/* * Copyright (C) 2001 Momchil Velikov * Portions Copyright (C) 2001 Christoph Hellwig * Copyright (C) 2005 SGI, Christoph Lameter * Copyright (C) 2006 Nick Piggin * Copyright (C) 2012 Konstantin Khlebnikov * Copyright (C) 2016 Intel, Matthew Wilcox * Copyright (C) 2016 Intel, Ross Zwisler * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include /* in_interrupt() */ #include #include #include #include #include /* Number of nodes in fully populated tree of given height */ static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; /* * Radix tree node cache. */ static struct kmem_cache *radix_tree_node_cachep; /* * The radix tree is variable-height, so an insert operation not only has * to build the branch to its corresponding item, it also has to build the * branch to existing items if the size has to be increased (by * radix_tree_extend). * * The worst case is a zero height tree with just a single item at index 0, * and then inserting an item at index ULONG_MAX. This requires 2 new branches * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. * Hence: */ #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) /* * The IDR does not have to be as high as the radix tree since it uses * signed integers, not unsigned longs. */ #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1) #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \ RADIX_TREE_MAP_SHIFT)) #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1) /* * The IDA is even shorter since it uses a bitmap at the last level. */ #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS)) #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \ RADIX_TREE_MAP_SHIFT)) #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1) /* * Per-cpu pool of preloaded nodes */ struct radix_tree_preload { unsigned nr; /* nodes->parent points to next preallocated node */ struct radix_tree_node *nodes; }; static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; static inline struct radix_tree_node *entry_to_node(void *ptr) { return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE); } static inline void *node_to_entry(void *ptr) { return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); } #define RADIX_TREE_RETRY XA_RETRY_ENTRY static inline unsigned long get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot) { return parent ? slot - parent->slots : 0; } static unsigned int radix_tree_descend(const struct radix_tree_node *parent, struct radix_tree_node **nodep, unsigned long index) { unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; void __rcu **entry = rcu_dereference_raw(parent->slots[offset]); if (xa_is_sibling(entry)) { offset = xa_to_sibling(entry); entry = rcu_dereference_raw(parent->slots[offset]); } *nodep = (void *)entry; return offset; } static inline gfp_t root_gfp_mask(const struct radix_tree_root *root) { return root->gfp_mask & (__GFP_BITS_MASK & ~GFP_ZONEMASK); } static inline void tag_set(struct radix_tree_node *node, unsigned int tag, int offset) { __set_bit(offset, node->tags[tag]); } static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, int offset) { __clear_bit(offset, node->tags[tag]); } static inline int tag_get(const struct radix_tree_node *node, unsigned int tag, int offset) { return test_bit(offset, node->tags[tag]); } static inline void root_tag_set(struct radix_tree_root *root, unsigned tag) { root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT)); } static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) { root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT)); } static inline void root_tag_clear_all(struct radix_tree_root *root) { root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1; } static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag) { return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT)); } static inline unsigned root_tags_get(const struct radix_tree_root *root) { return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT; } static inline bool is_idr(const struct radix_tree_root *root) { return !!(root->gfp_mask & ROOT_IS_IDR); } /* * Returns 1 if any slot in the node has this tag set. * Otherwise returns 0. */ static inline int any_tag_set(const struct radix_tree_node *node, unsigned int tag) { unsigned idx; for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { if (node->tags[tag][idx]) return 1; } return 0; } static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag) { bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE); } /** * radix_tree_find_next_bit - find the next set bit in a memory region * * @addr: The address to base the search on * @size: The bitmap size in bits * @offset: The bitnumber to start searching at * * Unrollable variant of find_next_bit() for constant size arrays. * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. * Returns next bit offset, or size if nothing found. */ static __always_inline unsigned long radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag, unsigned long offset) { const unsigned long *addr = node->tags[tag]; if (offset < RADIX_TREE_MAP_SIZE) { unsigned long tmp; addr += offset / BITS_PER_LONG; tmp = *addr >> (offset % BITS_PER_LONG); if (tmp) return __ffs(tmp) + offset; offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); while (offset < RADIX_TREE_MAP_SIZE) { tmp = *++addr; if (tmp) return __ffs(tmp) + offset; offset += BITS_PER_LONG; } } return RADIX_TREE_MAP_SIZE; } static unsigned int iter_offset(const struct radix_tree_iter *iter) { return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK; } /* * The maximum index which can be stored in a radix tree */ static inline unsigned long shift_maxindex(unsigned int shift) { return (RADIX_TREE_MAP_SIZE << shift) - 1; } static inline unsigned long node_maxindex(const struct radix_tree_node *node) { return shift_maxindex(node->shift); } static unsigned