/* * GENEVE: Generic Network Virtualization Encapsulation * * Copyright (c) 2015 Red Hat, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #define GENEVE_NETDEV_VER "0.6" #define GENEVE_UDP_PORT 6081 #define GENEVE_N_VID (1u << 24) #define GENEVE_VID_MASK (GENEVE_N_VID - 1) #define VNI_HASH_BITS 10 #define VNI_HASH_SIZE (1<vni_list[hash]; hlist_for_each_entry_rcu(geneve, vni_list_head, hlist) { if (!memcmp(vni, geneve->vni, sizeof(geneve->vni)) && addr == geneve->remote.sin_addr.s_addr) return geneve; } return NULL; } static inline struct genevehdr *geneve_hdr(const struct sk_buff *skb) { return (struct genevehdr *)(udp_hdr(skb) + 1); } /* geneve receive/decap routine */ static void geneve_rx(struct geneve_sock *gs, struct sk_buff *skb) { struct genevehdr *gnvh = geneve_hdr(skb); struct metadata_dst *tun_dst = NULL; struct geneve_dev *geneve = NULL; struct pcpu_sw_netstats *stats; struct iphdr *iph; u8 *vni; __be32 addr; int err; if (gs->collect_md) { static u8 zero_vni[3]; vni = zero_vni; addr = 0; } else { vni = gnvh->vni; iph = ip_hdr(skb); /* Still outer IP header... */ addr = iph->saddr; } geneve = geneve_lookup(gs, addr, vni); if (!geneve) goto drop; if (ip_tunnel_collect_metadata() || gs->collect_md) { __be16 flags; void *opts; flags = TUNNEL_KEY | TUNNEL_GENEVE_OPT | (gnvh->oam ? TUNNEL_OAM : 0) | (gnvh->critical ? TUNNEL_CRIT_OPT : 0); tun_dst = udp_tun_rx_dst(skb, AF_INET, flags, vni_to_tunnel_id(gnvh->vni), gnvh->opt_len * 4); if (!tun_dst) goto drop; /* Update tunnel dst according to Geneve options. */ opts = ip_tunnel_info_opts(&tun_dst->u.tun_info, gnvh->opt_len * 4); memcpy(opts, gnvh->options, gnvh->opt_len * 4); } else { /* Drop packets w/ critical options, * since we don't support any... */ if (gnvh->critical) goto drop; } skb_reset_mac_header(skb); skb_scrub_packet(skb, !net_eq(geneve->net, dev_net(geneve->dev))); skb->protocol = eth_type_trans(skb, geneve->dev); skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); if (tun_dst) skb_dst_set(skb, &tun_dst->dst); /* Ignore packet loops (and multicast echo) */ if (ether_addr_equal(eth_hdr(skb)->h_source, geneve->dev->dev_addr)) goto drop; skb_reset_network_header(skb); iph = ip_hdr(skb); /* Now inner IP header... */ err = IP_ECN_decapsulate(iph, skb); if (unlikely(err)) { if (log_ecn_error) net_info_ratelimited("non-ECT from %pI4 with TOS=%#x\n", &iph->saddr, iph->tos); if (err > 1) { ++geneve->dev->stats.rx_frame_errors; ++geneve->dev->stats.rx_errors; goto drop; } } stats = this_cpu_ptr(geneve->dev->tstats); u64_stats_update_begin(&stats->syncp); stats->rx_packets++; stats->rx_bytes += skb->len; u64_stats_update_end(&stats->syncp); netif_rx(skb); return; drop: /* Consume bad packet */ kfree_skb(skb); } /* Setup stats when device is created */ static int geneve_init(struct net_device *dev) { dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); if (!dev->tstats) return -ENOMEM; return 0; } static void geneve_uninit(struct net_device *dev) { free_percpu(dev->tstats); } /* Callback from net/ipv4/udp.c to receive packets */ static int geneve_udp_encap_recv(struct sock *sk, struct