/* * Fifo-attached Serial Interface (FSI) support for SH7724 * * Copyright (C) 2009 Renesas Solutions Corp. * Kuninori Morimoto * * Based on ssi.c * Copyright (c) 2007 Manuel Lauss * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include /* PortA/PortB register */ #define REG_DO_FMT 0x0000 #define REG_DOFF_CTL 0x0004 #define REG_DOFF_ST 0x0008 #define REG_DI_FMT 0x000C #define REG_DIFF_CTL 0x0010 #define REG_DIFF_ST 0x0014 #define REG_CKG1 0x0018 #define REG_CKG2 0x001C #define REG_DIDT 0x0020 #define REG_DODT 0x0024 #define REG_MUTE_ST 0x0028 #define REG_OUT_SEL 0x0030 /* master register */ #define MST_CLK_RST 0x0210 #define MST_SOFT_RST 0x0214 #define MST_FIFO_SZ 0x0218 /* core register (depend on FSI version) */ #define A_MST_CTLR 0x0180 #define B_MST_CTLR 0x01A0 #define CPU_INT_ST 0x01F4 #define CPU_IEMSK 0x01F8 #define CPU_IMSK 0x01FC #define INT_ST 0x0200 #define IEMSK 0x0204 #define IMSK 0x0208 /* DO_FMT */ /* DI_FMT */ #define CR_BWS_24 (0x0 << 20) /* FSI2 */ #define CR_BWS_16 (0x1 << 20) /* FSI2 */ #define CR_BWS_20 (0x2 << 20) /* FSI2 */ #define CR_DTMD_PCM (0x0 << 8) /* FSI2 */ #define CR_DTMD_SPDIF_PCM (0x1 << 8) /* FSI2 */ #define CR_DTMD_SPDIF_STREAM (0x2 << 8) /* FSI2 */ #define CR_MONO (0x0 << 4) #define CR_MONO_D (0x1 << 4) #define CR_PCM (0x2 << 4) #define CR_I2S (0x3 << 4) #define CR_TDM (0x4 << 4) #define CR_TDM_D (0x5 << 4) /* DOFF_CTL */ /* DIFF_CTL */ #define IRQ_HALF 0x00100000 #define FIFO_CLR 0x00000001 /* DOFF_ST */ #define ERR_OVER 0x00000010 #define ERR_UNDER 0x00000001 #define ST_ERR (ERR_OVER | ERR_UNDER) /* CKG1 */ #define ACKMD_MASK 0x00007000 #define BPFMD_MASK 0x00000700 #define DIMD (1 << 4) #define DOMD (1 << 0) /* A/B MST_CTLR */ #define BP (1 << 4) /* Fix the signal of Biphase output */ #define SE (1 << 0) /* Fix the master clock */ /* CLK_RST */ #define CRB (1 << 4) #define CRA (1 << 0) /* IO SHIFT / MACRO */ #define BI_SHIFT 12 #define BO_SHIFT 8 #define AI_SHIFT 4 #define AO_SHIFT 0 #define AB_IO(param, shift) (param << shift) /* SOFT_RST */ #define PBSR (1 << 12) /* Port B Software Reset */ #define PASR (1 << 8) /* Port A Software Reset */ #define IR (1 << 4) /* Interrupt Reset */ #define FSISR (1 << 0) /* Software Reset */ /* OUT_SEL (FSI2) */ #define DMMD (1 << 4) /* SPDIF output timing 0: Biphase only */ /* 1: Biphase and serial */ /* FIFO_SZ */ #define FIFO_SZ_MASK 0x7 #define FSI_RATES SNDRV_PCM_RATE_8000_96000 #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE) typedef int (*set_rate_func)(struct device *dev, int is_porta, int rate, int enable); /* * FSI driver use below type name for variable * * xxx_len : data length * xxx_width : data width * xxx_offset : data offset * xxx_num : number of data */ /* * struct */ struct fsi_stream { struct snd_pcm_substream *substream; int fifo_max_num; int buff_offset; int buff_len; int period_len; int period_num; int uerr_num; int oerr_num; }; struct fsi_priv { void __iomem *base; struct fsi_master *master; struct fsi_stream playback; struct fsi_stream capture; int chan_num:16; int clk_master:1; long rate; /* for suspend/resume */ u32 saved_do_fmt; u32 saved_di_fmt; u32 saved_ckg1; u32 saved_ckg2; u32 saved_out_sel; }; struct fsi_core { int ver; u32 int_st; u32 iemsk; u32 imsk; u32 a_mclk; u32 b_mclk; }; struct fsi_master { void __iomem *base; int irq; struct fsi_priv fsia; struct fsi_priv fsib; struct fsi_core *core; struct sh_fsi_platform_info *info; spinlock_t lock; /* for suspend/resume */ u32 saved_a_mclk; u32 saved_b_mclk; u32 saved_iemsk; u32 saved_imsk; u32 saved_clk_rst; u32 saved_soft_rst; }; /* * basic read write function */ static void __fsi_reg_write(u32 reg, u32 data) { /* valid data area is 24bit */ data &= 0x00ffffff; __raw_writel(data, reg); } static u32 __fsi_reg_read(u32 reg) { return __raw_readl(reg); } static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data) { u32 val = __fsi_reg_read(reg); val &= ~mask; val |= data & mask; __fsi_reg_write(reg, val); } #define fsi_reg_write(p, r, d)\ __fsi_reg_write((u32)(p->base + REG_##r), d) #define fsi_reg_read(p, r)\ __fsi_reg_read((u32)(p->base + REG_##r)) #define fsi_reg_mask_set(p, r, m, d)\ __fsi_reg_mask_set((u32)(p->base + REG_##r), m, d) #define fsi_master_read(p, r) _fsi_master_read(p, MST_##r) #define fsi_core_read(p, r) _fsi_master_read(p, p->core->r) static u32 _fsi_master_read(struct fsi_master *master, u32 reg) { u32 ret; unsigned long flags; spin_lock_irqsave(&master->lock, flags); ret = __fsi_reg_read((u32)(master->base + reg)); spin_unlock_irqrestore(&master->lock, flags); return ret; } #define fsi_master_mask_set(p, r, m, d) _fsi_master_mask_set(p, MST_##r, m, d) #define fsi_core_mask_set(p, r, m, d) _fsi_master_mask_set(p, p->core->r, m, d) static void _fsi_master_mask_set(struct fsi_master *master, u32 reg, u32 mask, u32 data) { unsigned long flags; spin_lock_irqsave(&master->lock, flags); __fsi_reg_mask_set((u32)(master->base + reg), mask, data); spin_unlock_irqrestore(&master->lock, flags); } /* * basic function */ static struct fsi_master *fsi_get_master(struct fsi_priv *fsi) { return fsi->master; } static int fsi_is_clk_master(struct fsi_priv *fsi) { return fsi->clk_master; } static int fsi_is_port_a(struct fsi_priv *fsi) { return fsi->master->base == fsi->base; } static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; return rtd->cpu_dai; } static struct fsi_priv *fsi_get_priv_frm_dai(struct snd_soc_dai *dai) { struct fsi_master *master = snd_soc_dai_get_drvdata(dai); if (dai->id == 0) return &master->fsia; else return &master->fsib; } static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream) { return fsi_get_priv_frm_dai(fsi_get_dai(substream)); } static set_rate_func fsi_get_info_set_rate(struct fsi_master *master) { if (!master->info) return NULL; return master->info->set_rate; } static u32 fsi_get_info_flags(struct fsi_priv *fsi) { int is_porta = fsi_is_port_a(fsi); struct fsi_master *master = fsi_get_master(fsi); if (!master->info) return 0; return is_porta ? master->info->porta_flags : master->info->portb_flags; } static inline int fsi_stream_is_play(int stream) { return stream == SNDRV_PCM_STREAM_PLAYBACK; } static inline int fsi_is_play(struct snd_pcm_substream *substream) { return fsi_stream_is_play(substream->stream); } static inline struct fsi_stream *fsi_get_stream(struct fsi_priv *fsi, int is_play) { return is_play ? &fsi->playback : &fsi->capture; } static u32 fsi_get_port_shift(struct fsi_priv *fsi, int is_play) { int is_porta = fsi_is_port_a(fsi); u32 shift; if (is_porta) shift = is_play ? AO_SHIFT : AI_SHIFT; else shift = is_play ? BO_SHIFT : BI_SHIFT; return shift; } static void fsi_stream_push(struct fsi_priv *fsi, int is_play, struct snd_pcm_substream *substream) { struct fsi_stream *io = fsi_get_stream(fsi, is_play); struct snd_pcm_runtime *runtime = substream->runtime; io->substream = substream; io->buff_len = frames_to_bytes(runtime, runtime->buffer_size); io->buff_offset = 0; io->period_len = frames_to_bytes(runtime, runtime->period_size); io->period_num = 0; io->oerr_num = -1; /* ignore 1st err */ io->uerr_num = -1; /* ignore 1st err */ } static void fsi_stream_pop(struct fsi_priv *fsi, int is_play) { struct fsi_stream *io = fsi_get_stream(fsi, is_play); struct snd_soc_dai *dai = fsi_get_dai(io->substream); if (io->oerr_num > 0) dev_err(dai->dev, "over_run = %d\n", io->oerr_num); if (io->uerr_num > 0) dev_err(dai->dev, "under_run = %d\n", io->uerr_num); io->substream = NULL; io->buff_len = 0; io->buff_offset = 0; io->period_len = 0; io->period_num = 0; io->oerr_num = 0; io->uerr_num = 0; } static int fsi_get_fifo_data_num(struct fsi_priv *fsi, int is_play) { u32 status; int data_num; status = is_play ? fsi_reg_read(fsi, DOFF_ST) : fsi_reg_read(fsi, DIFF_ST); data_num = 0x1ff & (status >> 8); data_num *= fsi->chan_num; return data_num; } static int fsi_len2num(int len, int width) { return len / width; } #define fsi_num2offset(a, b) fsi_num2len(a, b) static int fsi_num2len(int num, int width) { return num * width; } static int fsi_get_frame_width(struct fsi_priv *fsi, int is_play) { struct fsi_stream *io = fsi_get_stream(fsi, is_play); struct snd_pcm_substream *substream = io->substream; struct snd_pcm_runtime *runtime = substream->runtime; return frames_to_bytes(runtime, 1) / fsi->chan_num; } static void fsi_count_fifo_err(struct fsi_priv *fsi) { u32 ostatus = fsi_reg_read(fsi, DOFF_ST); u32 istatus = fsi_reg_read(fsi, DIFF_ST); if (ostatus & ERR_OVER) fsi->playback.oerr_num++; if (ostatus & ERR_UNDER) fsi->playback.uerr_num++; if (istatus & ERR_OVER) fsi->capture.oerr_num++; if (istatus & ERR_UNDER) fsi->capture.uerr_num++; fsi_reg_write(fsi, DOFF_ST, 0); fsi_reg_write(fsi, DIFF_ST, 0); } /* * dma function */ static u8 *fsi_dma_get_area(struct fsi_priv *fsi, int stream) { int is_play = fsi_stream_is_play(stream); struct fsi_stream *io = fsi_get_stream(fsi, is_play); return io->substream->runtime->dma_area + io->buff_offset; } static void fsi_dma_soft_push16(struct fsi_priv *fsi, int num) { u16 *start; int i; start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK); for (i = 0; i < num; i++) fsi_reg_write(fsi, DODT, ((u32)*(start + i) << 8)); } static void fsi_dma_soft_pop16(struct fsi_priv *fsi, int num) { u16 *start; int i; start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE); for (i = 0; i < num; i++) *(start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8); } static void fsi_dma_soft_push32(struct fsi_priv *fsi, int num) { u32 *start; int i; start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK); for (i = 0; i < num; i++) fsi_reg_write(fsi, DODT, *(start + i)); } static void fsi_dma_soft_pop32(struct fsi_priv *fsi, int num) { u32 *start; int i; start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE); for (i = 0; i < num; i++) *(start + i) = fsi_reg_read(fsi, DIDT); } /* * irq function */ static void fsi_irq_enable(struct fsi_priv *fsi, int is_play) { u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play)); struct fsi_master *master = fsi_get_master(fsi); fsi_core_mask_set(master, imsk, data, data); fsi_core_mask_set(master, iemsk, data, data); } static void fsi_irq_disable(struct fsi_priv *fsi, int is_play) { u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play)); struct fsi_master *master = fsi_get_master(fsi); fsi_core_mask_set(master, imsk, data, 0); fsi_core_mask_set(master, iemsk, data, 0); } static u32 fsi_irq_get_status(struct fsi_master *master) { return fsi_core_read(master, int_st); } static void fsi_irq_clear_status(struct fsi_priv *fsi) { u32 data = 0; struct fsi_master *master = fsi_get_master(fsi); data |= AB_IO(1, fsi_get_port_shift(fsi, 0)); data |= AB_IO(1, fsi_get_port_shift(fsi, 1)); /* clear interrupt factor */ fsi_core_mask_set(master, int_st, data, 0); } /* * SPDIF master clock function * * These functions are used later FSI2 */ static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable) { struct fsi_master *master = fsi_get_master(fsi); u32 mask, val; if (master->core->ver < 2) { pr_err("fsi: register access err (%s)\n", __func__); return; } mask = BP | SE; val = enable ? mask : 0; fsi_is_port_a(fsi) ? fsi_core_mask_set(master, a_mclk, mask, val) : fsi_core_mask_set(master, b_mclk, mask, val); } /* * clock function */ static int fsi_set_master_clk(struct device *dev, struct fsi_priv *fsi, long rate, int enable) { struct fsi_master *master = fsi_get_master(fsi); set_rate_func set_rate = fsi_get_info_set_rate(master); int fsi_ver = master->core->ver; int ret; ret = set_rate(dev, fsi_is_port_a(fsi), rate, enable); if (ret < 0) /* error */ return ret; if (!enable) return 0; if (ret > 0) { u32 data = 0; switch (ret & SH_FSI_ACKMD_MASK) { default: /* FALL THROUGH */ case SH_FSI_ACKMD_512: data |= (0x0 << 12); break; case SH_FSI_ACKMD_256: data |= (0x1 << 12); break; case SH_FSI_ACKMD_128: data |= (0x2 << 12); break; case SH_FSI_ACKMD_64: data |= (0x3 << 12); break; case SH_FSI_ACKMD_32: if (fsi_ver < 2) dev_err(dev, "unsupported ACKMD\n"); else data |= (0x4 << 12); break; } switch (ret & SH_FSI_BPFMD_MASK) { default: /* FALL THROUGH */ case SH_FSI_BPFMD_32: data |= (0x0 << 8); break; case SH_FSI_BPFMD_64: data |= (0x1 << 8); break; case SH_FSI_BPFMD_128: data |= (0x2 << 8); break; case SH_FSI_BPFMD_256: data |= (0x3 << 8); break; case SH_FSI_BPFMD_512: data |= (0x4 << 8); break; case SH_FSI_BPFMD_16: if (fsi_ver < 2) dev_err(dev, "unsupported ACKMD\n"); else data |= (0x7 << 8); break; } fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data); udelay(10); ret = 0; } return ret; } #define fsi_module_init(m, d) __fsi_module_clk_ctrl(m, d, 1) #define fsi_module_kill(m, d) __fsi_module_clk_ctrl(m, d, 0) static void __fsi_module_clk_ctrl(struct fsi_master *master, struct device *dev, int enable) { pm_runtime_get_sync(dev); if (enable) { /* enable only SR */ fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR); fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0); } else { /* clear all registers */ fsi_master_mask_set(master, SOFT_RST, FSISR, 0); } pm_runtime_put_sync(dev); } #define fsi_port_start(f) __fsi_port_clk_ctrl(f, 1) #define fsi_port_stop(f) __fsi_port_clk_ctrl(f, 0) static void __fsi_port_clk_ctrl(struct fsi_priv *fsi, int enable) { struct fsi_master *master = fsi_get_master(fsi); u32 soft = fsi_is_port_a(fsi) ? PASR : PBSR; u32 clk = fsi_is_port_a(fsi) ? CRA : CRB; int is_master = fsi_is_clk_master(fsi); fsi_master_mask_set(master, SOFT_RST, soft, (enable) ? soft : 0); if (is_master) fsi_master_mask_set(master, CLK_RST, clk, (enable) ? clk : 0); } /* * ctrl function */ static void fsi_fifo_init(struct fsi_priv *fsi, int is_play, struct snd_soc_dai *dai) { struct fsi_master *master = fsi_get_master(fsi); struct fsi_stream *io = fsi_get_stream(fsi, is_play); u32 shift, i; /* get on-chip RAM capacity */ shift = fsi_master_read(master, FIFO_SZ); shift >>= fsi_get_port_shift(fsi, is_play); shift &= FIFO_SZ_MASK; io->fifo_max_num = 256 << shift; dev_dbg(dai->dev, "fifo = %d words\n", io->fifo_max_num); /* * The maximum number of sample data varies depending * on the number of channels selected for the format. * * FIFOs are used in 4-channel units in 3-channel mode * and in 8-channel units in 5- to 7-channel mode * meaning that more FIFOs than the required size of DPRAM * are used. * * ex) if 256 words of DP-RAM is connected * 1 channel: 256 (256 x 1 = 256) * 2 channels: 128 (128 x 2 = 256) * 3 channels: 64 ( 64 x 3 = 192) * 4 channels: 64 ( 64 x 4 = 256) * 5 channels: 32 ( 32 x 5 = 160) * 6 channels: 32 ( 32 x 6 = 192) * 7 channels: 32 ( 32 x 7 = 224) * 8 channels: 32 ( 32 x 8 = 256) */ for (i = 1; i < fsi->chan_num; i <<= 1) io->fifo_max_num >>= 1; dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan_num, io->fifo_max_num); /* * set