with vm_map_ram(), it could consume lots of address space through
* fragmentation (especially on a 32bit machine). You could see failures in
* the end. Please use this function for short-lived objects.
*
* Returns: a pointer to the address that has been mapped, or %NULL on failure
*/
void *vm_map_ram(struct page **pages, unsigned int count, int node)
{
unsigned long size = (unsigned long)count << PAGE_SHIFT;
unsigned long addr;
void *mem;
if (likely(count <= VMAP_MAX_ALLOC)) {
mem = vb_alloc(size, GFP_KERNEL);
if (IS_ERR(mem))
return NULL;
addr = (unsigned long)mem;
} else {
struct vmap_area *va;
va = alloc_vmap_area(size, PAGE_SIZE,
VMALLOC_START, VMALLOC_END,
node, GFP_KERNEL, VMAP_RAM);
if (IS_ERR(va))
return NULL;
addr = va->va_start;
mem = (void *)addr;
}
if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
pages, PAGE_SHIFT) < 0) {
vm_unmap_ram(mem, count);
return NULL;
}
/*
* Mark the pages as accessible, now that they are mapped.
* With hardware tag-based KASAN, marking is skipped for
* non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
*/
mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
return mem;
}
EXPORT_SYMBOL(vm_map_ram);
static struct vm_struct *vmlist __initdata;
static inline unsigned int vm_area_page_order(struct vm_struct *vm)
{
#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
return vm->page_order;
#else
return 0;
#endif
}
static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
{
#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
vm->page_order = order;
#else
BUG_ON(order != 0);
#endif
}
/**
* vm_area_add_early - add vmap area early during boot
* @vm: vm_struct to add
*
* This function is used to add fixed kernel vm area to vmlist before
* vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
* should contain proper values and the other fields should be zero.
*
* DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
*/
void __init vm_area_add_early(struct vm_struct *vm)
{
struct vm_struct *tmp, **p;
BUG_ON(vmap_initialized);
for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
if (tmp->addr >= vm->addr) {
BUG_ON(tmp->addr < vm->addr + vm->size);
break;
} else
BUG_ON(tmp->addr + tmp->size > vm->addr);
}
vm->next = *p;
*p = vm;
}
/**
* vm_area_register_early - register vmap area early during boot
* @vm: vm_struct to register
* @align: requested alignment
*
* This function is used to register kernel vm area before
* vmalloc_init() is called. @vm->size and @vm->flags should contain
* proper values on entry and other fields should be zero. On return,
* vm->addr contains the allocated address.
*
* DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
*/
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
{
unsigned long addr = ALIGN(VMALLOC_START, align);
struct vm_struct *cur, **p;
BUG_ON(vmap_initialized);
for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
if ((unsigned long)cur->addr - addr >= vm->size)
break;
addr = ALIGN((unsigned long)cur->addr + cur->size, align);
}
BUG_ON(addr > VMALLOC_END - vm->size);
vm->addr = (void *)addr;
vm->next = *p;
*p = vm;
kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
}
static void vmap_init_free_space(void)
{
unsigned long vmap_start = 1;
const unsigned long vmap_end = ULONG_MAX;
struct vmap_area *busy, *free;
/*
* B F B B B F
* -|-----|.....|-----|-----|-----|.....|-
* | The KVA space |
* |<--------------------------------->|
*/
list_for_each_entry(busy, &vmap_area_list, list) {
if (busy->va_start - vmap_start > 0) {
free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
if (!WARN_ON_ONCE(!free)) {
free->va_start = vmap_start;
free->va_end = busy->va_start;
insert_vmap_area_augment(free, NULL,
&free_vmap_area_root,
&free_vmap_area_list);
}
}
vmap_start = busy->va_end;
}
if (vmap_end - vmap_start > 0) {
free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
if (!WARN_ON_ONCE(!free)) {
free->va_start = vmap_start;
free->va_end = vmap_end;
insert_vmap_area_augment(free, NULL,
&free_vmap_area_root,
&free_vmap_area_list);
}
}
}
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
struct vmap_area *va, unsigned long flags, const void *caller)
{
vm->flags = flags;
vm->addr = (void *)va->va_start;
vm->size = va->va_end - va->va_start;
vm->caller = caller;
va->vm = vm;
}
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
unsigned long flags, const void *caller)
{
spin_lock(&vmap_area_lock);
setup_vmalloc_vm_locked(vm, va, flags, caller);
spin_unlock(&vmap_area_lock);
}
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
{
/*
* Before removing VM_UNINITIALIZED,
* we should make sure that vm has proper values.
* Pair with smp_rmb() in show_numa_info().
*/
smp_wmb();
vm->flags &= ~VM_UNINITIALIZED;
}
static struct vm_struct *__get_vm_area_node(unsigned long size,
unsigned long align, unsigned long shift, unsigned long flags,
unsigned long start, unsigned long end, int node,
gfp_t gfp_mask, const void *caller)
{
struct vmap_area *va;
struct vm_struct *area;
unsigned long requested_size = size;
BUG_ON(in_interrupt());
size = ALIGN(size, 1ul << shift);
if (unlikely(!size))
return NULL;
if (flags & VM_IOREMAP)
align = 1ul << clamp_t(int, get_count_order_long(size),
PAGE_SHIFT, IOREMAP_MAX_ORDER);
area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
if (unlikely(!area))
return NULL;
if (!(flags & VM_NO_GUARD))
size += PAGE_SIZE;
va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
if (IS_ERR(va)) {
kfree(area);
return NULL;
}
setup_vmalloc_vm(area, va, flags, caller);
/*
* Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
* best-effort approach, as they can be mapped outside of vmalloc code.
* For VM_ALLOC mappings, the pages are marked as accessible after
* getting mapped in __vmalloc_node_range().
* With hardware tag-based KASAN, marking is skipped for
* non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
*/
if (!(flags & VM_ALLOC))
area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
KASAN_VMALLOC_PROT_NORMAL);
return area;
}
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
unsigned long start, unsigned long end,
const void *caller)
{
return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
NUMA_NO_NODE, GFP_KERNEL, caller);
}
/**
* get_vm_area - reserve a contiguous kernel virtual area
* @size: size of the area
* @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
*
* Search an area of @size in the kernel virtual mapping area,
* and reserved it for out purposes. Returns the area descriptor
* on success or %NULL on failure.