sk_buff *skb) { struct genevehdr *geneveh; struct geneve_sock *gs; int opts_len; /* Need Geneve and inner Ethernet header to be present */ if (unlikely(!pskb_may_pull(skb, GENEVE_BASE_HLEN))) goto error; /* Return packets with reserved bits set */ geneveh = geneve_hdr(skb); if (unlikely(geneveh->ver != GENEVE_VER)) goto error; if (unlikely(geneveh->proto_type != htons(ETH_P_TEB))) goto error; opts_len = geneveh->opt_len * 4; if (iptunnel_pull_header(skb, GENEVE_BASE_HLEN + opts_len, htons(ETH_P_TEB))) goto drop; gs = rcu_dereference_sk_user_data(sk); if (!gs) goto drop; geneve_rx(gs, skb); return 0; drop: /* Consume bad packet */ kfree_skb(skb); return 0; error: /* Let the UDP layer deal with the skb */ return 1; } static struct socket *geneve_create_sock(struct net *net, bool ipv6, __be16 port) { struct socket *sock; struct udp_port_cfg udp_conf; int err; memset(&udp_conf, 0, sizeof(udp_conf)); if (ipv6) { udp_conf.family = AF_INET6; } else { udp_conf.family = AF_INET; udp_conf.local_ip.s_addr = htonl(INADDR_ANY); } udp_conf.local_udp_port = port; /* Open UDP socket */ err = udp_sock_create(net, &udp_conf, &sock); if (err < 0) return ERR_PTR(err); return sock; } static void geneve_notify_add_rx_port(struct geneve_sock *gs) { struct sock *sk = gs->sock->sk; sa_family_t sa_family = sk->sk_family; int err; if (sa_family == AF_INET) { err = udp_add_offload(&gs->udp_offloads); if (err) pr_warn("geneve: udp_add_offload failed with status %d\n", err); } } static int geneve_hlen(struct genevehdr *gh) { return sizeof(*gh) + gh->opt_len * 4; } static struct sk_buff **geneve_gro_receive(struct sk_buff **head, struct sk_buff *skb, struct udp_offload *uoff) { struct sk_buff *p, **pp = NULL; struct genevehdr *gh, *gh2; unsigned int hlen, gh_len, off_gnv; const struct packet_offload *ptype; __be16 type; int flush = 1; off_gnv = skb_gro_offset(skb); hlen = off_gnv + sizeof(*gh); gh = skb_gro_header_fast(skb, off_gnv); if (skb_gro_header_hard(skb, hlen)) { gh = skb_gro_header_slow(skb, hlen, off_gnv); if (unlikely(!gh)) goto out; } if (gh->ver != GENEVE_VER || gh->oam) goto out; gh_len = geneve_hlen(gh); hlen = off_gnv + gh_len; if (skb_gro_header_hard(skb, hlen)) { gh = skb_gro_header_slow(skb, hlen, off_gnv); if (unlikely(!gh)) goto out; } flush = 0; for (p = *head; p; p = p->next) { if (!NAPI_GRO_CB(p)->same_flow) continue; gh2 = (struct genevehdr *)(p->data + off_gnv); if (gh->opt_len != gh2->opt_len || memcmp(gh, gh2, gh_len)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } type = gh->proto_type; rcu_read_lock(); ptype = gro_find_receive_by_type(type); if (!ptype) { flush = 1; goto out_unlock; } skb_gro_pull(skb, gh_len); skb_gro_postpull_rcsum(skb, gh, gh_len); pp = ptype->callbacks.gro_receive(head, skb); out_unlock: rcu_read_unlock(); out: NAPI_GRO_CB(skb)->flush |= flush; return pp; } static int geneve_gro_complete(struct sk_buff *skb, int nhoff, struct udp_offload *uoff) { struct genevehdr *gh; struct packet_offload *ptype; __be16 type; int gh_len; int err = -ENOSYS; udp_tunnel_gro_complete(skb, nhoff); gh = (struct genevehdr *)(skb->data + nhoff); gh_len = geneve_hlen(gh); type = gh->proto_type; rcu_read_lock(); ptype = gro_find_complete_by_type(type); if (ptype) err = ptype->callbacks.gro_complete(skb, nhoff + gh_len); rcu_read_unlock(); return err; } /* Create new listen socket if needed */ static struct geneve_sock *geneve_socket_create(struct net *net, __be16 port, bool ipv6) { struct geneve_net *gn = net_generic(net, geneve_net_id); struct geneve_sock *gs; struct socket *sock; struct udp_tunnel_sock_cfg tunnel_cfg; int h; gs = kzalloc(sizeof(*gs), GFP_KERNEL); if (!gs) return ERR_PTR(-ENOMEM); sock = geneve_create_sock(net, ipv6, port); if (IS_ERR(sock)) { kfree(gs); return ERR_CAST(sock); } gs->sock = sock; gs->refcnt = 1; for (h = 0; h < VNI_HASH_SIZE; ++h) INIT_HLIST_HEAD(&gs->vni_list[h]); /* Initialize the geneve udp offloads structure */ gs->udp_offloads.port = port; gs->udp_offloads.callbacks.gro_receive = geneve_gro_receive; gs->udp_offloads.callbacks.gro_complete = geneve_gro_complete; geneve_notify_add_rx_port(gs); /* Mark socket as an encapsulation socket */ tunnel_cfg.sk_user_data = gs; tunnel_cfg.encap_type = 1; tunnel_cfg.encap_rcv = geneve_udp_encap_recv; tunnel_cfg.encap_destroy = NULL; setup_udp_tunnel_sock(net, sock, &tunnel_cfg); list_add(&gs->list, &gn->sock_list); return gs; } static void geneve_notify_del_rx_port(struct geneve_sock *gs) { struct sock *sk = gs->sock->sk; sa_family_t sa_family = sk->sk_family; if (sa_family == AF_INET) udp_del_offload(&gs->udp_offloads); } static void geneve_sock_release(struct geneve_sock *gs) { if (--gs->refcnt) return; list_del(&gs->list); geneve_notify_del_rx_port(gs); udp_tunnel_sock_release(gs->sock); kfree_rcu(gs, rcu); } static struct geneve_sock *geneve_find_sock(struct geneve_net *gn, __be16 dst_port) { struct geneve_sock *gs; list_for_each_entry(gs, &gn->sock_list, list) { if (inet_sk(gs->sock->sk)->inet_sport == dst_port && inet_sk(gs->sock->sk)->sk.sk_family == AF_INET) { return gs; } } return NULL; } static int geneve_open(struct net_device *dev) { struct geneve_dev *geneve = netdev_priv(dev); struct net *net = geneve->net; struct geneve_net *gn = net_generic(net, geneve_net_id); struct geneve_sock *gs; __u32 hash; gs = geneve_find_sock(gn, geneve->dst_port); if (gs) { gs->refcnt++; goto out; } gs = geneve_socket_create(net, geneve->dst_port, false); if (IS_ERR(gs)) return PTR_ERR(gs); out: gs->collect_md = geneve->collect_md; geneve->sock = gs; hash = geneve_net_vni_hash(geneve->vni); hlist_add_head_rcu(&geneve->hlist, &gs->vni_list[hash]); return 0; } static int geneve_stop(struct net_device *dev) { struct geneve_dev *geneve = netdev_priv(dev); struct geneve_sock *gs = geneve->sock; if (!hlist_unhashed(&geneve->hlist)) hlist_del_rcu(&geneve->hlist); geneve_sock_release(gs); return 0; } static int geneve_build_skb(struct rtable *rt, struct sk_buff *skb, __be16 tun_flags, u8 vni[3], u8 opt_len, u8 *opt, bool csum) { struct genevehdr *gnvh; int min_headroom; int err; min_headroom = LL_RESERVED_SPACE(rt->dst.dev) + rt->dst.header_len + GENEVE_BASE_HLEN + opt_len + sizeof(struct iphdr); err = skb_cow_head(skb, min_headroom); if (unlikely(err)) { kfree_skb(skb); goto free_rt; } skb = udp_tunnel_handle_offloads(skb, csum); if (IS_ERR(skb)) { err = PTR_ERR(skb); goto free_rt; } gnvh = (struct genevehdr *)__skb_push(skb, sizeof(*gnvh) + opt_len); gnvh->ver = GENEVE_VER; gnvh->opt_len = opt_len / 4; gnvh->oam = !!