interrupt generation factor * clear FIFO */ if (is_play) { fsi_reg_write(fsi, DOFF_CTL, IRQ_HALF); fsi_reg_mask_set(fsi, DOFF_CTL, FIFO_CLR, FIFO_CLR); } else { fsi_reg_write(fsi, DIFF_CTL, IRQ_HALF); fsi_reg_mask_set(fsi, DIFF_CTL, FIFO_CLR, FIFO_CLR); } } static int fsi_fifo_data_ctrl(struct fsi_priv *fsi, int stream) { struct snd_pcm_runtime *runtime; struct snd_pcm_substream *substream = NULL; int is_play = fsi_stream_is_play(stream); struct fsi_stream *io = fsi_get_stream(fsi, is_play); int data_residue_num; int data_num; int data_num_max; int ch_width; int over_period; void (*fn)(struct fsi_priv *fsi, int size); if (!fsi || !io->substream || !io->substream->runtime) return -EINVAL; over_period = 0; substream = io->substream; runtime = substream->runtime; /* FSI FIFO has limit. * So, this driver can not send periods data at a time */ if (io->buff_offset >= fsi_num2offset(io->period_num + 1, io->period_len)) { over_period = 1; io->period_num = (io->period_num + 1) % runtime->periods; if (0 == io->period_num) io->buff_offset = 0; } /* get 1 channel data width */ ch_width = fsi_get_frame_width(fsi, is_play); /* get residue data number of alsa */ data_residue_num = fsi_len2num(io->buff_len - io->buff_offset, ch_width); if (is_play) { /* * for play-back * * data_num_max : number of FSI fifo free space * data_num : number of ALSA residue data */ data_num_max = io->fifo_max_num * fsi->chan_num; data_num_max -= fsi_get_fifo_data_num(fsi, is_play); data_num = data_residue_num; switch (ch_width) { case 2: fn = fsi_dma_soft_push16; break; case 4: fn = fsi_dma_soft_push32; break; default: return -EINVAL; } } else { /* * for capture * * data_num_max : number of ALSA free space * data_num : number of data in FSI fifo */ data_num_max = data_residue_num; data_num = fsi_get_fifo_data_num(fsi, is_play); switch (ch_width) { case 2: fn = fsi_dma_soft_pop16; break; case 4: fn = fsi_dma_soft_pop32; break; default: return -EINVAL; } } data_num = min(data_num, data_num_max); fn(fsi, data_num); /* update buff_offset */ io->buff_offset += fsi_num2offset(data_num, ch_width); if (over_period) snd_pcm_period_elapsed(substream); return 0; } static int fsi_data_pop(struct fsi_priv *fsi) { return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_CAPTURE); } static int fsi_data_push(struct fsi_priv *fsi) { return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_PLAYBACK); } static irqreturn_t fsi_interrupt(int irq, void *data) { struct fsi_master *master = data; u32 int_st = fsi_irq_get_status(master); /* clear irq status */ fsi_master_mask_set(master, SOFT_RST, IR, 0); fsi_master_mask_set(master, SOFT_RST, IR, IR); if (int_st & AB_IO(1, AO_SHIFT)) fsi_data_push(&master->fsia); if (int_st & AB_IO(1, BO_SHIFT)) fsi_data_push(&master->fsib); if (int_st & AB_IO(1, AI_SHIFT)) fsi_data_pop(&master->fsia); if (int_st & AB_IO(1, BI_SHIFT)) fsi_data_pop(&master->fsib); fsi_count_fifo_err(&master->fsia); fsi_count_fifo_err(&master->fsib); fsi_irq_clear_status(&master->fsia); fsi_irq_clear_status(&master->fsib); return IRQ_HANDLED; } /* * dai ops */ static int fsi_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); u32 flags = fsi_get_info_flags(fsi); u32 data; int is_play = fsi_is_play(substream); pm_runtime_get_sync(dai->dev); /* clock inversion (CKG2) */ data = 0; if (SH_FSI_LRM_INV & flags) data |= 1 << 12; if (SH_FSI_BRM_INV & flags) data |= 1 << 8; if (SH_FSI_LRS_INV & flags) data |= 1 << 4; if (SH_FSI_BRS_INV & flags) data |= 1 << 0; fsi_reg_write(fsi, CKG2, data); /* irq clear */ fsi_irq_disable(fsi, is_play); fsi_irq_clear_status(fsi); /* fifo init */ fsi_fifo_init(fsi, is_play, dai); return 