*
* Return: the area descriptor on success or %NULL on failure.
*/
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
VMALLOC_START, VMALLOC_END,
NUMA_NO_NODE, GFP_KERNEL,
__builtin_return_address(0));
}
struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
const void *caller)
{
return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
VMALLOC_START, VMALLOC_END,
NUMA_NO_NODE, GFP_KERNEL, caller);
}
/**
* find_vm_area - find a continuous kernel virtual area
* @addr: base address
*
* Search for the kernel VM area starting at @addr, and return it.
* It is up to the caller to do all required locking to keep the returned
* pointer valid.
*
* Return: the area descriptor on success or %NULL on failure.
*/
struct vm_struct *find_vm_area(const void *addr)
{
struct vmap_area *va;
va = find_vmap_area((unsigned long)addr);
if (!va)
return NULL;
return va->vm;
}
/**
* remove_vm_area - find and remove a continuous kernel virtual area
* @addr: base address
*
* Search for the kernel VM area starting at @addr, and remove it.
* This function returns the found VM area, but using it is NOT safe
* on SMP machines, except for its size or flags.
*
* Return: the area descriptor on success or %NULL on failure.
*/
struct vm_struct *remove_vm_area(const void *addr)
{
struct vmap_area *va;
struct vm_struct *vm;
might_sleep();
if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
addr))
return NULL;
va = find_unlink_vmap_area((unsigned long)addr);
if (!va || !va->vm)
return NULL;
vm = va->vm;
debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
kasan_free_module_shadow(vm);
kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
free_unmap_vmap_area(va);
return vm;
}
static inline void set_area_direct_map(const struct vm_struct *area,
int (*set_direct_map)(struct page *page))
{
int i;
/* HUGE_VMALLOC passes small pages to set_direct_map */
for (i = 0; i < area->nr_pages; i++)
if (page_address(area->pages[i]))
set_direct_map(area->pages[i]);
}
/*
* Flush the vm mapping and reset the direct map.
*/
static void vm_reset_perms(struct vm_struct *area)
{
unsigned long start = ULONG_MAX, end = 0;
unsigned int page_order = vm_area_page_order(area);
int flush_dmap = 0;
int i;
/*
* Find the start and end range of the direct mappings to make sure that
* the vm_unmap_aliases() flush includes the direct map.
*/
for (i = 0; i < area->nr_pages; i += 1U << page_order) {
unsigned long addr = (unsigned long)page_address(area->pages[i]);
if (addr) {
unsigned long page_size;
page_size = PAGE_SIZE << page_order;
start = min(addr, start);
end = max(addr + page_size, end);
flush_dmap = 1;
}
}
/*
* Set direct map to something invalid so that it won't be cached if
* there are any accesses after the TLB flush, then flush the TLB and
* reset the direct map permissions to the default.
*/
set_area_direct_map(area, set_direct_map_invalid_noflush);
_vm_unmap_aliases(start, end, flush_dmap);
set_area_direct_map(area, set_direct_map_default_noflush);
}
static void delayed_vfree_work(struct work_struct *w)
{
struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
struct llist_node *t, *llnode;
llist_for_each_safe(llnode, t, llist_del_all(&p->list))
vfree(llnode);
}
/**
* vfree_atomic - release memory allocated by vmalloc()
* @addr: memory base address
*
* This one is just like vfree() but can be called in any atomic context
* except NMIs.
*/
void vfree_atomic(const void *addr)
{
struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
BUG_ON(in_nmi());
kmemleak_free(addr);
/*
* Use raw_cpu_ptr() because this can be called from preemptible
* context. Preemption is absolutely fine here, because the llist_add()
* implementation is lockless, so it works even if we are adding to
* another cpu's list. schedule_work() should be fine with this too.
*/
if (addr && llist_add((struct llist_node *)addr, &p->list))
schedule_work(&p->wq);
}
/**
* vfree - Release memory allocated by vmalloc()
* @addr: Memory base address
*
* Free the virtually continuous memory area starting at @addr, as obtained
* from one of the vmalloc() family of APIs. This will usually also free the
* physical memory underlying the virtual allocation, but that memory is
* reference counted, so it will not be freed until the last user goes away.
*
* If @addr is NULL, no operation is performed.
*
* Context:
* May sleep if called *not* from interrupt context.
* Must not be called in NMI context (strictly speaking, it could be
* if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
* conventions for vfree() arch-dependent would be a really bad idea).
*/
void vfree(const void *addr)
{
struct vm_struct *vm;
int i;
if (unlikely(in_interrupt())) {
vfree_atomic(addr);
return;
}
BUG_ON(in_nmi());
kmemleak_free(addr);
might_sleep();
if (!addr)
return;
vm = remove_vm_area(addr);
if (unlikely(!vm)) {
WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
addr);
return;
}
if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
vm_reset_perms(vm);
for (i = 0; i < vm->nr_pages; i++) {
struct page *page = vm->pages[i];
BUG_ON(!page);
mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
/*
* High-order allocs for huge vmallocs are split, so
* can be freed as an array of order-0 allocations
*/
__free_page(page);
cond_resched();
}
atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
kvfree(vm->pages);
kfree(vm);
}
EXPORT_SYMBOL(vfree);
/**
* vunmap - release virtual mapping obtained by vmap()
* @addr: memory base address
*
* Free the virtually contiguous memory area starting at @addr,
* which was created from the page array passed to vmap().
*
* Must not be called in interrupt context.
*/
void vunmap(const void *addr)
{
struct vm_struct *vm;
BUG_ON(in_interrupt());
might_sleep();
if (!addr)
return;
vm = remove_vm_area(addr);
if (unlikely(!vm)) {
WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
addr);
return;
}
kfree(vm);
}
EXPORT_SYMBOL(vunmap);
/**
* vmap - map an array of pages into virtually contiguous space
* @pages: array of page pointers
* @count: number of pages to map
* @flags: vm_area->flags
* @prot: page protection for the mapping
*
* Maps @count pages from @pages into contiguous kernel virtual space.
* If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
* (which must be kmalloc or vmalloc memory) and one reference per pages in it
* are transferred from the caller to vmap(), and will be freed / dropped when
* vfree() is called on the return value.