(tun_flags & TUNNEL_OAM); gnvh->critical = !!(tun_flags & TUNNEL_CRIT_OPT); gnvh->rsvd1 = 0; memcpy(gnvh->vni, vni, 3); gnvh->proto_type = htons(ETH_P_TEB); gnvh->rsvd2 = 0; memcpy(gnvh->options, opt, opt_len); skb_set_inner_protocol(skb, htons(ETH_P_TEB)); return 0; free_rt: ip_rt_put(rt); return err; } static struct rtable *geneve_get_rt(struct sk_buff *skb, struct net_device *dev, struct flowi4 *fl4, struct ip_tunnel_info *info) { struct geneve_dev *geneve = netdev_priv(dev); struct rtable *rt = NULL; __u8 tos; memset(fl4, 0, sizeof(*fl4)); fl4->flowi4_mark = skb->mark; fl4->flowi4_proto = IPPROTO_UDP; if (info) { fl4->daddr = info->key.u.ipv4.dst; fl4->saddr = info->key.u.ipv4.src; fl4->flowi4_tos = RT_TOS(info->key.tos); } else { tos = geneve->tos; if (tos == 1) { const struct iphdr *iip = ip_hdr(skb); tos = ip_tunnel_get_dsfield(iip, skb); } fl4->flowi4_tos = RT_TOS(tos); fl4->daddr = geneve->remote.sin_addr.s_addr; } rt = ip_route_output_key(geneve->net, fl4); if (IS_ERR(rt)) { netdev_dbg(dev, "no route to %pI4\n", &fl4->daddr); dev->stats.tx_carrier_errors++; return rt; } if (rt->dst.dev == dev) { /* is this necessary? */ netdev_dbg(dev, "circular route to %pI4\n", &fl4->daddr); dev->stats.collisions++; ip_rt_put(rt); return ERR_PTR(-EINVAL); } return rt; } /* Convert 64 bit tunnel ID to 24 bit VNI. */ static void tunnel_id_to_vni(__be64 tun_id, __u8 *vni) { #ifdef __BIG_ENDIAN vni[0] = (__force __u8)(tun_id >> 16); vni[1] = (__force __u8)(tun_id >> 8); vni[2] = (__force __u8)tun_id; #else vni[0] = (__force __u8)((__force u64)tun_id >> 40); vni[1] = (__force __u8)((__force u64)tun_id >> 48); vni[2] = (__force __u8)((__force u64)tun_id >> 56); #endif } static netdev_tx_t geneve_xmit(struct sk_buff *skb, struct net_device *dev) { struct geneve_dev *geneve = netdev_priv(dev); struct geneve_sock *gs = geneve->sock; struct ip_tunnel_info *info = NULL; struct rtable *rt = NULL; struct flowi4 fl4; __u8 tos, ttl; __be16 sport; bool udp_csum; __be16 df; int err; if (geneve->collect_md) { info = skb_tunnel_info(skb); if (unlikely(info && !(info->mode & IP_TUNNEL_INFO_TX))) { netdev_dbg(dev, "no tunnel metadata\n"); goto tx_error; } if (info && ip_tunnel_info_af(info) != AF_INET) goto tx_error; } rt = geneve_get_rt(skb, dev, &fl4, info); if (IS_ERR(rt)) { netdev_dbg(dev, "no route to %pI4\n", &fl4.daddr); dev->stats.tx_carrier_errors++; goto tx_error; } sport = udp_flow_src_port(geneve->net, skb, 1, USHRT_MAX, true); skb_reset_mac_header(skb); if (info) { const struct ip_tunnel_key *key = &info->key; u8 *opts = NULL; u8 vni[3]; tunnel_id_to_vni(key->tun_id, vni); if (key->tun_flags & TUNNEL_GENEVE_OPT) opts = ip_tunnel_info_opts(info, info->options_len); udp_csum = !!