/* * MUSB OTG driver peripheral support * * Copyright 2005 Mentor Graphics Corporation * Copyright (C) 2005-2006 by Texas Instruments * Copyright (C) 2006-2007 Nokia Corporation * Copyright (C) 2009 MontaVista Software, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include "musb_core.h" /* MUSB PERIPHERAL status 3-mar-2006: * * - EP0 seems solid. It passes both USBCV and usbtest control cases. * Minor glitches: * * + remote wakeup to Linux hosts work, but saw USBCV failures; * in one test run (operator error?) * + endpoint halt tests -- in both usbtest and usbcv -- seem * to break when dma is enabled ... is something wrongly * clearing SENDSTALL? * * - Mass storage behaved ok when last tested. Network traffic patterns * (with lots of short transfers etc) need retesting; they turn up the * worst cases of the DMA, since short packets are typical but are not * required. * * - TX/IN * + both pio and dma behave in with network and g_zero tests * + no cppi throughput issues other than no-hw-queueing * + failed with FLAT_REG (DaVinci) * + seems to behave with double buffering, PIO -and- CPPI * + with gadgetfs + AIO, requests got lost? * * - RX/OUT * + both pio and dma behave in with network and g_zero tests * + dma is slow in typical case (short_not_ok is clear) * + double buffering ok with PIO * + double buffering *FAILS* with CPPI, wrong data bytes sometimes * + request lossage observed with gadgetfs * * - ISO not tested ... might work, but only weakly isochronous * * - Gadget driver disabling of softconnect during bind() is ignored; so * drivers can't hold off host requests until userspace is ready. * (Workaround: they can turn it off later.) * * - PORTABILITY (assumes PIO works): * + DaVinci, basically works with cppi dma * + OMAP 2430, ditto with mentor dma * + TUSB 6010, platform-specific dma in the works */ /* ----------------------------------------------------------------------- */ #define is_buffer_mapped(req) (is_dma_capable() && \ (req->map_state != UN_MAPPED)) /* Maps the buffer to dma */ static inline void map_dma_buffer(struct musb_request *request, struct musb *musb, struct musb_ep *musb_ep) { request->map_state = UN_MAPPED; if (!is_dma_capable() || !musb_ep->dma) return; if (request->request.dma == DMA_ADDR_INVALID) { request->request.dma = dma_map_single( musb->controller, request->request.buf, request->request.length, request->tx ? DMA_TO_DEVICE : DMA_FROM_DEVICE); request->map_state = MUSB_MAPPED; } else { dma_sync_single_for_device(musb->controller, request->request.dma, request->request.length, request->tx ? DMA_TO_DEVICE : DMA_FROM_DEVICE); request->map_state = PRE_MAPPED; } } /* Unmap the buffer from dma and maps it back to cpu */ static inline void unmap_dma_buffer(struct musb_request *request, struct musb *musb) { if (!is_buffer_mapped(request)) return; if (request->request.dma == DMA_ADDR_INVALID) { DBG(20, "not unmapping a never mapped buffer\n"); return; } if (request->map_state == MUSB_MAPPED) { dma_unmap_single(musb->controller, request->request.dma, request->request.length, request->tx ? DMA_TO_DEVICE : DMA_FROM_DEVICE); request->request.dma = DMA_ADDR_INVALID; } else { /* PRE_MAPPED */ dma_sync_single_for_cpu(musb->controller, request->request.dma, request->request.length, request->tx ? DMA_TO_DEVICE : DMA_FROM_DEVICE); } request->map_state = UN_MAPPED; } /* * Immediately complete a request. * * @param request the request to complete * @param status the status to complete the request with * Context: controller locked, IRQs blocked. */ void musb_g_giveback( struct musb_ep *ep, struct usb_request *request, int status) __releases(ep->musb->lock) __acquires(ep->musb->lock) { struct musb_request *req; struct musb *musb; int busy = ep->busy; req = to_musb_request(request); list_del(&request->list); if (req->request.status == -EINPROGRESS) req->request.status = status; musb = req->musb; ep->busy = 1; spin_unlock(&musb->lock); unmap_dma_buffer(req, musb); if (request->status == 0) DBG(5, "%s done request %p, %d/%d\n", ep->end_point.name, request, req->request.actual, req->request.length); else DBG(2, "%s request %p, %d/%d fault %d\n", ep->end_point.name, request, req->request.actual, req->request.length, request->status); req->request.complete(&req->ep->end_point, &req->request); spin_lock(&musb->lock); ep->busy = busy; } /* ----------------------------------------------------------------------- */ /* * Abort requests queued to an endpoint using the status. Synchronous. * caller locked controller and blocked irqs, and selected this ep. */ static void nuke(struct musb_ep *ep, const int status) { struct musb_request *req = NULL; void __iomem *epio = ep->musb->endpoints[ep->current_epnum].regs; ep->busy = 1; if (is_dma_capable() && ep->dma) { struct dma_controller *c = ep->musb->dma_controller; int value; if (ep->is_in) { /* * The programming guide says that we must not clear * the DMAMODE bit before DMAENAB, so we only * clear it in the second write... */ musb_writew(epio, MUSB_TXCSR, MUSB_TXCSR_DMAMODE | MUSB_TXCSR_FLUSHFIFO); musb_writew(epio, MUSB_TXCSR, 0 | MUSB_TXCSR_FLUSHFIFO); } else { musb_writew(epio, MUSB_RXCSR, 0 | MUSB_RXCSR_FLUSHFIFO); musb_writew(epio, MUSB_RXCSR, 0 | MUSB_RXCSR_FLUSHFIFO); } value = c->channel_abort(ep->dma); DBG(value ? 1 : 6, "%s: abort DMA --> %d\n", ep->name, value); c->channel_release(ep->dma); ep->dma = NULL; } while (!list_empty(&(ep->req_list))) { req = container_of(ep->req_list.next, struct musb_request, request.list); musb_g_giveback(ep, &req->request, status); } } /* ----------------------------------------------------------------------- */ /* Data transfers - pure PIO, pure DMA, or mixed mode */ /* * This assumes the separate CPPI engine is responding to DMA requests * from the usb core ... sequenced a bit differently from mentor dma. */ static inline int max_ep_writesize(struct musb *musb, struct musb_ep *ep) { if (can_bulk_split(musb, ep->type)) return ep->hw_ep->max_packet_sz_tx; else return ep->packet_sz; } #ifdef CONFIG_USB_INVENTRA_DMA /* Peripheral tx (IN) using Mentor DMA works as follows: Only mode 0 is used for transfers <= wPktSize, mode 1 is used for larger transfers, One of the following happens: - Host sends IN token which causes an endpoint interrupt -> TxAvail -> if DMA is currently busy, exit. -> if queue is non-empty, txstate(). - Request is queued by the gadget driver. -> if queue was previously