*
* Return: the address of the area or %NULL on failure
*/
void *vmap(struct page **pages, unsigned int count,
unsigned long flags, pgprot_t prot)
{
struct vm_struct *area;
unsigned long addr;
unsigned long size; /* In bytes */
might_sleep();
if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
return NULL;
/*
* Your top guard is someone else's bottom guard. Not having a top
* guard compromises someone else's mappings too.
*/
if (WARN_ON_ONCE(flags & VM_NO_GUARD))
flags &= ~VM_NO_GUARD;
if (count > totalram_pages())
return NULL;
size = (unsigned long)count << PAGE_SHIFT;
area = get_vm_area_caller(size, flags, __builtin_return_address(0));
if (!area)
return NULL;
addr = (unsigned long)area->addr;
if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
pages, PAGE_SHIFT) < 0) {
vunmap(area->addr);
return NULL;
}
if (flags & VM_MAP_PUT_PAGES) {
area->pages = pages;
area->nr_pages = count;
}
return area->addr;
}
EXPORT_SYMBOL(vmap);
#ifdef CONFIG_VMAP_PFN
struct vmap_pfn_data {
unsigned long *pfns;
pgprot_t prot;
unsigned int idx;
};
static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
{
struct vmap_pfn_data *data = private;
unsigned long pfn = data->pfns[data->idx];
pte_t ptent;
if (WARN_ON_ONCE(pfn_valid(pfn)))
return -EINVAL;
ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
set_pte_at(&init_mm, addr, pte, ptent);
data->idx++;
return 0;
}
/**
* vmap_pfn - map an array of PFNs into virtually contiguous space
* @pfns: array of PFNs
* @count: number of pages to map
* @prot: page protection for the mapping
*
* Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
* the start address of the mapping.
*/
void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
{
struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
struct vm_struct *area;
area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
__builtin_return_address(0));
if (!area)
return NULL;
if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
count * PAGE_SIZE, vmap_pfn_apply, &data)) {
free_vm_area(area);
return NULL;
}
flush_cache_vmap((unsigned long)area->addr,
(unsigned long)area->addr + count * PAGE_SIZE);
return area->addr;
}
EXPORT_SYMBOL_GPL(vmap_pfn);
#endif /* CONFIG_VMAP_PFN */
static inline unsigned int
vm_area_alloc_pages(gfp_t gfp, int nid,
unsigned int order, unsigned int nr_pages, struct page **pages)
{
unsigned int nr_allocated = 0;
gfp_t alloc_gfp = gfp;
bool nofail = false;
struct page *page;
int i;
/*
* For order-0 pages we make use of bulk allocator, if
* the page array is partly or not at all populated due
* to fails, fallback to a single page allocator that is
* more permissive.
*/
if (!order) {
/* bulk allocator doesn't support nofail req. officially */
gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
while (nr_allocated < nr_pages) {
unsigned int nr, nr_pages_request;
/*
* A maximum allowed request is hard-coded and is 100
* pages per call. That is done in order to prevent a
* long preemption off scenario in the bulk-allocator
* so the range is [1:100].
*/
nr_pages_request = min(100U, nr_pages - nr_allocated);
/* memory allocation should consider mempolicy, we can't
* wrongly use nearest node when nid == NUMA_NO_NODE,
* otherwise memory may be allocated in only one node,
* but mempolicy wants to alloc memory by interleaving.
*/
if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
nr_pages_request,
pages + nr_allocated);
else
nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
nr_pages_request,
pages + nr_allocated);
nr_allocated += nr;
cond_resched();
/*
* If zero or pages were obtained partly,
* fallback to a single page allocator.
*/
if (nr != nr_pages_request)
break;
}
} else if (gfp & __GFP_NOFAIL) {
/*
* Higher order nofail allocations are really expensive and
* potentially dangerous (pre-mature OOM, disruptive reclaim
* and compaction etc.
*/
alloc_gfp &= ~__GFP_NOFAIL;
nofail = true;
}
/* High-order pages or fallback path if "bulk" fails. */
while (nr_allocated < nr_pages) {
if (fatal_signal_pending(current))
break;
if (nid == NUMA_NO_NODE)
page = alloc_pages(alloc_gfp, order);
else
page = alloc_pages_node(nid, alloc_gfp, order);
if (unlikely(!page)) {
if (!nofail)
break;
/* fall back to the zero order allocations */
alloc_gfp |= __GFP_NOFAIL;
order = 0;
continue;
}
/*
* Higher order allocations must be able to be treated as
* indepdenent small pages by callers (as they can with
* small-page vmallocs). Some drivers do their own refcounting
* on vmalloc_to_page() pages, some use page->mapping,
* page->lru, etc.
*/
if (order)
split_page(page, order);
/*
* Careful, we allocate and map page-order pages, but
* tracking is done per PAGE_SIZE page so as to keep the
* vm_struct APIs independent of the physical/mapped size.
*/
for (i = 0; i < (1U << order); i++)
pages[nr_allocated + i] = page + i;
cond_resched();
nr_allocated += 1U << order;
}
return nr_allocated;
}
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
pgprot_t prot, unsigned int page_shift,
int node)
{
const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
bool nofail = gfp_mask & __GFP_NOFAIL;
unsigned long addr = (unsigned long)area->addr;
unsigned long size = get_vm_area_size(area);
unsigned long array_size;
unsigned int nr_small_pages = size >> PAGE_SHIFT;
unsigned int page_order;
unsigned int flags;
int ret;
array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
gfp_mask |= __GFP_HIGHMEM;
/* Please note that the recursion is strictly bounded. */
if (array_size > PAGE_SIZE) {
area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
area->caller);
} else {
area->pages = kmalloc_node(array_size, nested_gfp, node);
}
if (!area->pages) {
warn_alloc(gfp_mask, NULL,
"vmalloc error: size %lu, failed to allocated page array size %lu",
nr_small_pages * PAGE_SIZE, array_size);
free_vm_area(area);
return NULL;
}
set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
page_order = vm_area_page_order(area);
area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
node, page_order, nr_small_pages, area->pages);
atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
if (gfp_mask & __GFP_ACCOUNT) {
int i;
for (i = 0; i < area->nr_pages; i++)
mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
}
/*
* If not enough pages were obtained to accomplish an
* allocation request, free them via vfree() if any.
*/
if (area->nr_pages != nr_small_pages) {
/*
* vm_area_alloc_pages() can fail due to insufficient memory but
* also:-
*
* - a pending fatal signal
* - insufficient huge page-order pages
*
* Since we always retry allocations at order-0 in the huge page
* case a warning for either is spurious.