(key->tun_flags & TUNNEL_CSUM); err = geneve_build_skb(rt, skb, key->tun_flags, vni, info->options_len, opts, udp_csum); if (unlikely(err)) goto err; tos = key->tos; ttl = key->ttl; df = key->tun_flags & TUNNEL_DONT_FRAGMENT ? htons(IP_DF) : 0; } else { const struct iphdr *iip; /* interior IP header */ udp_csum = false; err = geneve_build_skb(rt, skb, 0, geneve->vni, 0, NULL, udp_csum); if (unlikely(err)) goto err; iip = ip_hdr(skb); tos = ip_tunnel_ecn_encap(fl4.flowi4_tos, iip, skb); ttl = geneve->ttl; if (!ttl && IN_MULTICAST(ntohl(fl4.daddr))) ttl = 1; ttl = ttl ? : ip4_dst_hoplimit(&rt->dst); df = 0; } err = udp_tunnel_xmit_skb(rt, gs->sock->sk, skb, fl4.saddr, fl4.daddr, tos, ttl, df, sport, geneve->dst_port, !net_eq(geneve->net, dev_net(geneve->dev)), !udp_csum); iptunnel_xmit_stats(err, &dev->stats, dev->tstats); return NETDEV_TX_OK; tx_error: dev_kfree_skb(skb); err: dev->stats.tx_errors++; return NETDEV_TX_OK; } static const struct net_device_ops geneve_netdev_ops = { .ndo_init = geneve_init, .ndo_uninit = geneve_uninit, .ndo_open = geneve_open, .ndo_stop = geneve_stop, .ndo_start_xmit = geneve_xmit, .ndo_get_stats64 = ip_tunnel_get_stats64, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, }; static void geneve_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strlcpy(drvinfo->version, GENEVE_NETDEV_VER, sizeof(drvinfo->version)); strlcpy(drvinfo->driver, "geneve", sizeof(drvinfo->driver)); } static const struct ethtool_ops geneve_ethtool_ops = { .get_drvinfo = geneve_get_drvinfo, .get_link = ethtool_op_get_link, }; /* Info for udev, that this is a virtual tunnel endpoint */ static struct device_type geneve_type = { .name = "geneve", }; /* Initialize the device structure. */ static void geneve_setup(struct net_device *dev) { ether_setup(dev); dev->netdev_ops = &geneve_netdev_ops; dev->ethtool_ops = &geneve_ethtool_ops; dev->destructor = free_netdev; SET_NETDEV_DEVTYPE(dev, &geneve_type); dev->features |= NETIF_F_LLTX; dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM; dev->features |= NETIF_F_RXCSUM; dev->features |= NETIF_F_GSO_SOFTWARE; dev->vlan_features = dev->features; dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; dev->hw_features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM; dev->hw_features |= NETIF_F_GSO_SOFTWARE; dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; netif_keep_dst(dev); dev->priv_flags |= IFF_LIVE_ADDR_CHANGE | IFF_NO_QUEUE; eth_hw_addr_random(dev); } static const struct nla_policy geneve_policy[IFLA_GENEVE_MAX + 1] = { [IFLA_GENEVE_ID] = { .type = NLA_U32 }, [IFLA_GENEVE_REMOTE] = { .len = FIELD_SIZEOF(struct iphdr, daddr) }, [IFLA_GENEVE_TTL] = { .type = NLA_U8 }, [IFLA_GENEVE_TOS] = { .type = NLA_U8 }, [IFLA_GENEVE_PORT] = { .type = NLA_U16 }, [IFLA_GENEVE_COLLECT_METADATA] = { .type = NLA_FLAG }, }; static int geneve_validate(struct nlattr *tb[], struct nlattr *data[]) { if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) return -EADDRNOTAVAIL; } if (!data) return -EINVAL; if (data[IFLA_GENEVE_ID]) { __u32 vni = nla_get_u32(data[IFLA_GENEVE_ID]); if (vni >= GENEVE_VID_MASK) return -ERANGE; } return 0; } static struct geneve_dev *geneve_find_dev(struct geneve_net *gn, __be16 dst_port, __be32 rem_addr, u8 