empty, txstate() txstate() -> start /\ -> setup DMA | (data is transferred to the FIFO, then sent out when | IN token(s) are recd from Host. | -> DMA interrupt on completion | calls TxAvail. | -> stop DMA, ~DMAENAB, | -> set TxPktRdy for last short pkt or zlp | -> Complete Request | -> Continue next request (call txstate) |___________________________________| * Non-Mentor DMA engines can of course work differently, such as by * upleveling from irq-per-packet to irq-per-buffer. */ #endif /* * An endpoint is transmitting data. This can be called either from * the IRQ routine or from ep.queue() to kickstart a request on an * endpoint. * * Context: controller locked, IRQs blocked, endpoint selected */ static void txstate(struct musb *musb, struct musb_request *req) { u8 epnum = req->epnum; struct musb_ep *musb_ep; void __iomem *epio = musb->endpoints[epnum].regs; struct usb_request *request; u16 fifo_count = 0, csr; int use_dma = 0; musb_ep = req->ep; /* we shouldn't get here while DMA is active ... but we do ... */ if (dma_channel_status(musb_ep->dma) == MUSB_DMA_STATUS_BUSY) { DBG(4, "dma pending...\n"); return; } /* read TXCSR before */ csr = musb_readw(epio, MUSB_TXCSR); request = &req->request; fifo_count = min(max_ep_writesize(musb, musb_ep), (int)(request->length - request->actual)); if (csr & MUSB_TXCSR_TXPKTRDY) { DBG(5, "%s old packet still ready , txcsr %03x\n", musb_ep->end_point.name, csr); return; } if (csr & MUSB_TXCSR_P_SENDSTALL) { DBG(5, "%s stalling, txcsr %03x\n", musb_ep->end_point.name, csr); return; } DBG(4, "hw_ep%d, maxpacket %d, fifo count %d, txcsr %03x\n", epnum, musb_ep->packet_sz, fifo_count, csr); #ifndef CONFIG_MUSB_PIO_ONLY if (is_buffer_mapped(req)) { struct dma_controller *c = musb->dma_controller; size_t request_size; /* setup DMA, then program endpoint CSR */ request_size = min_t(size_t, request->length - request->actual, musb_ep->dma->max_len); use_dma = (request->dma != DMA_ADDR_INVALID); /* MUSB_TXCSR_P_ISO is still set correctly */ #ifdef CONFIG_USB_INVENTRA_DMA { if (request_size < musb_ep->packet_sz) musb_ep->dma->desired_mode = 0; else musb_ep->dma->desired_mode = 1; use_dma = use_dma && c->channel_program( musb_ep->dma, musb_ep->packet_sz, musb_ep->dma->desired_mode, request->dma + request->actual, request_size); if (use_dma) { if (musb_ep->dma->desired_mode == 0) { /* * We must not clear the DMAMODE bit * before the DMAENAB bit -- and the * latter doesn't always get cleared * before we get here... */ csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB); musb_writew(epio, MUSB_TXCSR, csr | MUSB_TXCSR_P_WZC_BITS); csr &= ~MUSB_TXCSR_DMAMODE; csr |= (MUSB_TXCSR_DMAENAB | MUSB_TXCSR_MODE); /* against programming guide */ } else { csr |= (MUSB_TXCSR_DMAENAB | MUSB_TXCSR_DMAMODE | MUSB_TXCSR_MODE); if (!musb_ep->hb_mult) csr |= MUSB_TXCSR_AUTOSET; } csr &= ~MUSB_TXCSR_P_UNDERRUN; musb_writew(epio, MUSB_TXCSR, csr); } } #elif defined(CONFIG_USB_TI_CPPI_DMA) /* program endpoint CSR first, then setup DMA */ csr &= ~(MUSB_TXCSR_P_UNDERRUN | MUSB_TXCSR_TXPKTRDY); csr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_DMAMODE | MUSB_TXCSR_MODE; musb_writew(epio, MUSB_TXCSR, (MUSB_TXCSR_P_WZC_BITS & ~MUSB_TXCSR_P_UNDERRUN) | csr); /* ensure writebuffer is empty */ csr = musb_readw(epio, MUSB_TXCSR); /* NOTE host side sets DMAENAB later than this; both are * OK since the transfer dma glue (between CPPI and Mentor * fifos) just tells CPPI it could start. Data only moves * to the USB TX fifo when both fifos are ready. */ /* "mode" is irrelevant here; handle terminating ZLPs like * PIO does, since the hardware RNDIS mode seems unreliable * except for the last-packet-is-already-short case. */ use_dma = use_dma && c->channel_program( musb_ep->dma, musb_ep->packet_sz, 0, request->dma + request->actual, request_size); if (!use_dma) { c->channel_release(musb_ep->dma); musb_ep->dma = NULL; csr &= ~MUSB_TXCSR_DMAENAB; musb_writew(epio, MUSB_TXCSR, csr); /* invariant: prequest->buf is non-null */ } #elif defined(CONFIG_USB_TUSB_OMAP_DMA) use_dma = use_dma && c->channel_program( musb_ep->dma, musb_ep->packet_sz, request->zero, request->dma + request->actual, request_size); #endif } #endif if (!use_dma) { /* * Unmap the dma buffer back to cpu if dma channel * programming fails */ unmap_dma_buffer(req, musb); musb_write_fifo(musb_ep->hw_ep, fifo_count, (u8 *) (request->buf + request->actual)); request->actual += fifo_count; csr |= MUSB_TXCSR_TXPKTRDY; csr &= ~MUSB_TXCSR_P_UNDERRUN; musb_writew(epio, MUSB_TXCSR, csr); } /* host may already have the data when this message shows... */ DBG(3, "%s TX/IN %s len %d/%d, txcsr %04x, fifo %d/%d\n", musb_ep->end_point.name, use_dma ? "dma" : "pio", request->actual, request->length, musb_readw(epio, MUSB_TXCSR), fifo_count, musb_readw(epio, MUSB_TXMAXP)); } /* * FIFO state update (e.g. data ready). * Called from IRQ, with controller locked. */ void musb_g_tx(struct musb *musb, u8 epnum) { u16 csr; struct usb_request *request; u8 __iomem *mbase = musb->mregs; struct musb_ep *musb_ep = &musb->endpoints[epnum].ep_in; void __iomem *epio = musb->endpoints[epnum].regs; struct dma_channel *dma; musb_ep_select(mbase, epnum); request = next_request(musb_ep); csr = musb_readw(epio, MUSB_TXCSR); DBG(4, "<== %s, txcsr %04x\n", musb_ep->end_point.name, csr); dma = is_dma_capable() ? musb_ep->dma : NULL; /* * REVISIT: for high bandwidth, MUSB_TXCSR_P_INCOMPTX * probably rates reporting as a host error. */ if (csr & MUSB_TXCSR_P_SENTSTALL) { csr |= MUSB_TXCSR_P_WZC_BITS; csr &= ~MUSB_TXCSR_P_SENTSTALL; musb_writew(epio, MUSB_TXCSR, csr); return; } if (csr & MUSB_TXCSR_P_UNDERRUN) { /* We NAKed, no big deal... little reason to care. */ csr |= MUSB_TXCSR_P_WZC_BITS; csr &= ~(MUSB_TXCSR_P_UNDERRUN | MUSB_TXCSR_TXPKTRDY); musb_writew(epio, MUSB_TXCSR, csr); DBG(20, "underrun on ep%d, req %p\n", epnum, request); } if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { /* * SHOULD NOT HAPPEN... has with CPPI though, after * changing SENDSTALL (and other cases); harmless? */ DBG(5, "%s dma still busy?