0; } static void fsi_dai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); int is_play = fsi_is_play(substream); fsi_irq_disable(fsi, is_play); if (fsi_is_clk_master(fsi)) fsi_set_master_clk(dai->dev, fsi, fsi->rate, 0); fsi->rate = 0; pm_runtime_put_sync(dai->dev); } static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); int is_play = fsi_is_play(substream); int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: fsi_stream_push(fsi, is_play, substream); ret = is_play ? fsi_data_push(fsi) : fsi_data_pop(fsi); fsi_irq_enable(fsi, is_play); fsi_port_start(fsi); break; case SNDRV_PCM_TRIGGER_STOP: fsi_port_stop(fsi); fsi_irq_disable(fsi, is_play); fsi_stream_pop(fsi, is_play); break; } return ret; } static int fsi_set_fmt_dai(struct fsi_priv *fsi, unsigned int fmt) { u32 data = 0; switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: data = CR_I2S; fsi->chan_num = 2; break; case SND_SOC_DAIFMT_LEFT_J: data = CR_PCM; fsi->chan_num = 2; break; default: return -EINVAL; } fsi_reg_write(fsi, DO_FMT, data); fsi_reg_write(fsi, DI_FMT, data); return 0; } static int fsi_set_fmt_spdif(struct fsi_priv *fsi) { struct fsi_master *master = fsi_get_master(fsi); u32 data = 0; if (master->core->ver < 2) return -EINVAL; data = CR_BWS_16 | CR_DTMD_SPDIF_PCM | CR_PCM; fsi->chan_num = 2; fsi_spdif_clk_ctrl(fsi, 1); fsi_reg_mask_set(fsi, OUT_SEL, DMMD, DMMD); fsi_reg_write(fsi, DO_FMT, data); fsi_reg_write(fsi, DI_FMT, data); return 0; } static int fsi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct fsi_priv *fsi = fsi_get_priv_frm_dai(dai); struct fsi_master *master = fsi_get_master(fsi); set_rate_func set_rate = fsi_get_info_set_rate(master); u32 flags = fsi_get_info_flags(fsi); u32 data = 0; int ret; pm_runtime_get_sync(dai->dev); /* set master/slave audio interface */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: data = DIMD | DOMD; fsi->clk_master = 1; break; case SND_SOC_DAIFMT_CBS_CFS: break; default: ret = -EINVAL; goto set_fmt_exit; } if (fsi_is_clk_master(fsi) && !set_rate) { dev_err(dai->dev, "platform doesn't have set_rate\n"); ret = -EINVAL; goto set_fmt_exit; } fsi_reg_mask_set(fsi, CKG1, (DIMD | DOMD), data); /* set format */ switch (flags & SH_FSI_FMT_MASK) { case SH_FSI_FMT_DAI: ret = fsi_set_fmt_dai(fsi, fmt & SND_SOC_DAIFMT_FORMAT_MASK); break; case SH_FSI_FMT_SPDIF: ret = fsi_set_fmt_spdif(fsi); break; default: ret = -EINVAL; } set_fmt_exit: pm_runtime_put_sync(dai->dev); return ret; } static int fsi_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); long rate = params_rate(params); int ret; if (!fsi_is_clk_master(fsi)) return 0; ret = fsi_set_master_clk(dai->dev, fsi, rate, 1); if (ret < 0) return ret; fsi->rate = rate; return ret; } static struct snd_soc_dai_ops fsi_dai_ops = { .startup = fsi_dai_startup, .shutdown = fsi_dai_shutdown, .trigger = fsi_dai_trigger, .set_fmt = fsi_dai_set_fmt, .hw_params = fsi_dai_hw_params, }; /* * pcm ops */ static struct snd_pcm_hardware fsi_pcm_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE, .formats = FSI_FMTS, .rates = FSI_RATES, .rate_min = 8000, .rate_max = 192000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = 64 * 1024, .period_bytes_min = 32, .period_bytes_max = 8192, .periods_min = 1, .periods_max = 32, .fifo_size = 256, }; static int fsi_pcm_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; int ret = 0; snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware); ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); return ret; } static int fsi_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int fsi_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsi_priv *fsi = fsi_get_priv(substream); struct