vni[], bool *tun_on_same_port, bool *tun_collect_md) { struct geneve_dev *geneve, *t; *tun_on_same_port = false; *tun_collect_md = false; t = NULL; list_for_each_entry(geneve, &gn->geneve_list, next) { if (geneve->dst_port == dst_port) { *tun_collect_md = geneve->collect_md; *tun_on_same_port = true; } if (!memcmp(vni, geneve->vni, sizeof(geneve->vni)) && rem_addr == geneve->remote.sin_addr.s_addr && dst_port == geneve->dst_port) t = geneve; } return t; } static int geneve_configure(struct net *net, struct net_device *dev, __be32 rem_addr, __u32 vni, __u8 ttl, __u8 tos, __u16 dst_port, bool metadata) { struct geneve_net *gn = net_generic(net, geneve_net_id); struct geneve_dev *t, *geneve = netdev_priv(dev); bool tun_collect_md, tun_on_same_port; int err; if (metadata) { if (rem_addr || vni || tos || ttl) return -EINVAL; } geneve->net = net; geneve->dev = dev; geneve->vni[0] = (vni & 0x00ff0000) >> 16; geneve->vni[1] = (vni & 0x0000ff00) >> 8; geneve->vni[2] = vni & 0x000000ff; geneve->remote.sin_addr.s_addr = rem_addr; if (IN_MULTICAST(ntohl(geneve->remote.sin_addr.s_addr))) return -EINVAL; geneve->ttl = ttl; geneve->tos = tos; geneve->dst_port = htons(dst_port); geneve->collect_md = metadata; t = geneve_find_dev(gn, htons(dst_port), rem_addr, geneve->vni, &tun_on_same_port, &tun_collect_md); if (t) return -EBUSY; if (metadata) { if (tun_on_same_port) return -EPERM; } else { if (tun_collect_md) return -EPERM; } err = register_netdevice(dev); if (err) return err; list_add(&geneve->next, &gn->geneve_list); return 0; } static int geneve_newlink(struct net *net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { __u16 dst_port = GENEVE_UDP_PORT; __u8 ttl = 0, tos = 0; bool metadata = false; __be32 rem_addr; __u32 vni; if (!data[IFLA_GENEVE_ID] || !data[IFLA_GENEVE_REMOTE]) return -EINVAL; vni = nla_get_u32(data[IFLA_GENEVE_ID]); rem_addr = nla_get_in_addr(data[IFLA_GENEVE_REMOTE]); if (data[IFLA_GENEVE_TTL]) ttl = nla_get_u8(data[IFLA_GENEVE_TTL]); if (data[IFLA_GENEVE_TOS]) tos = nla_get_u8(data[IFLA_GENEVE_TOS]); if (data[IFLA_GENEVE_PORT]) dst_port = nla_get_u16(data[IFLA_GENEVE_PORT]); if (data[IFLA_GENEVE_COLLECT_METADATA]) metadata = true; return geneve_configure(net, dev, rem_addr, vni, ttl, tos, dst_port, metadata); } static void geneve_dellink(struct net_device *dev, struct list_head *head) { struct geneve_dev *geneve = netdev_priv(dev); list_del(&geneve->next); unregister_netdevice_queue(dev, head); } static size_t geneve_get_size(const struct net_device *dev) { return nla_total_size(sizeof(__u32)) + /* IFLA_GENEVE_ID */ nla_total_size(sizeof(struct in_addr)) + /* IFLA_GENEVE_REMOTE */ nla_total_size(sizeof(__u8)) + /* IFLA_GENEVE_TTL */ nla_total_size(sizeof(__u8)) + /* IFLA_GENEVE_TOS */ nla_total_size(sizeof(__u16)) + /* IFLA_GENEVE_PORT */ nla_total_size(0) + /* IFLA_GENEVE_COLLECT_METADATA */ 0; } static int geneve_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct geneve_dev *geneve = netdev_priv(dev); __u32 vni; vni = (geneve->vni[0] << 16) | (geneve->vni[1] << 8) | geneve->vni[2]; if (nla_put_u32(skb, IFLA_GENEVE_ID, vni)) goto