*/
if (!fatal_signal_pending(current) && page_order == 0)
warn_alloc(gfp_mask, NULL,
"vmalloc error: size %lu, failed to allocate pages",
area->nr_pages * PAGE_SIZE);
goto fail;
}
/*
* page tables allocations ignore external gfp mask, enforce it
* by the scope API
*/
if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
flags = memalloc_nofs_save();
else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
flags = memalloc_noio_save();
do {
ret = vmap_pages_range(addr, addr + size, prot, area->pages,
page_shift);
if (nofail && (ret < 0))
schedule_timeout_uninterruptible(1);
} while (nofail && (ret < 0));
if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
memalloc_nofs_restore(flags);
else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
memalloc_noio_restore(flags);
if (ret < 0) {
warn_alloc(gfp_mask, NULL,
"vmalloc error: size %lu, failed to map pages",
area->nr_pages * PAGE_SIZE);
goto fail;
}
return area->addr;
fail:
vfree(area->addr);
return NULL;
}
/**
* __vmalloc_node_range - allocate virtually contiguous memory
* @size: allocation size
* @align: desired alignment
* @start: vm area range start
* @end: vm area range end
* @gfp_mask: flags for the page level allocator
* @prot: protection mask for the allocated pages
* @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
* @node: node to use for allocation or NUMA_NO_NODE
* @caller: caller's return address
*
* Allocate enough pages to cover @size from the page level
* allocator with @gfp_mask flags. Please note that the full set of gfp
* flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
* supported.
* Zone modifiers are not supported. From the reclaim modifiers
* __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
* and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
* __GFP_RETRY_MAYFAIL are not supported).
*
* __GFP_NOWARN can be used to suppress failures messages.
*
* Map them into contiguous kernel virtual space, using a pagetable
* protection of @prot.
*
* Return: the address of the area or %NULL on failure
*/
void *__vmalloc_node_range(unsigned long size, unsigned long align,
unsigned long start, unsigned long end, gfp_t gfp_mask,
pgprot_t prot, unsigned long vm_flags, int node,
const void *caller)
{
struct vm_struct *area;
void *ret;
kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
unsigned long real_size = size;
unsigned long real_align = align;
unsigned int shift = PAGE_SHIFT;
if (WARN_ON_ONCE(!size))
return NULL;
if ((size >> PAGE_SHIFT) > totalram_pages()) {
warn_alloc(gfp_mask, NULL,
"vmalloc error: size %lu, exceeds total pages",
real_size);
return NULL;
}
if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
unsigned long size_per_node;
/*
* Try huge pages. Only try for PAGE_KERNEL allocations,
* others like modules don't yet expect huge pages in
* their allocations due to apply_to_page_range not
* supporting them.
*/
size_per_node = size;
if (node == NUMA_NO_NODE)
size_per_node /= num_online_nodes();
if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
shift = PMD_SHIFT;
else
shift = arch_vmap_pte_supported_shift(size_per_node);
align = max(real_align, 1UL << shift);
size = ALIGN(real_size, 1UL << shift);
}
again:
area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
VM_UNINITIALIZED | vm_flags, start, end, node,
gfp_mask, caller);
if (!area) {
bool nofail = gfp_mask & __GFP_NOFAIL;
warn_alloc(gfp_mask, NULL,
"vmalloc error: size %lu, vm_struct allocation failed%s",
real_size, (nofail) ? ". Retrying." : "");
if (nofail) {
schedule_timeout_uninterruptible(1);
goto again;
}
goto fail;
}
/*
* Prepare arguments for __vmalloc_area_node() and
* kasan_unpoison_vmalloc().
*/
if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
if (kasan_hw_tags_enabled()) {
/*
* Modify protection bits to allow tagging.
* This must be done before mapping.
*/
prot = arch_vmap_pgprot_tagged(prot);
/*
* Skip page_alloc poisoning and zeroing for physical
* pages backing VM_ALLOC mapping. Memory is instead
* poisoned and zeroed by kasan_unpoison_vmalloc().
*/
gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
}
/* Take note that the mapping is PAGE_KERNEL. */
kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
}
/* Allocate physical pages and map them into vmalloc space. */
ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
if (!ret)
goto fail;
/*
* Mark the pages as accessible, now that they are mapped.
* The condition for setting KASAN_VMALLOC_INIT should complement the
* one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
* to make sure that memory is initialized under the same conditions.
* Tag-based KASAN modes only assign tags to normal non-executable
* allocations, see __kasan_unpoison_vmalloc().
*/
kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
(gfp_mask & __GFP_SKIP_ZERO))
kasan_flags |= KASAN_VMALLOC_INIT;
/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
/*
* In this function, newly allocated vm_struct has VM_UNINITIALIZED
* flag. It means that vm_struct is not fully initialized.
* Now, it is fully initialized, so remove this flag here.
*/
clear_vm_uninitialized_flag(area);
size = PAGE_ALIGN(size);
if (!(vm_flags & VM_DEFER_KMEMLEAK))
kmemleak_vmalloc(area, size, gfp_mask);
return area->addr;
fail:
if (shift > PAGE_SHIFT) {
shift = PAGE_SHIFT;
align = real_align;
size = real_size;
goto again;
}
return NULL;
}
/**
* __vmalloc_node - allocate virtually contiguous memory
* @size: allocation size
* @align: desired alignment
* @gfp_mask: flags for the page level allocator
* @node: node to use for allocation or NUMA_NO_NODE
* @caller: caller's return address
*
* Allocate enough pages to cover @size from the page level allocator with
* @gfp_mask flags. Map them into contiguous kernel virtual space.
*
* Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
* and __GFP_NOFAIL are not supported
*
* Any use of gfp flags outside of GFP_KERNEL should be consulted
* with mm people.
*
* Return: pointer to the allocated memory or %NULL on error
*/
void *__vmalloc_node(unsigned long size, unsigned long align,
gfp_t gfp_mask, int node, const void *caller)
{
return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
gfp_mask, PAGE_KERNEL, 0, node, caller);
}
/*
* This is only for performance analysis of vmalloc and stress purpose.
* It is required by vmalloc test module, therefore do not use it other
* than that.