\n", musb_ep->end_point.name); return; } if (request) { u8 is_dma = 0; if (dma && (csr & MUSB_TXCSR_DMAENAB)) { is_dma = 1; csr |= MUSB_TXCSR_P_WZC_BITS; csr &= ~(MUSB_TXCSR_DMAENAB | MUSB_TXCSR_P_UNDERRUN | MUSB_TXCSR_TXPKTRDY); musb_writew(epio, MUSB_TXCSR, csr); /* Ensure writebuffer is empty. */ csr = musb_readw(epio, MUSB_TXCSR); request->actual += musb_ep->dma->actual_len; DBG(4, "TXCSR%d %04x, DMA off, len %zu, req %p\n", epnum, csr, musb_ep->dma->actual_len, request); } /* * First, maybe a terminating short packet. Some DMA * engines might handle this by themselves. */ if ((request->zero && request->length && (request->length % musb_ep->packet_sz == 0) && (request->actual == request->length)) #ifdef CONFIG_USB_INVENTRA_DMA || (is_dma && (!dma->desired_mode || (request->actual & (musb_ep->packet_sz - 1)))) #endif ) { /* * On DMA completion, FIFO may not be * available yet... */ if (csr & MUSB_TXCSR_TXPKTRDY) return; DBG(4, "sending zero pkt\n"); musb_writew(epio, MUSB_TXCSR, MUSB_TXCSR_MODE | MUSB_TXCSR_TXPKTRDY); request->zero = 0; } if (request->actual == request->length) { musb_g_giveback(musb_ep, request, 0); request = musb_ep->desc ? next_request(musb_ep) : NULL; if (!request) { DBG(4, "%s idle now\n", musb_ep->end_point.name); return; } } txstate(musb, to_musb_request(request)); } } /* ------------------------------------------------------------ */ #ifdef CONFIG_USB_INVENTRA_DMA /* Peripheral rx (OUT) using Mentor DMA works as follows: - Only mode 0 is used. - Request is queued by the gadget class driver. -> if queue was previously empty, rxstate() - Host sends OUT token which causes an endpoint interrupt /\ -> RxReady | -> if request queued, call rxstate | /\ -> setup DMA | | -> DMA interrupt on completion | | -> RxReady | | -> stop DMA | | -> ack the read | | -> if data recd = max expected | | by the request, or host | | sent a short packet, | | complete the request, | | and start the next one. | |_____________________________________| | else just wait for the host | to send the next OUT token. |__________________________________________________| * Non-Mentor DMA engines can of course work differently. */ #endif /* * Context: controller locked, IRQs blocked, endpoint selected */ static void rxstate(struct musb *musb, struct musb_request *req) { const u8 epnum = req->epnum; struct usb_request *request = &req->request; struct musb_ep *musb_ep; void __iomem *epio = musb->endpoints[epnum].regs; unsigned fifo_count = 0; u16 len; u16 csr = musb_readw(epio, MUSB_RXCSR); struct musb_hw_ep *hw_ep = &musb->endpoints[epnum]; if (hw_ep->is_shared_fifo) musb_ep = &hw_ep->ep_in; else musb_ep = &hw_ep->ep_out; len = musb_ep->packet_sz; /* We shouldn't get here while DMA is active, but we do... */ if (dma_channel_status(musb_ep->dma) == MUSB_DMA_STATUS_BUSY) { DBG(4, "DMA pending...\n"); return; } if (csr & MUSB_RXCSR_P_SENDSTALL) { DBG(5, "%s stalling, RXCSR %04x\n", musb_ep->end_point.name, csr); return; } if (is_cppi_enabled() && is_buffer_mapped(req)) { struct dma_controller *c = musb->dma_controller; struct dma_channel *channel = musb_ep->dma; /* NOTE: CPPI won't actually stop advancing the DMA * queue after short packet transfers, so this is almost * always going to run as IRQ-per-packet DMA so that * faults will be handled correctly. */ if (c->channel_program(channel, musb_ep->packet_sz, !request->short_not_ok, request->dma + request->actual, request->length - request->actual)) { /* make sure that if an rxpkt arrived after the irq, * the cppi engine will be ready to take it as soon * as DMA is enabled */ csr &= ~(MUSB_RXCSR_AUTOCLEAR | MUSB_RXCSR_DMAMODE); csr |= MUSB_RXCSR_DMAENAB | MUSB_RXCSR_P_WZC_BITS; musb_writew(epio, MUSB_RXCSR, csr); return; } } if (csr & MUSB_RXCSR_RXPKTRDY) { len = musb_readw(epio, MUSB_RXCOUNT); if (request->actual < request->length) { #ifdef CONFIG_USB_INVENTRA_DMA if (is_buffer_mapped(req)) { struct dma_controller *c; struct dma_channel *channel; int use_dma = 0; c = musb->dma_controller; channel = musb_ep->dma; /* We use DMA Req mode 0 in rx_csr, and DMA controller operates in * mode 0 only. So we do not get endpoint interrupts due to DMA * completion. We only get interrupts from DMA controller. * * We could operate in DMA mode 1 if we knew the size of the tranfer * in advance. For mass storage class, request->length = what the host * sends, so that'd work. But for pretty much everything else, * request->length is routinely more than what the host sends. For * most these gadgets, end of is signified either by a short packet, * or filling the last byte of the buffer. (Sending extra data in * that last pckate should trigger an overflow fault.) But in mode 1, * we don't get DMA completion interrrupt for short packets. * * Theoretically, we could enable DMAReq irq (MUSB_RXCSR_DMAMODE = 1), * to get endpoint interrupt on every DMA req, but that didn't seem * to work reliably. * * REVISIT an updated g_file_storage can set req->short_not_ok, which * then becomes usable as a runtime "use mode 1" hint... */ csr |= MUSB_RXCSR_DMAENAB; #ifdef USE_MODE1 csr |= MUSB_RXCSR_AUTOCLEAR; /* csr |= MUSB_RXCSR_DMAMODE; */ /* this special sequence (enabling and then * disabling MUSB_RXCSR_DMAMODE) is required * to get DMAReq to activate */ musb_writew(epio, MUSB_RXCSR, csr | MUSB_RXCSR_DMAMODE); #else if (!musb_ep->hb_mult && musb_ep->hw_ep->rx_double_buffered) csr |= MUSB_RXCSR_AUTOCLEAR; #endif musb_writew(epio, MUSB_RXCSR, csr); if (request->actual < request->length) { int transfer_size = 0; #ifdef USE_MODE1 transfer_size = min(request->length - request->actual, channel->max_len); #else transfer_size = min(request->length - request->actual, (unsigned)len); #endif if (transfer_size <= musb_ep->packet_sz) musb_ep->dma->desired_mode = 0; else musb_ep->dma->desired_mode = 1; use_dma = c->channel_program( channel, musb_ep->packet_sz, channel->desired_mode, request->dma + request->actual, transfer_size); } if (use_dma) return; } #endif /* Mentor's DMA */ fifo_count = request->length - request->actual; DBG(3, "%s OUT/RX pio fifo %d/%d, maxpacket %d\n", musb_ep->end_point.name, len, fifo_count, musb_ep->packet_sz); fifo_count = min_t(unsigned, len, fifo_count); #ifdef CONFIG_USB_TUSB_OMAP_DMA if (tusb_dma_omap() && is_buffer_mapped(req)) { struct dma_controller *c = musb->dma_controller; struct dma_channel *channel = musb_ep->dma; u32 dma_addr = request->dma + request->actual; int ret; ret = c->channel_program(channel, musb_ep->packet_sz, channel->desired_mode, dma_addr, fifo_count); if (ret) return; } #endif /* * Unmap the dma buffer back to cpu if dma channel * programming fails. This buffer is mapped if the * channel allocation is successful */ if (is_buffer_mapped(req)) { unmap_dma_buffer(req, musb); /* * Clear