nla_put_failure; if (nla_put_in_addr(skb, IFLA_GENEVE_REMOTE, geneve->remote.sin_addr.s_addr)) goto nla_put_failure; if (nla_put_u8(skb, IFLA_GENEVE_TTL, geneve->ttl) || nla_put_u8(skb, IFLA_GENEVE_TOS, geneve->tos)) goto nla_put_failure; if (nla_put_u16(skb, IFLA_GENEVE_PORT, ntohs(geneve->dst_port))) goto nla_put_failure; if (geneve->collect_md) { if (nla_put_flag(skb, IFLA_GENEVE_COLLECT_METADATA)) goto nla_put_failure; } return 0; nla_put_failure: return -EMSGSIZE; } static struct rtnl_link_ops geneve_link_ops __read_mostly = { .kind = "geneve", .maxtype = IFLA_GENEVE_MAX, .policy = geneve_policy, .priv_size = sizeof(struct geneve_dev), .setup = geneve_setup, .validate = geneve_validate, .newlink = geneve_newlink, .dellink = geneve_dellink, .get_size = geneve_get_size, .fill_info = geneve_fill_info, }; struct net_device *geneve_dev_create_fb(struct net *net, const char *name, u8 name_assign_type, u16 dst_port) { struct nlattr *tb[IFLA_MAX + 1]; struct net_device *dev; int err; memset(tb, 0, sizeof(tb)); dev = rtnl_create_link(net, name, name_assign_type, &geneve_link_ops, tb); if (IS_ERR(dev)) return dev; err = geneve_configure(net, dev, 0, 0, 0, 0, dst_port, true); if (err) { free_netdev(dev); return ERR_PTR(err); } return dev; } EXPORT_SYMBOL_GPL(geneve_dev_create_fb); static __net_init int geneve_init_net(struct net *net) { struct geneve_net *gn = net_generic(net, geneve_net_id); INIT_LIST_HEAD(&gn->geneve_list); INIT_LIST_HEAD(&gn->sock_list); return 0; } static void __net_exit geneve_exit_net(struct net *net) { struct geneve_net *gn = net_generic(net, geneve_net_id); struct geneve_dev *geneve, *next; struct net_device *dev, *aux; LIST_HEAD(list); rtnl_lock(); /* gather any geneve devices that were moved into this ns */ for_each_netdev_safe(net, dev, aux) if (dev->rtnl_link_ops == &geneve_link_ops) unregister_netdevice_queue(dev, &list); /* now gather any other geneve devices that were created in this ns */ list_for_each_entry_safe(geneve, next, &gn->geneve_list, next) { /* If geneve->dev is in the same netns, it was already added * to the list by the previous loop. */ if (!net_eq(dev_net(geneve->dev), net)) unregister_netdevice_queue(geneve->dev, &list); } /* unregister the devices gathered above */ unregister_netdevice_many(&list); rtnl_unlock(); } static struct pernet_operations geneve_net_ops = { .init = geneve_init_net, .exit = geneve_exit_net, .id = &geneve_net_id, .size = sizeof(struct geneve_net), }; static int __init geneve_init_module(void) { int rc; rc = register_pernet_subsys(&geneve_net_ops); if (rc) goto out1; rc = rtnl_link_register(&geneve_link_ops); if (rc) goto out2; return 0; out2: unregister_pernet_subsys(&geneve_net_ops); out1: return rc; } late_initcall(geneve_init_module); static void __exit geneve_cleanup_module(void) { rtnl_link_unregister(&geneve_link_ops); unregister_pernet_subsys(&geneve_net_ops); } module_exit(geneve_cleanup_module); MODULE_LICENSE("GPL"); MODULE_VERSION(GENEVE_NETDEV_VER); MODULE_AUTHOR("John W. Linville "); MODULE_DESCRIPTION("Interface driver for GENEVE encapsulated traffic"); MODULE_ALIAS_RTNL_LINK("geneve");