*/
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node);
#endif
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
{
return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
__builtin_return_address(0));
}
EXPORT_SYMBOL(__vmalloc);
/**
* vmalloc - allocate virtually contiguous memory
* @size: allocation size
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*
* Return: pointer to the allocated memory or %NULL on error
*/
void *vmalloc(unsigned long size)
{
return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
__builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc);
/**
* vmalloc_huge - allocate virtually contiguous memory, allow huge pages
* @size: allocation size
* @gfp_mask: flags for the page level allocator
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
* If @size is greater than or equal to PMD_SIZE, allow using
* huge pages for the memory
*
* Return: pointer to the allocated memory or %NULL on error
*/
void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
{
return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
NUMA_NO_NODE, __builtin_return_address(0));
}
EXPORT_SYMBOL_GPL(vmalloc_huge);
/**
* vzalloc - allocate virtually contiguous memory with zero fill
* @size: allocation size
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
* The memory allocated is set to zero.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*
* Return: pointer to the allocated memory or %NULL on error
*/
void *vzalloc(unsigned long size)
{
return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
__builtin_return_address(0));
}
EXPORT_SYMBOL(vzalloc);
/**
* vmalloc_user - allocate zeroed virtually contiguous memory for userspace
* @size: allocation size
*
* The resulting memory area is zeroed so it can be mapped to userspace
* without leaking data.
*
* Return: pointer to the allocated memory or %NULL on error
*/
void *vmalloc_user(unsigned long size)
{
return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
VM_USERMAP, NUMA_NO_NODE,
__builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_user);
/**
* vmalloc_node - allocate memory on a specific node
* @size: allocation size
* @node: numa node
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*
* Return: pointer to the allocated memory or %NULL on error
*/
void *vmalloc_node(unsigned long size, int node)
{
return __vmalloc_node(size, 1, GFP_KERNEL, node,
__builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_node);
/**
* vzalloc_node - allocate memory on a specific node with zero fill
* @size: allocation size
* @node: numa node
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
* The memory allocated is set to zero.
*
* Return: pointer to the allocated memory or %NULL on error
*/
void *vzalloc_node(unsigned long size, int node)
{
return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
__builtin_return_address(0));
}
EXPORT_SYMBOL(vzalloc_node);
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
#else
/*
* 64b systems should always have either DMA or DMA32 zones. For others
* GFP_DMA32 should do the right thing and use the normal zone.
*/
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
#endif
/**
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
* @size: allocation size
*
* Allocate enough 32bit PA addressable pages to cover @size from the
* page level allocator and map them into contiguous kernel virtual space.
*
* Return: pointer to the allocated memory or %NULL on error
*/
void *vmalloc_32(unsigned long size)
{
return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
__builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_32);
/**
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
* @size: allocation size
*
* The resulting memory area is 32bit addressable and zeroed so it can be
* mapped to userspace without leaking data.
*
* Return: pointer to the allocated memory or %NULL on error
*/
void *vmalloc_32_user(unsigned long size)
{
return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
VM_USERMAP, NUMA_NO_NODE,
__builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_32_user);
/*
* Atomically zero bytes in the iterator.
*
* Returns the number of zeroed bytes.
*/
static size_t zero_iter(struct iov_iter *iter, size_t count)
{
size_t remains = count;
while (remains > 0) {
size_t num, copied;
num = min_t(size_t, remains, PAGE_SIZE);
copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
remains -= copied;
if (copied < num)
break;
}
return count - remains;
}
/*
* small helper routine, copy contents to iter from addr.
* If the page is not present, fill zero.
*
* Returns the number of copied bytes.
*/
static size_t aligned_vread_iter(struct iov_iter *iter,
const char *addr, size_t count)
{
size_t remains = count;
struct page *page;
while (remains > 0) {
unsigned long offset, length;
size_t copied = 0;
offset = offset_in_page(addr);
length = PAGE_SIZE - offset;
if (length > remains)
length = remains;
page = vmalloc_to_page(addr);
/*
* To do safe access to this _mapped_ area, we need lock. But
* adding lock here means that we need to add overhead of
* vmalloc()/vfree() calls for this _debug_ interface, rarely
* used. Instead of that, we'll use an local mapping via
* copy_page_to_iter_nofault() and accept a small overhead in
* this access function.
*/
if (page)
copied = copy_page_to_iter_nofault(page, offset,
length, iter);
else
copied = zero_iter(iter, length);
addr += copied;
remains -= copied;
if (copied != length)
break;
}
return count - remains;
}
/*
* Read from a vm_map_ram region of memory.
*
* Returns the number of copied bytes.
*/
static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
size_t count, unsigned long flags)
{
char *start;
struct vmap_block *vb;
struct xarray *xa;
unsigned long offset;
unsigned int rs, re;
size_t remains, n;
/*
* If it's area created by vm_map_ram() interface directly, but
* not further subdividing and delegating management to vmap_block,
* handle it here.
*/
if (!(flags & VMAP_BLOCK))
return aligned_vread_iter(iter, addr, count);
remains = count;
/*
* Area is split into regions and tracked with vmap_block, read out
* each region and zero fill the hole between regions.
*/
xa = addr_to_vb_xa((unsigned long) addr);
vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
if (!vb)
goto finished_zero;
spin_lock(&vb->lock);
if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
spin_unlock(&vb->lock);
goto finished_zero;
}
for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
size_t copied;
if (remains == 0)
goto finished;
start = vmap_block_vaddr(vb->va->va_start, rs);
if (addr < start) {
size_t to_zero = min_t(size_t, start - addr, remains);
size_t zeroed = zero_iter(iter, to_zero);
addr += zeroed;
remains -= zeroed;
if (remains == 0 || zeroed != to_zero)
goto finished;
}
/*it could start reading from the middle of used region*/
offset = offset_in_page(addr);
n = ((re - rs + 1) << PAGE_SHIFT) - offset;
if (n > remains)
n = remains;
copied = aligned_vread_iter(iter, start + offset, n);
addr += copied;
remains -= copied;
if (copied != n)
goto finished;
}
spin_unlock(&vb->lock);
finished_zero:
/* zero-fill the left dirty or free regions */
return count - remains + zero_iter(iter, remains);
finished:
/* We couldn't copy/zero everything */
spin_unlock(&vb->lock);
return count - remains;
}
/**
* vread_iter() - read vmalloc area in a safe way to an iterator.
* @iter: the iterator to which data should be written.