DMAENAB and AUTOCLEAR for the * PIO mode transfer */ csr &= ~(MUSB_RXCSR_DMAENAB | MUSB_RXCSR_AUTOCLEAR); musb_writew(epio, MUSB_RXCSR, csr); } musb_read_fifo(musb_ep->hw_ep, fifo_count, (u8 *) (request->buf + request->actual)); request->actual += fifo_count; /* REVISIT if we left anything in the fifo, flush * it and report -EOVERFLOW */ /* ack the read! */ csr |= MUSB_RXCSR_P_WZC_BITS; csr &= ~MUSB_RXCSR_RXPKTRDY; musb_writew(epio, MUSB_RXCSR, csr); } } /* reach the end or short packet detected */ if (request->actual == request->length || len < musb_ep->packet_sz) musb_g_giveback(musb_ep, request, 0); } /* * Data ready for a request; called from IRQ */ void musb_g_rx(struct musb *musb, u8 epnum) { u16 csr; struct usb_request *request; void __iomem *mbase = musb->mregs; struct musb_ep *musb_ep; void __iomem *epio = musb->endpoints[epnum].regs; struct dma_channel *dma; struct musb_hw_ep *hw_ep = &musb->endpoints[epnum]; if (hw_ep->is_shared_fifo) musb_ep = &hw_ep->ep_in; else musb_ep = &hw_ep->ep_out; musb_ep_select(mbase, epnum); request = next_request(musb_ep); if (!request) return; csr = musb_readw(epio, MUSB_RXCSR); dma = is_dma_capable() ? musb_ep->dma : NULL; DBG(4, "<== %s, rxcsr %04x%s %p\n", musb_ep->end_point.name, csr, dma ? " (dma)" : "", request); if (csr & MUSB_RXCSR_P_SENTSTALL) { csr |= MUSB_RXCSR_P_WZC_BITS; csr &= ~MUSB_RXCSR_P_SENTSTALL; musb_writew(epio, MUSB_RXCSR, csr); return; } if (csr & MUSB_RXCSR_P_OVERRUN) { /* csr |= MUSB_RXCSR_P_WZC_BITS; */ csr &= ~MUSB_RXCSR_P_OVERRUN; musb_writew(epio, MUSB_RXCSR, csr); DBG(3, "%s iso overrun on %p\n", musb_ep->name, request); if (request->status == -EINPROGRESS) request->status = -EOVERFLOW; } if (csr & MUSB_RXCSR_INCOMPRX) { /* REVISIT not necessarily an error */ DBG(4, "%s, incomprx\n", musb_ep->end_point.name); } if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { /* "should not happen"; likely RXPKTRDY pending for DMA */ DBG((csr & MUSB_RXCSR_DMAENAB) ? 4 : 1, "%s busy, csr %04x\n", musb_ep->end_point.name, csr); return; } if (dma && (csr & MUSB_RXCSR_DMAENAB)) { csr &= ~(MUSB_RXCSR_AUTOCLEAR | MUSB_RXCSR_DMAENAB | MUSB_RXCSR_DMAMODE); musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_P_WZC_BITS | csr); request->actual += musb_ep->dma->actual_len; DBG(4, "RXCSR%d %04x, dma off, %04x, len %zu, req %p\n", epnum, csr, musb_readw(epio, MUSB_RXCSR), musb_ep->dma->actual_len, request); #if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_TUSB_OMAP_DMA) /* Autoclear doesn't clear RxPktRdy for short packets */ if ((dma->desired_mode == 0 && !hw_ep->rx_double_buffered) || (dma->actual_len & (musb_ep->packet_sz - 1))) { /* ack the read! */ csr &= ~MUSB_RXCSR_RXPKTRDY; musb_writew(epio, MUSB_RXCSR, csr); } /* incomplete, and not short? wait for next IN packet */ if ((request->actual < request->length) && (musb_ep->dma->actual_len == musb_ep->packet_sz)) { /* In double buffer case, continue to unload fifo if * there is Rx packet in FIFO. **/ csr = musb_readw(epio, MUSB_RXCSR); if ((csr & MUSB_RXCSR_RXPKTRDY) && hw_ep->rx_double_buffered) goto exit; return; } #endif musb_g_giveback(musb_ep, request, 0); request = next_request(musb_ep); if (!request) return; } #if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_TUSB_OMAP_DMA) exit: #endif /* Analyze request */ rxstate(musb, to_musb_request(request)); } /* ------------------------------------------------------------ */ static int musb_gadget_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { unsigned long flags; struct musb_ep *musb_ep; struct musb_hw_ep *hw_ep; void __iomem *regs; struct musb *musb; void __iomem *mbase; u8 epnum; u16 csr; unsigned tmp; int status = -EINVAL; if (!ep || !desc) return -EINVAL; musb_ep = to_musb_ep(ep); hw_ep = musb_ep->hw_ep; regs = hw_ep->regs; musb = musb_ep->musb; mbase = musb->mregs; epnum = musb_ep->current_epnum; spin_lock_irqsave(&musb->lock, flags); if (musb_ep->desc) { status = -EBUSY; goto fail; } musb_ep->type = usb_endpoint_type(desc); /* check direction and (later) maxpacket size against endpoint */ if (usb_endpoint_num(desc) != epnum) goto fail; /* REVISIT this rules out high bandwidth periodic transfers */ tmp = le16_to_cpu(desc->wMaxPacketSize); if (tmp & ~0x07ff) { int ok; if (usb_endpoint_dir_in(desc)) ok = musb->hb_iso_tx; else ok = musb->hb_iso_rx; if (!ok) { DBG(4, "%s: not support ISO high bandwidth\n", __func__); goto fail; } musb_ep->hb_mult = (tmp >> 11) & 3; } else { musb_ep->hb_mult = 0; } musb_ep->packet_sz = tmp & 0x7ff; tmp = musb_ep->packet_sz * (musb_ep->hb_mult + 1); /* enable the interrupts for the endpoint, set the endpoint * packet size (or fail), set the mode, clear the fifo */ musb_ep_select(mbase, epnum); if (usb_endpoint_dir_in(desc)) { u16 int_txe = musb_readw(mbase, MUSB_INTRTXE); if (hw_ep->is_shared_fifo) musb_ep->is_in = 1; if (!musb_ep->is_in) goto fail; if (tmp > hw_ep->max_packet_sz_tx) { DBG(4, "%s: packet size beyond hw fifo size\n", __func__); goto fail; } int_txe |= (1 << epnum); musb_writew(mbase, MUSB_INTRTXE, int_txe); /* REVISIT if can_bulk_split(), use by updating "tmp"; * likewise high bandwidth periodic tx */ /* Set TXMAXP with the FIFO size of the endpoint * to disable double buffering mode. */ if (musb->double_buffer_not_ok) musb_writew(regs, MUSB_TXMAXP, hw_ep->max_packet_sz_tx); else musb_writew(regs, MUSB_TXMAXP, musb_ep->packet_sz | (musb_ep->hb_mult << 11)); csr = MUSB_TXCSR_MODE | MUSB_TXCSR_CLRDATATOG; if (musb_readw(regs, MUSB_TXCSR) & MUSB_TXCSR_FIFONOTEMPTY) csr |= MUSB_TXCSR_FLUSHFIFO; if (musb_ep->type == USB_ENDPOINT_XFER_ISOC) csr |= MUSB_TXCSR_P_ISO; /* set twice in case of double buffering */ musb_writew(regs, MUSB_TXCSR, csr); /* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */ musb_writew(regs, MUSB_TXCSR, csr); } else { u16 int_rxe = musb_readw(mbase, MUSB_INTRRXE); if (hw_ep->is_shared_fifo) musb_ep->is_in = 0; if (musb_ep->is_in) goto fail; if (tmp > hw_ep->max_packet_sz_rx) { DBG(4, "%s: packet size beyond hw fifo size\n", __func__); goto fail; } int_rxe |= (1 << epnum); musb_writew(mbase, MUSB_INTRRXE, int_rxe); /* REVISIT if can_bulk_combine() use by updating "tmp" * likewise high bandwidth periodic rx */ /* Set RXMAXP with the FIFO size of the endpoint * to disable double buffering mode. */ if (musb->double_buffer_not_ok) musb_writew(regs, MUSB_RXMAXP, hw_ep->max_packet_sz_tx); else musb_writew(regs, MUSB_RXMAXP, musb_ep->packet_sz | (musb_ep->hb_mult << 11)); /* force shared fifo to OUT-only mode */ if (hw_ep->is_shared_fifo) { csr = musb_readw(regs, MUSB_TXCSR); csr &= ~(MUSB_TXCSR_MODE | MUSB_TXCSR_TXPKTRDY); musb_writew(regs, MUSB_TXCSR, csr); } csr = MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_CLRDATATOG; if (musb_ep->type == USB_ENDPOINT_XFER_ISOC) csr |= MUSB_RXCSR_P_ISO; else if (musb_ep->type == USB_ENDPOINT_XFER_INT) csr |= MUSB_RXCSR_DISNYET; /* set twice in case of double buffering */ musb_writew(regs, MUSB_RXCSR, csr); musb_writew(regs, MUSB_RXCSR, csr); } /* NOTE: all the I/O code _should_ work fine without DMA, in case * for some reason you run out of channels here. */ if (is_dma_capable() && musb->dma_controller) { struct dma_controller *c = musb->dma_controller; musb_ep->dma = c->channel_alloc(c, hw_ep, (desc->bEndpointAddress & USB_DIR_IN)); } else musb_ep->dma = NULL; musb_ep->desc = desc; musb_ep->busy = 0; musb_ep->wedged = 0; status = 0; pr_debug("%s periph: enabled %s for %s %s, %smaxpacket %d\n", musb_driver_name, musb_ep->end_point.name, ({ char *s; switch (musb_ep->type) { case USB_ENDPOINT_XFER_BULK: s = "bulk"; break; case USB_ENDPOINT_XFER_INT: s = "int"; break; default: s = "iso"; break; }; s; }), musb_ep->is_in ? "IN" : "OUT", musb_ep->dma ? "dma, " : "", musb_ep->packet_sz); schedule_work(&musb->irq_work); fail: spin_unlock_irqrestore(&musb->lock, flags); return status; } /* * Disable an endpoint flushing all requests queued. */ static int musb_gadget_disable(struct usb_ep *ep) { unsigned long flags; struct musb *musb; u8 epnum; struct musb_ep *musb_ep; void __iomem *epio; int status = 0; musb_ep = to_musb_ep(ep); musb = musb_ep->musb; epnum = musb_ep->current_epnum; epio = musb->endpoints[epnum].regs; spin_lock_irqsave(&musb->lock, flags); musb_ep_select(musb->mregs, epnum); /* zero the endpoint sizes */ if (musb_ep->is_in) { u16 int_txe = musb_readw(musb->mregs, MUSB_INTRTXE); int_txe &= ~(1 << epnum); musb_writew(musb->mregs, MUSB_INTRTXE, int_txe); musb_writew(epio, MUSB_TXMAXP, 0); } else { u16 int_rxe = musb_readw(musb->mregs, MUSB_INTRRXE); int_rxe &= ~(1 << epnum); musb_writew(musb->mregs, MUSB_INTRRXE, int_rxe); musb_writew(epio, MUSB_RXMAXP, 0); } musb_ep->desc = NULL; /* abort all pending DMA and requests */ nuke(musb_ep, -ESHUTDOWN); schedule_work(&musb->irq_work); spin_unlock_irqrestore(&(musb->lock), flags); DBG(2, "%s\n", musb_ep->end_point.name); return status; } /* * Allocate a request for an endpoint. * Reused by ep0 code. */ struct usb_request *musb_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct musb_ep *musb_ep = to_musb_ep(ep); struct musb_request *request = NULL; request = kzalloc(sizeof *request, gfp_flags); if (!request) { DBG(4, "not enough memory\n"); return NULL; } INIT_LIST_HEAD(&request->request.list); request->request.dma = DMA_ADDR_INVALID; request->epnum = musb_ep->current_epnum; request->ep = musb_ep; return &request->request; } /* * Free a request * Reused by ep0 code. */ void musb_free_request(struct usb_ep *ep, struct usb_request *req) { kfree(to_musb_request(req)); } static LIST_HEAD(buffers); struct free_record { struct list_head list; struct device *dev; unsigned bytes; dma_addr_t dma; }; /* * Context: controller locked, IRQs blocked. */ void musb_ep_restart(struct musb *musb, struct musb_request *req) { DBG(3, "<== %s request %p len %u on hw_ep%d\n", req->tx ? "TX/IN" : "RX/OUT", &req->request, req->request.length, req->epnum); musb_ep_select(musb->mregs, req->epnum); if (req->tx) txstate(musb, req); else rxstate(musb, req); } static int musb_gadget_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags) { struct musb_ep *musb_ep; struct musb_request *request; struct musb *musb; int status = 0; unsigned long lockflags; if (!ep || !req) return -EINVAL; if (!req->buf) return -ENODATA; musb_ep = to_musb_ep(ep); musb = musb_ep->musb; request = to_musb_request(req); request->musb = musb; if (request->ep != musb_ep) return -EINVAL; DBG(4, "<== to %s request=%p\n", ep->name, req); /* request is mine now... */ request->request.actual = 0; request->request.status = -EINPROGRESS; request->epnum = musb_ep->current_epnum; request->tx = musb_ep->is_in; map_dma_buffer(request, musb, musb_ep); spin_lock_irqsave(&musb->lock, lockflags); /* don't queue if the ep is down */ if (!musb_ep->desc) { DBG(4, "req %p queued to %s while ep %s\n", req, ep->name, "disabled"); status = -ESHUTDOWN; goto cleanup; } /* add request to the list */ list_add_tail(&(request->request.list), &(musb_ep->req_list)); /* it this is the head of the queue, start i/o ... */ if (!musb_ep->busy && &request->request.list == musb_ep->req_list.next) musb_ep_restart(musb, request); cleanup: spin_unlock_irqrestore(&musb->lock, lockflags); return status; } static int musb_gadget_dequeue(struct usb_ep *ep, struct usb_request *request) { struct musb_ep *musb_ep = to_musb_ep(ep); struct usb_request *r; unsigned long flags; int status = 0; struct musb *musb = musb_ep->musb; if (!ep || !request || to_musb_request(request)->ep != musb_ep) return -EINVAL; spin_lock_irqsave(&musb->lock, flags); list_for_each_entry(r, &musb_ep->req_list, list) { if (r == request) break; } if (r != request) { DBG(3, "request %p not queued to %s\n", request, ep->name); status = -EINVAL; goto done; } /* if the hardware doesn't have the request, easy ... */ if (musb_ep->req_list.next != &request->list || musb_ep->busy) musb_g_giveback(musb_ep, request, -ECONNRESET); /* ... else abort the dma transfer ... */ else if (is_dma_capable() && musb_ep->dma) { struct dma_controller *c = musb->dma_controller; musb_ep_select(musb->mregs, musb_ep->current_epnum); if (c->channel_abort) status = c->channel_abort(musb_ep->dma); else status = -EBUSY; if (status == 0) musb_g_giveback(musb_ep, request, -ECONNRESET); } else { /* NOTE: by sticking to easily tested hardware/driver states, * we leave counting of in-flight packets imprecise. */ musb_g_giveback(musb_ep, request, -ECONNRESET); } done: spin_unlock_irqrestore(&musb->lock, flags); return status; } /* * Set or clear the halt bit of an endpoint. A halted enpoint won't tx/rx any * data but will queue requests. * * exported to ep0 code */ static int musb_gadget_set_halt(struct usb_ep *ep, int value) { struct musb_ep *musb_ep = to_musb_ep(ep); u8 epnum = musb_ep->current_epnum; struct musb *musb = musb_ep->musb; void __iomem *epio = musb->endpoints[epnum].regs; void __iomem *mbase; unsigned long flags; u16 csr; struct musb_request *request; int status = 0; if (!ep) return -EINVAL; mbase = musb->mregs; spin_lock_irqsave(&musb->lock, flags); if ((USB_ENDPOINT_XFER_ISOC == musb_ep->type)) { status = -EINVAL; goto done; } musb_ep_select(mbase, epnum); request = to_musb_request(next_request(musb_ep)); if (value) { if (request) { DBG(3, "request in progress, cannot halt %s\n", ep->name); status = -EAGAIN; goto done; } /* Cannot portably stall with non-empty FIFO */ if (musb_ep->is_in) { csr = musb_readw(epio, MUSB_TXCSR); if (csr & MUSB_TXCSR_FIFONOTEMPTY) { DBG(3, "FIFO busy, cannot halt %s\n", ep->name); status = -EAGAIN; goto done; } } } else musb_ep->wedged = 0; /* set/clear the stall and toggle bits */ DBG(2, "%s: %s stall\n", ep->name, value ? "set" : "clear"); if (musb_ep->is_in) { csr = musb_readw(epio, MUSB_TXCSR); csr |= MUSB_TXCSR_P_WZC_BITS | MUSB_TXCSR_CLRDATATOG; if (value) csr |= MUSB_TXCSR_P_SENDSTALL; else csr &= ~(MUSB_TXCSR_P_SENDSTALL | MUSB_TXCSR_P_SENTSTALL); csr &= ~MUSB_TXCSR_TXPKTRDY; musb_writew(epio, MUSB_TXCSR, csr); } else { csr = musb_readw(epio, MUSB_RXCSR); csr |= MUSB_RXCSR_P_WZC_BITS | MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_CLRDATATOG; if (value) csr |= MUSB_RXCSR_P_SENDSTALL; else csr &= ~(MUSB_RXCSR_P_SENDSTALL | MUSB_RXCSR_P_SENTSTALL); musb_writew(epio, MUSB_RXCSR, csr); } /* maybe start the first request in the queue */ if (!musb_ep->busy && !value && request) { DBG(3, "restarting the request\n"); musb_ep_restart(musb, request); } done: spin_unlock_irqrestore(&musb->lock, flags); return status; } /* * Sets the halt feature with the clear requests ignored */ static int musb_gadget_set_wedge(struct usb_ep *ep) { struct musb_ep *musb_ep = to_musb_ep(ep); if (!ep) return -EINVAL; musb_ep->wedged = 1; return usb_ep_set_halt(ep); } static int musb_gadget_fifo_status(struct usb_ep *ep) { struct musb_ep *musb_ep = to_musb_ep(ep); void __iomem *epio = musb_ep->hw_ep->regs; int retval = -EINVAL; if (musb_ep->desc && !musb_ep->is_in) { struct musb *musb = musb_ep->musb; int epnum = musb_ep->current_epnum; void __iomem *mbase = musb->mregs; unsigned long flags; spin_lock_irqsave(&musb->lock, flags); musb_ep_select(mbase, epnum); /* FIXME return zero unless RXPKTRDY is set */ retval = musb_readw(epio, MUSB_RXCOUNT); spin_unlock_irqrestore(&musb->lock, flags); } return retval; } static void musb_gadget_fifo_flush(struct usb_ep *ep) { struct musb_ep *musb_ep = to_musb_ep(ep); struct musb *musb = musb_ep->musb; u8 epnum = musb_ep->current_epnum; void __iomem *epio = musb->endpoints[epnum].regs; void __iomem *mbase; unsigned long flags; u16 csr, int_txe; mbase = musb->mregs; spin_lock_irqsave(&musb->lock, flags); musb_ep_select(mbase, (u8) epnum); /* disable interrupts */ int_txe = musb_readw(mbase, MUSB_INTRTXE); musb_writew(mbase, MUSB_INTRTXE, int_txe & ~(1 << epnum)); if (musb_ep->is_in) { csr = musb_readw(epio, MUSB_TXCSR); if (csr & MUSB_TXCSR_FIFONOTEMPTY) { csr |= MUSB_TXCSR_FLUSHFIFO | MUSB_TXCSR_P_WZC_BITS; musb_writew(epio, MUSB_TXCSR, csr); /* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */ musb_writew(epio, MUSB_TXCSR, csr); } } else { csr = musb_readw(epio, MUSB_RXCSR); csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_P_WZC_BITS; musb_writew(epio, MUSB_RXCSR, csr); musb_writew(epio, MUSB_RXCSR, csr); } /* re-enable interrupt */ musb_writew(mbase, MUSB_INTRTXE, int_txe); spin_unlock_irqrestore(&musb->lock, flags); } static const struct usb_ep_ops musb_ep_ops = { .enable = musb_gadget_enable, .disable = musb_gadget_disable, .alloc_request = musb_alloc_request, .free_request = musb_free_request, .queue = musb_gadget_queue, .dequeue = musb_gadget_dequeue, .set_halt = musb_gadget_set_halt, .set_wedge = musb_gadget_set_wedge, .fifo_status = musb_gadget_fifo_status, .fifo_flush = musb_gadget_fifo_flush }; /* ----------------------------------------------------------------------- */ static int musb_gadget_get_frame(struct usb_gadget *gadget) { struct musb *musb = gadget_to_musb(gadget); return (int)musb_readw(musb->mregs, MUSB_FRAME); } static int musb_gadget_wakeup(struct usb_gadget *gadget) { struct musb *musb = gadget_to_musb(gadget); void __iomem *mregs = musb->mregs; unsigned long flags; int status = -EINVAL; u8 power, devctl; int retries; spin_lock_irqsave(&musb->lock, flags); switch (musb->xceiv->state) { case OTG_STATE_B_PERIPHERAL: /* NOTE: OTG state machine doesn't include B_SUSPENDED; * that's part of the standard usb 1.1 state machine, and * doesn't affect OTG transitions. */ if (musb->may_wakeup && musb->is_suspended) break; goto done; case OTG_STATE_B_IDLE: /* Start SRP ... OTG not required. */ devctl = musb_readb(mregs, MUSB_DEVCTL); DBG(2, "Sending SRP: devctl: %02x\n", devctl); devctl |= MUSB_DEVCTL_SESSION; musb_writeb(mregs, MUSB_DEVCTL, devctl); devctl = musb_readb(mregs, MUSB_DEVCTL); retries = 100; while (!(devctl & MUSB_DEVCTL_SESSION)) { devctl = musb_readb(mregs, MUSB_DEVCTL); if (retries-- < 1) break; } retries = 10000; while (devctl & MUSB_DEVCTL_SESSION) { devctl = musb_readb(mregs, MUSB_DEVCTL); if (retries-- < 1) break; } /* Block idling for at least 1s */ musb_platform_try_idle(musb, jiffies + msecs_to_jiffies(1 * HZ)); status = 0; goto done; default: DBG(2, "Unhandled wake: %s\n", otg_state_string(musb)); goto done; } status = 0; power = musb_readb(mregs, MUSB_POWER); power |= MUSB_POWER_RESUME; musb_writeb(mregs, MUSB_POWER, power); DBG(2, "issue wakeup\n"); /* FIXME do this next chunk in a timer callback, no udelay */ mdelay(2); power = musb_readb(mregs, MUSB_POWER); power &= ~MUSB_POWER_RESUME; musb_writeb(mregs, MUSB_POWER, power); done: spin_unlock_irqrestore(&musb->lock, flags); return status; } static int musb_gadget_set_self_powered(struct usb_gadget *gadget, int is_selfpowered) { struct musb *musb = gadget_to_musb(gadget); musb->is_self_powered = !!is_selfpowered; return 0; } static void musb_pullup(struct musb *musb, int is_on) { u8 power; power = musb_readb(musb->mregs, MUSB_POWER); if (is_on) power |= MUSB_POWER_SOFTCONN; else power &= ~MUSB_POWER_SOFTCONN; /* FIXME if on, HdrcStart; if off, HdrcStop */ DBG(3, "gadget %s D+ pullup %s\n", musb->gadget_driver->function, is_on ? "on" : "off"); musb_writeb(musb->mregs, MUSB_POWER, power); } #if 0 static int musb_gadget_vbus_session(struct usb_gadget *gadget, int