fsi_stream *io = fsi_get_stream(fsi, fsi_is_play(substream)); long location; location = (io->buff_offset - 1); if (location < 0) location = 0; return bytes_to_frames(runtime, location); } static struct snd_pcm_ops fsi_pcm_ops = { .open = fsi_pcm_open, .ioctl = snd_pcm_lib_ioctl, .hw_params = fsi_hw_params, .hw_free = fsi_hw_free, .pointer = fsi_pointer, }; /* * snd_soc_platform */ #define PREALLOC_BUFFER (32 * 1024) #define PREALLOC_BUFFER_MAX (32 * 1024) static void fsi_pcm_free(struct snd_pcm *pcm) { snd_pcm_lib_preallocate_free_for_all(pcm); } static int fsi_pcm_new(struct snd_card *card, struct snd_soc_dai *dai, struct snd_pcm *pcm) { /* * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel * in MMAP mode (i.e. aplay -M) */ return snd_pcm_lib_preallocate_pages_for_all( pcm, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), PREALLOC_BUFFER, PREALLOC_BUFFER_MAX); } /* * alsa struct */ static struct snd_soc_dai_driver fsi_soc_dai[] = { { .name = "fsia-dai", .playback = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 1, .channels_max = 8, }, .capture = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 1, .channels_max = 8, }, .ops = &fsi_dai_ops, }, { .name = "fsib-dai", .playback = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 1, .channels_max = 8, }, .capture = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 1, .channels_max = 8, }, .ops = &fsi_dai_ops, }, }; static struct snd_soc_platform_driver fsi_soc_platform = { .ops = &fsi_pcm_ops, .pcm_new = fsi_pcm_new, .pcm_free = fsi_pcm_free, }; /* * platform function */ static int fsi_probe(struct platform_device *pdev) { struct fsi_master *master; const struct platform_device_id *id_entry; struct resource *res; unsigned int irq; int ret; id_entry = pdev->id_entry; if (!id_entry) { dev_err(&pdev->dev, "unknown fsi device\n"); return -ENODEV; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!res || (int)irq <= 0) { dev_err(&pdev->dev, "Not enough FSI platform resources.\n"); ret = -ENODEV; goto exit; } master = kzalloc(sizeof(*master), GFP_KERNEL); if (!master) { dev_err(&pdev->dev, "Could not allocate master\n"); ret = -ENOMEM; goto exit; } master->base = ioremap_nocache(res->start, resource_size(res)); if (!master->base) { ret = -ENXIO; dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n"); goto exit_kfree; } /* master setting */ master->irq = irq; master->info = pdev->dev.platform_data; master->core = (struct fsi_core *)id_entry->driver_data; spin_lock_init(&master->lock); /* FSI A setting */ master->fsia.base = master->base; master->fsia.master = master; /* FSI B setting */ master->fsib.base = master->base + 0x40; master->fsib.master = master; pm_runtime_enable(&pdev->dev); dev_set_drvdata(&pdev->dev, master); fsi_module_init(master, &pdev->dev); ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED, id_entry->name, master); if (ret) { dev_err(&pdev->dev, "irq request err\n"); goto exit_iounmap; } ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform); if (ret < 0) { dev_err(&pdev->dev, "cannot snd soc register\n"); goto exit_free_irq; } ret = snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai)); if (ret < 0) { dev_err(&pdev->dev, "cannot snd dai register\n"); goto exit_snd_soc; } return ret; exit_snd_soc: snd_soc_unregister_platform(&pdev->dev); exit_free_irq: free_irq(irq, master); exit_iounmap: iounmap(master->base); pm_runtime_disable(&pdev->dev); exit_kfree: kfree(master); master = NULL; exit: return ret; } static int fsi_remove(struct platform_device *pdev) { struct fsi_master *master; master = dev_get_drvdata(&pdev->dev); fsi_module_kill(master, &pdev->dev); free_irq(master->irq, master); pm_runtime_disable(&pdev->dev); snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai)); snd_soc_unregister_platform(&pdev->dev); iounmap(master->base); kfree(master); return 0; } static void __fsi_suspend(struct fsi_priv *fsi, struct device *dev) { fsi->saved_do_fmt = fsi_reg_read(fsi, DO_FMT); fsi->saved_di_fmt = fsi_reg_read(fsi, DI_FMT); fsi->saved_ckg1 = fsi_reg_read(fsi, CKG1); fsi->saved_ckg2 = fsi_reg_read(fsi, CKG2); fsi->saved_out_sel = fsi_reg_read(fsi, OUT_SEL); if (fsi_is_clk_master(fsi)) fsi_set_master_clk(dev, fsi, fsi->rate, 0); } static void __fsi_resume(struct fsi_priv *fsi, struct device *dev) { fsi_reg_write(fsi, DO_FMT, fsi->saved_do_fmt); fsi_reg_write(fsi, DI_FMT, fsi->saved_di_fmt); fsi_reg_write(fsi, CKG1, fsi->saved_ckg1); fsi_reg_write(fsi, CKG2, fsi->saved_ckg2); fsi_reg_write(fsi, OUT_SEL, fsi->saved_out_sel); if (fsi_is_clk_master(fsi)) fsi_set_master_clk(dev, fsi, fsi->rate, 1); } static int fsi_suspend(struct device *dev) { struct fsi_master *master = dev_get_drvdata(dev); pm_runtime_get_sync(dev); __fsi_suspend(&master->fsia, dev); __fsi_suspend(&master->fsib, dev); master->saved_a_mclk = fsi_core_read(master, a_mclk); master->saved_b_mclk = fsi_core_read(master, b_mclk); master->saved_iemsk = fsi_core_read(master, iemsk); master->saved_imsk = fsi_core_read(master, imsk); master->saved_clk_rst = fsi_master_read(master, CLK_RST); master->saved_soft_rst = fsi_master_read(master, SOFT_RST); fsi_module_kill(master, dev); pm_runtime_put_sync(dev); return 0; } static int fsi_resume(struct device *dev) { struct fsi_master *master = dev_get_drvdata(dev); pm_runtime_get_sync(dev); fsi_module_init(master, dev); fsi_master_mask_set(master, SOFT_RST, 0xffff, master->saved_soft_rst); fsi_master_mask_set(master, CLK_RST, 0xffff, master->saved_clk_rst); fsi_core_mask_set(master, a_mclk, 0xffff, master->saved_a_mclk); fsi_core_mask_set(master, b_mclk, 0xffff, master->saved_b_mclk); fsi_core_mask_set(master, iemsk, 0xffff, master->saved_iemsk); fsi_core_mask_set(master, imsk, 0xffff, master->saved_imsk); __fsi_resume(&master->fsia, dev); __fsi_resume(&master->fsib, dev); pm_runtime_put_sync(dev); return 0; } static int fsi_runtime_nop(struct device *dev) { /* Runtime PM callback shared between ->runtime_suspend() * and ->runtime_resume(). Simply returns success. * * This driver re-initializes all registers after * pm_runtime_get_sync() anyway so there is no need * to save and restore registers here. */ return 0; } static struct dev_pm_ops fsi_pm_ops = { .suspend = fsi_suspend, .resume = fsi_resume, .runtime_suspend = fsi_runtime_nop, .runtime_resume = fsi_runtime_nop, }; static struct fsi_core fsi1_core = { .ver = 1, /* Interrupt */ .int_st = INT_ST, .iemsk = IEMSK, .imsk = IMSK, }; static struct fsi_core fsi2_core = { .ver = 2, /* Interrupt */ .int_st = CPU_INT_ST, .iemsk = CPU_IEMSK, .imsk = CPU_IMSK, .a_mclk = A_MST_CTLR, .b_mclk = B_MST_CTLR, }; static struct platform_device_id fsi_id_table[] = { { "sh_fsi", (kernel_ulong_t)&fsi1_core }, { "sh_fsi2", (kernel_ulong_t)&fsi2_core }, {}, }; MODULE_DEVICE_TABLE(platform, fsi_id_table); static struct platform_driver fsi_driver = { .driver = { .name = "fsi-pcm-audio", .pm = &fsi_pm_ops, }, .probe = fsi_probe, .remove = fsi_remove, .id_table = fsi_id_table, }; static int __init fsi_mobile_init(void) { return platform_driver_register(&fsi_driver); } static void __exit fsi_mobile_exit(void) { platform_driver_unregister(&fsi_driver); } module_init(fsi_mobile_init); module_exit(fsi_mobile_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SuperH onchip FSI audio driver"); MODULE_AUTHOR("Kuninori Morimoto "); MODULE_ALIAS("platform:fsi-pcm-audio");