* @addr: vm address.
* @count: number of bytes to be read.
*
* This function checks that addr is a valid vmalloc'ed area, and
* copy data from that area to a given buffer. If the given memory range
* of [addr...addr+count) includes some valid address, data is copied to
* proper area of @buf. If there are memory holes, they'll be zero-filled.
* IOREMAP area is treated as memory hole and no copy is done.
*
* If [addr...addr+count) doesn't includes any intersects with alive
* vm_struct area, returns 0. @buf should be kernel's buffer.
*
* Note: In usual ops, vread() is never necessary because the caller
* should know vmalloc() area is valid and can use memcpy().
* This is for routines which have to access vmalloc area without
* any information, as /proc/kcore.
*
* Return: number of bytes for which addr and buf should be increased
* (same number as @count) or %0 if [addr...addr+count) doesn't
* include any intersection with valid vmalloc area
*/
long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
{
struct vmap_area *va;
struct vm_struct *vm;
char *vaddr;
size_t n, size, flags, remains;
addr = kasan_reset_tag(addr);
/* Don't allow overflow */
if ((unsigned long) addr + count < count)
count = -(unsigned long) addr;
remains = count;
spin_lock(&vmap_area_lock);
va = find_vmap_area_exceed_addr((unsigned long)addr);
if (!va)
goto finished_zero;
/* no intersects with alive vmap_area */
if ((unsigned long)addr + remains <= va->va_start)
goto finished_zero;
list_for_each_entry_from(va, &vmap_area_list, list) {
size_t copied;
if (remains == 0)
goto finished;
vm = va->vm;
flags = va->flags & VMAP_FLAGS_MASK;
/*
* VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
* be set together with VMAP_RAM.
*/
WARN_ON(flags == VMAP_BLOCK);
if (!vm && !flags)
continue;
if (vm && (vm->flags & VM_UNINITIALIZED))
continue;
/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
smp_rmb();
vaddr = (char *) va->va_start;
size = vm ? get_vm_area_size(vm) : va_size(va);
if (addr >= vaddr + size)
continue;
if (addr < vaddr) {
size_t to_zero = min_t(size_t, vaddr - addr, remains);
size_t zeroed = zero_iter(iter, to_zero);
addr += zeroed;
remains -= zeroed;
if (remains == 0 || zeroed != to_zero)
goto finished;
}
n = vaddr + size - addr;
if (n > remains)
n = remains;
if (flags & VMAP_RAM)
copied = vmap_ram_vread_iter(iter, addr, n, flags);
else if (!(vm->flags & VM_IOREMAP))
copied = aligned_vread_iter(iter, addr, n);
else /* IOREMAP area is treated as memory hole */
copied = zero_iter(iter, n);
addr += copied;
remains -= copied;
if (copied != n)
goto finished;
}
finished_zero:
spin_unlock(&vmap_area_lock);
/* zero-fill memory holes */
return count - remains + zero_iter(iter, remains);
finished:
/* Nothing remains, or We couldn't copy/zero everything. */
spin_unlock(&vmap_area_lock);
return count - remains;
}
/**
* remap_vmalloc_range_partial - map vmalloc pages to userspace
* @vma: vma to cover
* @uaddr: target user address to start at
* @kaddr: virtual address of vmalloc kernel memory
* @pgoff: offset from @kaddr to start at
* @size: size of map area
*
* Returns: 0 for success, -Exxx on failure
*
* This function checks that @kaddr is a valid vmalloc'ed area,
* and that it is big enough to cover the range starting at
* @uaddr in @vma. Will return failure if that criteria isn't
* met.
*
* Similar to remap_pfn_range() (see mm/memory.c)
*/
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
void *kaddr, unsigned long pgoff,
unsigned long size)
{
struct vm_struct *area;
unsigned long off;
unsigned long end_index;
if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
return -EINVAL;
size = PAGE_ALIGN(size);
if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
return -EINVAL;
area = find_vm_area(kaddr);
if (!area)
return -EINVAL;
if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
return -EINVAL;
if (check_add_overflow(size, off, &end_index) ||
end_index > get_vm_area_size(area))
return -EINVAL;
kaddr += off;
do {
struct page *page = vmalloc_to_page(kaddr);
int ret;
ret = vm_insert_page(vma, uaddr, page);
if (ret)
return ret;
uaddr += PAGE_SIZE;
kaddr += PAGE_SIZE;
size -= PAGE_SIZE;
} while (size > 0);
vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
return 0;
}
/**
* remap_vmalloc_range - map vmalloc pages to userspace
* @vma: vma to cover (map full range of vma)
* @addr: vmalloc memory
* @pgoff: number of pages into addr before first page to map
*
* Returns: 0 for success, -Exxx on failure
*
* This function checks that addr is a valid vmalloc'ed area, and
* that it is big enough to cover the vma. Will return failure if
* that criteria isn't met.
*
* Similar to remap_pfn_range() (see mm/memory.c)
*/
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
unsigned long pgoff)
{
return remap_vmalloc_range_partial(vma, vma->vm_start,
addr, pgoff,
vma->vm_end - vma->vm_start);
}
EXPORT_SYMBOL(remap_vmalloc_range);
void free_vm_area(struct vm_struct *area)
{
struct vm_struct *ret;
ret = remove_vm_area(area->addr);
BUG_ON(ret != area);
kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
#ifdef CONFIG_SMP
static struct vmap_area *node_to_va(struct rb_node *n)
{
return rb_entry_safe(n, struct vmap_area, rb_node);
}
/**
* pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
* @addr: target address
*
* Returns: vmap_area if it is found. If there is no such area
* the first highest(reverse order) vmap_area is returned
* i.e. va->va_start < addr && va->va_end < addr or NULL
* if there are no any areas before @addr.
*/
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
{
struct vmap_area *va, *tmp;
struct rb_node *n;
n = free_vmap_area_root.rb_node;
va = NULL;
while (n) {
tmp = rb_entry(n, struct vmap_area, rb_node);
if (tmp->va_start <= addr) {
va = tmp;
if (tmp->va_end >= addr)
break;
n = n->rb_right;
} else {
n = n->rb_left;
}
}
return va;
}
/**
* pvm_determine_end_from_reverse - find the highest aligned address
* of free block below VMALLOC_END
* @va:
* in - the VA we start the search(reverse order);
* out - the VA with the highest aligned end address.