is_active) { DBG(2, "<= %s =>\n", __func__); /* * FIXME iff driver's softconnect flag is set (as it is during probe, * though that can clear it), just musb_pullup(). */ return -EINVAL; } #endif static int musb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) { struct musb *musb = gadget_to_musb(gadget); if (!musb->xceiv->set_power) return -EOPNOTSUPP; return otg_set_power(musb->xceiv, mA); } static int musb_gadget_pullup(struct usb_gadget *gadget, int is_on) { struct musb *musb = gadget_to_musb(gadget); unsigned long flags; is_on = !!is_on; /* NOTE: this assumes we are sensing vbus; we'd rather * not pullup unless the B-session is active. */ spin_lock_irqsave(&musb->lock, flags); if (is_on != musb->softconnect) { musb->softconnect = is_on; musb_pullup(musb, is_on); } spin_unlock_irqrestore(&musb->lock, flags); return 0; } static const struct usb_gadget_ops musb_gadget_operations = { .get_frame = musb_gadget_get_frame, .wakeup = musb_gadget_wakeup, .set_selfpowered = musb_gadget_set_self_powered, /* .vbus_session = musb_gadget_vbus_session, */ .vbus_draw = musb_gadget_vbus_draw, .pullup = musb_gadget_pullup, }; /* ----------------------------------------------------------------------- */ /* Registration */ /* Only this registration code "knows" the rule (from USB standards) * about there being only one external upstream port. It assumes * all peripheral ports are external... */ static struct musb *the_gadget; static void musb_gadget_release(struct device *dev) { /* kref_put(WHAT) */ dev_dbg(dev, "%s\n", __func__); } static void __init init_peripheral_ep(struct musb *musb, struct musb_ep *ep, u8 epnum, int is_in) { struct musb_hw_ep *hw_ep = musb->endpoints + epnum; memset(ep, 0, sizeof *ep); ep->current_epnum = epnum; ep->musb = musb; ep->hw_ep = hw_ep; ep->is_in = is_in; INIT_LIST_HEAD(&ep->req_list); sprintf(ep->name, "ep%d%s", epnum, (!epnum || hw_ep->is_shared_fifo) ? "" : ( is_in ? "in" : "out")); ep->end_point.name = ep->name; INIT_LIST_HEAD(&ep->end_point.ep_list); if (!epnum) { ep->end_point.maxpacket = 64; ep->end_point.ops = &musb_g_ep0_ops; musb->g.ep0 = &ep->end_point; } else { if (is_in) ep->end_point.maxpacket = hw_ep->max_packet_sz_tx; else ep->end_point.maxpacket = hw_ep->max_packet_sz_rx; ep->end_point.ops = &musb_ep_ops; list_add_tail(&ep->end_point.ep_list, &musb->g.ep_list); } } /* * Initialize the endpoints exposed to peripheral drivers, with backlinks * to the rest of the driver state. */ static inline void __init musb_g_init_endpoints(struct musb *musb) { u8 epnum; struct musb_hw_ep *hw_ep; unsigned count = 0; /* initialize endpoint list just once */ INIT_LIST_HEAD(&(musb->g.ep_list)); for (epnum = 0, hw_ep = musb->endpoints; epnum < musb->nr_endpoints; epnum++, hw_ep++) { if (hw_ep->is_shared_fifo /* || !epnum */) { init_peripheral_ep(musb, &hw_ep->ep_in, epnum, 0); count++; } else { if (hw_ep->max_packet_sz_tx) { init_peripheral_ep(musb, &hw_ep->ep_in, epnum, 1); count++; } if (hw_ep->max_packet_sz_rx) { init_peripheral_ep(musb, &hw_ep->ep_out, epnum, 0); count++; } } } } /* called once during driver setup to initialize and link into * the driver model; memory is zeroed. */ int __init musb_gadget_setup(struct musb *musb) { int status; /* REVISIT minor race: if (erroneously) setting up two * musb peripherals at the same time, only the bus lock * is probably held. */ if (the_gadget) return -EBUSY; the_gadget = musb; musb->g.ops = &musb_gadget_operations; musb->g.is_dualspeed = 1; musb->g.speed = USB_SPEED_UNKNOWN; /* this "gadget" abstracts/virtualizes the controller */ dev_set_name(&musb->g.dev, "gadget"); musb->g.dev.parent = musb->controller; musb->g.dev.dma_mask = musb->controller->dma_mask; musb->g.dev.release = musb_gadget_release; musb->g.name = musb_driver_name; if (is_otg_enabled(musb)) musb->g.is_otg = 1; musb_g_init_endpoints(musb); musb->is_active = 0; musb_platform_try_idle(musb, 0); status = device_register(&musb->g.dev); if (status != 0) { put_device(&musb->g.dev); the_gadget = NULL; } return status; } void musb_gadget_cleanup(struct musb *musb) { if (musb != the_gadget) return; device_unregister(&musb->g.dev); the_gadget = NULL; } /* * Register the gadget driver. Used by gadget drivers when * registering themselves with the controller. * * -EINVAL something went wrong (not driver) * -EBUSY another gadget is already using the controller * -ENOMEM no memory to perform the operation * * @param driver the gadget driver * @param bind the driver's bind function * @return <0 if error, 0 if everything is fine */ int usb_gadget_probe_driver(struct usb_gadget_driver *driver, int (*bind)(struct usb_gadget *)) { int retval; unsigned long flags; struct musb *musb = the_gadget; if (!driver || driver->speed != USB_SPEED_HIGH || !bind || !driver->setup) return -EINVAL; /* driver must be initialized to support peripheral mode */ if (!musb) { DBG(1, "%s, no dev??\n", __func__); return -ENODEV; } DBG(3, "registering driver %s\n", driver->function); spin_lock_irqsave(&musb->lock, flags); if (musb->gadget_driver) { DBG(1, "%s is already bound to %s\n", musb_driver_name, musb->gadget_driver->driver.name); retval = -EBUSY; } else { musb->gadget_driver = driver; musb->g.dev.driver = &driver->driver; driver->driver.bus = NULL; musb->softconnect = 1; retval = 0; } spin_unlock_irqrestore(&musb->lock, flags); if (retval == 0) { retval = bind(&musb->g); if (retval != 0) { DBG(3, "bind to driver %s failed --> %d\n", driver->driver.name, retval); musb->gadget_driver = NULL; musb->g.dev.driver = NULL; } spin_lock_irqsave(&musb->lock, flags); otg_set_peripheral(musb->xceiv, &musb->g); musb->xceiv->state = OTG_STATE_B_IDLE; musb->is_active = 1; /* FIXME this ignores the softconnect flag. Drivers are * allowed hold the peripheral inactive until for example * userspace hooks up printer hardware or DSP codecs, so * hosts only see fully functional devices. */ if (!is_otg_enabled(musb)) musb_start(musb); otg_set_peripheral(musb->xceiv, &musb->g); spin_unlock_irqrestore(&musb->lock, flags); if (is_otg_enabled(musb)) { struct usb_hcd *hcd = musb_to_hcd(musb); DBG(3, "OTG startup...