* @align: alignment for required highest address
*
* Returns: determined end address within vmap_area
*/
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
{
unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
unsigned long addr;
if (likely(*va)) {
list_for_each_entry_from_reverse((*va),
&free_vmap_area_list, list) {
addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
if ((*va)->va_start < addr)
return addr;
}
}
return 0;
}
/**
* pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
* @offsets: array containing offset of each area
* @sizes: array containing size of each area
* @nr_vms: the number of areas to allocate
* @align: alignment, all entries in @offsets and @sizes must be aligned to this
*
* Returns: kmalloc'd vm_struct pointer array pointing to allocated
* vm_structs on success, %NULL on failure
*
* Percpu allocator wants to use congruent vm areas so that it can
* maintain the offsets among percpu areas. This function allocates
* congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
* be scattered pretty far, distance between two areas easily going up
* to gigabytes. To avoid interacting with regular vmallocs, these
* areas are allocated from top.
*
* Despite its complicated look, this allocator is rather simple. It
* does everything top-down and scans free blocks from the end looking
* for matching base. While scanning, if any of the areas do not fit the
* base address is pulled down to fit the area. Scanning is repeated till
* all the areas fit and then all necessary data structures are inserted
* and the result is returned.
*/
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
const size_t *sizes, int nr_vms,
size_t align)
{
const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
struct vmap_area **vas, *va;
struct vm_struct **vms;
int area, area2, last_area, term_area;
unsigned long base, start, size, end, last_end, orig_start, orig_end;
bool purged = false;
/* verify parameters and allocate data structures */
BUG_ON(offset_in_page(align) || !is_power_of_2(align));
for (last_area = 0, area = 0; area < nr_vms; area++) {
start = offsets[area];
end = start + sizes[area];
/* is everything aligned properly? */
BUG_ON(!IS_ALIGNED(offsets[area], align));
BUG_ON(!IS_ALIGNED(sizes[area], align));
/* detect the area with the highest address */
if (start > offsets[last_area])
last_area = area;
for (area2 = area + 1; area2 < nr_vms; area2++) {
unsigned long start2 = offsets[area2];
unsigned long end2 = start2 + sizes[area2];
BUG_ON(start2 < end && start < end2);
}
}
last_end = offsets[last_area] + sizes[last_area];
if (vmalloc_end - vmalloc_start < last_end) {
WARN_ON(true);
return NULL;
}
vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
if (!vas || !vms)
goto err_free2;
for (area = 0; area < nr_vms; area++) {
vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
if (!vas[area] || !vms[area])
goto err_free;
}
retry:
spin_lock(&free_vmap_area_lock);
/* start scanning - we scan from the top, begin with the last area */
area = term_area = last_area;
start = offsets[area];
end = start + sizes[area];
va = pvm_find_va_enclose_addr(vmalloc_end);
base = pvm_determine_end_from_reverse(&va, align) - end;
while (true) {
/*
* base might have underflowed, add last_end before
* comparing.
*/
if (base + last_end < vmalloc_start + last_end)
goto overflow;
/*
* Fitting base has not been found.
*/
if (va == NULL)
goto overflow;
/*
* If required width exceeds current VA block, move
* base downwards and then recheck.
*/
if (base + end > va->va_end) {
base = pvm_determine_end_from_reverse(&va, align) - end;
term_area = area;
continue;
}
/*
* If this VA does not fit, move base downwards and recheck.
*/
if (base + start < va->va_start) {
va = node_to_va(rb_prev(&va->rb_node));
base = pvm_determine_end_from_reverse(&va, align) - end;
term_area = area;
continue;
}
/*
* This area fits, move on to the previous one. If
* the previous one is the terminal one, we're done.
*/
area = (area + nr_vms - 1) % nr_vms;
if (area == term_area)
break;
start = offsets[area];
end = start + sizes[area];
va = pvm_find_va_enclose_addr(base + end);
}
/* we've found a fitting base, insert all va's */
for (area = 0; area < nr_vms; area++) {
int ret;
start = base + offsets[area];
size = sizes[area];
va = pvm_find_va_enclose_addr(start);
if (WARN_ON_ONCE(va == NULL))
/* It is a BUG(), but trigger recovery instead. */
goto recovery;
ret = adjust_va_to_fit_type(&free_vmap_area_root,
&free_vmap_area_list,
va, start, size);
if (WARN_ON_ONCE(unlikely(ret)))
/* It is a BUG(), but trigger recovery instead. */
goto recovery;
/* Allocated area. */
va = vas[area];
va->va_start = start;
va->va_end = start + size;
}
spin_unlock(&free_vmap_area_lock);
/* populate the kasan shadow space */
for (area = 0; area < nr_vms; area++) {
if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
goto err_free_shadow;
}
/* insert all vm's */
spin_lock(&vmap_area_lock);
for (area = 0; area < nr_vms; area++) {
insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
pcpu_get_vm_areas);
}
spin_unlock(&vmap_area_lock);
/*
* Mark allocated areas as accessible. Do it now as a best-effort
* approach, as they can be mapped outside of vmalloc code.
* With hardware tag-based KASAN, marking is skipped for
* non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
*/
for (area = 0; area < nr_vms; area++)
vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
kfree(vas);
return vms;
recovery:
/*
* Remove previously allocated areas. There is no
* need in removing these areas from the busy tree,
* because they are inserted only on the final step
* and when pcpu_get_vm_areas() is success.
*/
while (area--) {
orig_start = vas[area]->va_start;
orig_end = vas[area]->va_end;
va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
&free_vmap_area_list);
if (va)
kasan_release_vmalloc(orig_start, orig_end,
va->va_start, va->va_end);
vas[area] = NULL;
}
overflow:
spin_unlock(&free_vmap_area_lock);
if (!purged) {
reclaim_and_purge_vmap_areas();
purged = true;
/* Before "retry", check if we recover. */
for (area = 0; area < nr_vms; area++) {
if (vas[area])
continue;
vas[area] = kmem_cache_zalloc(
vmap_area_cachep, GFP_KERNEL);
if (!vas[area])
goto err_free;
}
goto retry;
}
err_free:
for (area = 0; area < nr_vms; area++) {
if (vas[area])
kmem_cache_free(vmap_area_cachep, vas[area]);
kfree(vms[area]);
}
err_free2:
kfree(vas);
kfree(vms);
return NULL;
err_free_shadow:
spin_lock(&free_vmap_area_lock);
/*
* We release all the vmalloc shadows, even the ones for regions that
* hadn't been successfully added. This relies on kasan_release_vmalloc
* being able to tolerate this case.
*/
for (area = 0; area < nr_vms; area++) {
orig_start = vas[area]->va_start;
orig_end = vas[area]->va_end;
va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
&free_vmap_area_list);
if (va)
kasan_release_vmalloc(orig_start, orig_end,
va->va_start, va->va_end);
vas[area] = NULL;
kfree(vms[area]);
}
spin_unlock(&free_vmap_area_lock);
kfree(vas);
kfree(vms);
return NULL;
}
/**
* pcpu_free_vm_areas - free vmalloc areas for percpu allocator
* @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
* @nr_vms: the number of allocated areas
*
* Free vm_structs and the array allocated by pcpu_get_vm_areas().
*/
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
int i;
for (i = 0; i < nr_vms; i++)
free_vm_area(vms[i]);
kfree(vms);
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_PRINTK
bool vmalloc_dump_obj(void *object)
{
void *objp = (void *)PAGE_ALIGN((unsigned long)object);
const void *caller;
struct vm_struct *vm;
struct vmap_area *va;
unsigned long addr;
unsigned int nr_pages;
if (!spin_trylock(&vmap_area_lock))
return false;
va = __find_vmap_area((unsigned long)objp, &vmap_area_root);
if (!va) {
spin_unlock(&vmap_area_lock);
return false;
}
vm = va->vm;
if (!vm) {
spin_unlock(&vmap_area_lock);
return false;
}
addr = (unsigned long)vm->addr;
caller = vm->caller;
nr_pages = vm->nr_pages;
spin_unlock(&vmap_area_lock);
pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
nr_pages, addr, caller);
return true;
}
#endif
#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
__acquires(&vmap_purge_lock)
__acquires(&vmap_area_lock)
{
mutex_lock(&vmap_purge_lock);
spin_lock(&vmap_area_lock);
return seq_list_start(&vmap_area_list, *pos);
}
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &vmap_area_list, pos);
}
static void s_stop(struct seq_file *m, void *p)
__releases(&vmap_area_lock)
__releases(&vmap_purge_lock)
{
spin_unlock(&vmap_area_lock);
mutex_unlock(&vmap_purge_lock);
}
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
if (IS_ENABLED(CONFIG_NUMA)) {
unsigned int nr, *counters = m->private;
unsigned int step = 1U << vm_area_page_order(v);
if (!counters)
return;
if (v->flags & VM_UNINITIALIZED)
return;
/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
smp_rmb();
memset(counters, 0, nr_node_ids * sizeof(unsigned int));
for (nr = 0; nr < v->nr_pages; nr += step)
counters[page_to_nid(v->pages[nr])] += step;
for_each_node_state(nr, N_HIGH_MEMORY)
if (counters[nr])
seq_printf(m, " N%u=%u", nr, counters[nr]);
}
}
static void show_purge_info(struct seq_file *m)
{
struct vmap_area *va;
spin_lock(&purge_vmap_area_lock);
list_for_each_entry(va, &purge_vmap_area_list, list) {
seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
(void *)va->va_start, (void *)va->va_end,
va->va_end - va->va_start);
}
spin_unlock(&purge_vmap_area_lock);
}
static int s_show(struct seq_file *m, void *p)
{
struct vmap_area *va;
struct vm_struct *v;
va = list_entry(p, struct vmap_area, list);
if (!va->vm) {
if (va->flags & VMAP_RAM)
seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
(void *)va->va_start, (void *)va->va_end,
va->va_end - va->va_start);
goto final;
}
v = va->vm;
seq_printf(m, "0x%pK-0x%pK %7ld",
v->addr, v->addr + v->size, v->size);
if (v->caller)
seq_printf(m, " %pS", v->caller);
if (v->nr_pages)
seq_printf(m, " pages=%d", v->nr_pages);
if (v->phys_addr)
seq_printf(m, " phys=%pa", &v->phys_addr);
if (v->flags & VM_IOREMAP)
seq_puts(m, " ioremap");
if (v->flags & VM_ALLOC)
seq_puts(m, " vmalloc");
if (v->flags & VM_MAP)
seq_puts(m, " vmap");
if (v->flags & VM_USERMAP)
seq_puts(m, " user");
if (v->flags & VM_DMA_COHERENT)
seq_puts(m, " dma-coherent");
if (is_vmalloc_addr(v->pages))
seq_puts(m, " vpages");
show_numa_info(m, v);
seq_putc(m, '\n');
/*
* As a final step, dump "unpurged" areas.
*/
final:
if (list_is_last(&va->list, &vmap_area_list))
show_purge_info(m);
return 0;
}
static const struct seq_operations vmalloc_op = {
.start = s_start,
.next = s_next,
.stop = s_stop,
.show = s_show,
};
static int __init proc_vmalloc_init(void)
{
if (IS_ENABLED(CONFIG_NUMA))
proc_create_seq_private("vmallocinfo", 0400, NULL,
&vmalloc_op,
nr_node_ids * sizeof(unsigned int), NULL);
else
proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
return 0;
}
module_init(proc_vmalloc_init);
#endif
void __init vmalloc_init(void)
{
struct vmap_area *va;
struct vm_struct *tmp;
int i;
/*
* Create the cache for vmap_area objects.
*/
vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
for_each_possible_cpu(i) {
struct vmap_block_queue *vbq;
struct vfree_deferred *p;
vbq = &per_cpu(vmap_block_queue, i);
spin_lock_init(&vbq->lock);
INIT_LIST_HEAD(&vbq->free);
p = &per_cpu(vfree_deferred, i);
init_llist_head(&p->list);
INIT_WORK(&p->wq, delayed_vfree_work);
xa_init(&vbq->vmap_blocks);
}
/* Import existing vmlist entries. */
for (tmp = vmlist; tmp; tmp = tmp->next) {
va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
if (WARN_ON_ONCE(!va))
continue;
va->va_start = (unsigned long)tmp->addr;
va->va_end = va->va_start + tmp->size;
va->vm = tmp;
insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
}
/*
* Now we can initialize a free vmap space.
*/
vmap_init_free_space();
vmap_initialized = true;
}