\n"); /* REVISIT: funcall to other code, which also * handles power budgeting ... this way also * ensures HdrcStart is indirectly called. */ retval = usb_add_hcd(musb_to_hcd(musb), -1, 0); if (retval < 0) { DBG(1, "add_hcd failed, %d\n", retval); spin_lock_irqsave(&musb->lock, flags); otg_set_peripheral(musb->xceiv, NULL); musb->gadget_driver = NULL; musb->g.dev.driver = NULL; spin_unlock_irqrestore(&musb->lock, flags); } else { hcd->self.uses_pio_for_control = 1; } } } return retval; } EXPORT_SYMBOL(usb_gadget_probe_driver); static void stop_activity(struct musb *musb, struct usb_gadget_driver *driver) { int i; struct musb_hw_ep *hw_ep; /* don't disconnect if it's not connected */ if (musb->g.speed == USB_SPEED_UNKNOWN) driver = NULL; else musb->g.speed = USB_SPEED_UNKNOWN; /* deactivate the hardware */ if (musb->softconnect) { musb->softconnect = 0; musb_pullup(musb, 0); } musb_stop(musb); /* killing any outstanding requests will quiesce the driver; * then report disconnect */ if (driver) { for (i = 0, hw_ep = musb->endpoints; i < musb->nr_endpoints; i++, hw_ep++) { musb_ep_select(musb->mregs, i); if (hw_ep->is_shared_fifo /* || !epnum */) { nuke(&hw_ep->ep_in, -ESHUTDOWN); } else { if (hw_ep->max_packet_sz_tx) nuke(&hw_ep->ep_in, -ESHUTDOWN); if (hw_ep->max_packet_sz_rx) nuke(&hw_ep->ep_out, -ESHUTDOWN); } } spin_unlock(&musb->lock); driver->disconnect(&musb->g); spin_lock(&musb->lock); } } /* * Unregister the gadget driver. Used by gadget drivers when * unregistering themselves from the controller. * * @param driver the gadget driver to unregister */ int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) { unsigned long flags; int retval = 0; struct musb *musb = the_gadget; if (!driver || !driver->unbind || !musb) return -EINVAL; /* REVISIT always use otg_set_peripheral() here too; * this needs to shut down the OTG engine. */ spin_lock_irqsave(&musb->lock, flags); #ifdef CONFIG_USB_MUSB_OTG musb_hnp_stop(musb); #endif if (musb->gadget_driver == driver) { (void) musb_gadget_vbus_draw(&musb->g, 0); musb->xceiv->state = OTG_STATE_UNDEFINED; stop_activity(musb, driver); otg_set_peripheral(musb->xceiv, NULL); DBG(3, "unregistering driver %s\n", driver->function); spin_unlock_irqrestore(&musb->lock, flags); driver->unbind(&musb->g); spin_lock_irqsave(&musb->lock, flags); musb->gadget_driver = NULL; musb->g.dev.driver = NULL; musb->is_active = 0; musb_platform_try_idle(musb, 0); } else retval = -EINVAL; spin_unlock_irqrestore(&musb->lock, flags); if (is_otg_enabled(musb) && retval == 0) { usb_remove_hcd(musb_to_hcd(musb)); /* FIXME we need to be able to register another * gadget driver here and have everything work; * that currently misbehaves. */ } return retval; } EXPORT_SYMBOL(usb_gadget_unregister_driver); /* ----------------------------------------------------------------------- */ /* lifecycle operations called through plat_uds.c */ void musb_g_resume(struct musb *musb) { musb->is_suspended = 0; switch (musb->xceiv->state) { case OTG_STATE_B_IDLE: break; case OTG_STATE_B_WAIT_ACON: case OTG_STATE_B_PERIPHERAL: musb->is_active = 1; if (musb->gadget_driver && musb->gadget_driver->resume) { spin_unlock(&musb->lock); musb->gadget_driver->resume(&musb->g); spin_lock(&musb->lock); } break; default: WARNING("unhandled RESUME transition (%s)\n", otg_state_string(musb)); } } /* called when SOF packets stop for 3+ msec */ void musb_g_suspend(struct musb *musb) { u8 devctl; devctl = musb_readb(musb->mregs, MUSB_DEVCTL); DBG(3, "devctl %02x\n", devctl); switch (musb->xceiv->state) { case OTG_STATE_B_IDLE: if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS) musb->xceiv->state = OTG_STATE_B_PERIPHERAL; break; case OTG_STATE_B_PERIPHERAL: musb->is_suspended = 1; if (musb->gadget_driver && musb->gadget_driver->suspend) { spin_unlock(&musb->lock); musb->gadget_driver->suspend(&musb->g); spin_lock(&musb->lock); } break; default: /* REVISIT if B_HOST, clear DEVCTL.HOSTREQ; * A_PERIPHERAL may need care too */ WARNING("unhandled SUSPEND transition (%s)\n", otg_state_string(musb)); } } /* Called during SRP */ void musb_g_wakeup(struct musb *musb) { musb_gadget_wakeup(&musb->g); } /* called when VBUS drops below session threshold, and in other cases */ void musb_g_disconnect(struct musb *musb) { void __iomem *mregs = musb->mregs; u8 devctl = musb_readb(mregs, MUSB_DEVCTL); DBG(3, "devctl %02x\n", devctl); /* clear HR */ musb_writeb(mregs, MUSB_DEVCTL, devctl & MUSB_DEVCTL_SESSION); /* don't draw vbus until new b-default session */ (void) musb_gadget_vbus_draw(&musb->g, 0); musb->g.speed = USB_SPEED_UNKNOWN; if (musb->gadget_driver && musb->gadget_driver->disconnect) { spin_unlock(&musb->lock); musb->gadget_driver->disconnect(&musb->g); spin_lock(&musb->lock); } switch (musb->xceiv->state) { default: #ifdef CONFIG_USB_MUSB_OTG DBG(2, "Unhandled disconnect %s, setting a_idle\n", otg_state_string(musb)); musb->xceiv->state = OTG_STATE_A_IDLE; MUSB_HST_MODE(musb); break; case OTG_STATE_A_PERIPHERAL: musb->xceiv->state = OTG_STATE_A_WAIT_BCON; MUSB_HST_MODE(musb); break; case OTG_STATE_B_WAIT_ACON: case OTG_STATE_B_HOST: #endif case OTG_STATE_B_PERIPHERAL: case OTG_STATE_B_IDLE: musb->xceiv->state = OTG_STATE_B_IDLE; break; case OTG_STATE_B_SRP_INIT: break; } musb->is_active = 0; } void musb_g_reset(struct musb *musb) __releases(musb->lock) __acquires(musb->lock) { void __iomem *mbase = musb->mregs; u8 devctl = musb_readb(mbase, MUSB_DEVCTL); u8 power; DBG(3, "<== %s addr=%x driver '%s'\n", (devctl & MUSB_DEVCTL_BDEVICE) ? "B-Device" : "A-Device", musb_readb(mbase, MUSB_FADDR), musb->gadget_driver ? musb->gadget_driver->driver.name : NULL ); /* report disconnect, if we didn't already (flushing EP state) */ if (musb->g.speed != USB_SPEED_UNKNOWN) musb_g_disconnect(musb); /* clear HR */ else if (devctl & MUSB_DEVCTL_HR) musb_writeb(mbase, MUSB_DEVCTL, MUSB_DEVCTL_SESSION); /* what speed did we negotiate? */ power = musb_readb(mbase, MUSB_POWER); musb->g.speed = (power & MUSB_POWER_HSMODE) ? USB_SPEED_HIGH : USB_SPEED_FULL; /* start in USB_STATE_DEFAULT */ musb->is_active = 1; musb->is_suspended = 0; MUSB_DEV_MODE(musb); musb->address = 0; musb->ep0_state = MUSB_EP0_STAGE_SETUP; musb->may_wakeup = 0; musb->g.b_hnp_enable = 0; musb->g.a_alt_hnp_support = 0; musb->g.a_hnp_support = 0; /* Normal reset, as B-Device; * or else after HNP, as A-Device */ if (devctl & MUSB_DEVCTL_BDEVICE) { musb->xceiv->state = OTG_STATE_B_PERIPHERAL; musb->g.is_a_peripheral = 0; } else if (is_otg_enabled(musb)) { musb->xceiv->state = OTG_STATE_A_PERIPHERAL; musb->g.is_a_peripheral = 1; } else WARN_ON(1); /* start with default limits on VBUS power draw */ (void) musb_gadget_vbus_draw(&musb->g, is_otg_enabled(musb) ? 8 : 100); }