long next_index(unsigned long index, const struct radix_tree_node *node, unsigned long offset) { return (index & ~node_maxindex(node)) + (offset << node->shift); } #ifndef __KERNEL__ static void dump_node(struct radix_tree_node *node, unsigned long index) { unsigned long i; pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n", node, node->offset, index, index | node_maxindex(node), node->parent, node->tags[0][0], node->tags[1][0], node->tags[2][0], node->shift, node->count, node->exceptional); for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { unsigned long first = index | (i << node->shift); unsigned long last = first | ((1UL << node->shift) - 1); void *entry = node->slots[i]; if (!entry) continue; if (entry == RADIX_TREE_RETRY) { pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n", i, first, last, node); } else if (!radix_tree_is_internal_node(entry)) { pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n", entry, i, first, last, node); } else if (xa_is_sibling(entry)) { pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n", entry, i, first, last, node, node->slots[xa_to_sibling(entry)]); } else { dump_node(entry_to_node(entry), first); } } } /* For debug */ static void radix_tree_dump(struct radix_tree_root *root) { pr_debug("radix root: %p rnode %p tags %x\n", root, root->rnode, root->gfp_mask >> ROOT_TAG_SHIFT); if (!radix_tree_is_internal_node(root->rnode)) return; dump_node(entry_to_node(root->rnode), 0); } static void dump_ida_node(void *entry, unsigned long index) { unsigned long i; if (!entry) return; if (radix_tree_is_internal_node(entry)) { struct radix_tree_node *node = entry_to_node(entry); pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n", node, node->offset, index * IDA_BITMAP_BITS, ((index | node_maxindex(node)) + 1) * IDA_BITMAP_BITS - 1, node->parent, node->tags[0][0], node->shift, node->count); for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) dump_ida_node(node->slots[i], index | (i << node->shift)); } else if (xa_is_value(entry)) { pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n", entry, (int)(index & RADIX_TREE_MAP_MASK), index * IDA_BITMAP_BITS, index * IDA_BITMAP_BITS + BITS_PER_XA_VALUE, xa_to_value(entry)); } else { struct ida_bitmap *bitmap = entry; pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap, (int)(index & RADIX_TREE_MAP_MASK), index * IDA_BITMAP_BITS, (index + 1) * IDA_BITMAP_BITS - 1); for (i = 0; i < IDA_BITMAP_LONGS; i++) pr_cont(" %lx", bitmap->bitmap[i]); pr_cont("\n"); } } static void ida_dump(struct ida *ida) { struct radix_tree_root *root = &ida->ida_rt; pr_debug("ida: %p node %p free %d\n", ida, root->rnode, root->gfp_mask >> ROOT_TAG_SHIFT); dump_ida_node(root->rnode, 0); } #endif /* * This assumes that the caller has performed appropriate preallocation, and * that the caller has pinned this thread of control to the current CPU. */ static struct radix_tree_node * radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent, struct radix_tree_root *root, unsigned int shift, unsigned int offset, unsigned int count, unsigned int exceptional) { struct radix_tree_node *ret = NULL; /* * Preload code isn't irq safe and it doesn't make sense to use * preloading during an interrupt anyway as all the allocations have * to be atomic. So just do normal allocation when in interrupt. */ if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { struct radix_tree_preload *rtp; /* * Even if the caller has preloaded, try to allocate from the * cache first for the new node to get accounted to the memory * cgroup. */ ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask | __GFP_NOWARN); if (ret) goto out; /* * Provided the caller has preloaded here, we will always * succeed in getting a node here (and never reach * kmem_cache_alloc) */ rtp = this_cpu_ptr(&radix_tree_preloads); if (rtp->nr) { ret = rtp->nodes; rtp->nodes = ret->parent; rtp->nr--; } /* * Update the allocation stack trace as this is more useful * for debugging. */ kmemleak_update_trace(ret); goto out; } ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); out: BUG_ON(radix_tree_is_internal_node(ret)); if (ret) { ret->shift = shift; ret->offset = offset; ret->count = count; ret->exceptional = exceptional; ret->parent = parent; ret->root = root; } return ret; } static void radix_tree_node_rcu_free(struct rcu_head *head) { struct radix_tree_node *node = container_of(head, struct radix_tree_node, rcu_head); /* * Must only free zeroed nodes into the slab. We can be left with * non-NULL entries by radix_tree_free_nodes, so clear the entries * and tags here. */ memset(node->slots, 0, sizeof(node->slots)); memset(node->tags, 0, sizeof(node->tags)); INIT_LIST_HEAD(&node->private_list); kmem_cache_free(radix_tree_node_cachep, node); } static inline void radix_tree_node_free(struct radix_tree_node *node) { call_rcu(&node->rcu_head, radix_tree_node_rcu_free); } /* * Load up this CPU's radix_tree_node buffer with sufficient objects to * ensure that the addition of a single element in the tree cannot fail. On * success, return zero, with preemption disabled. On error, return -ENOMEM * with preemption not disabled. * * To make use of this facility, the radix tree must be initialised without * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). */ static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr) { struct radix_tree_preload *rtp; struct radix_tree_node *node; int ret = -ENOMEM; /* * Nodes preloaded by one cgroup can be be used by another cgroup, so * they should never be accounted to any particular memory cgroup. */ gfp_mask &= ~__GFP_ACCOUNT; preempt_disable(); rtp = this_cpu_ptr(&radix_tree_preloads); while (rtp->nr < nr) { preempt_enable(); node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); if (node == NULL) goto out; preempt_disable(); rtp = this_cpu_ptr(&radix_tree_preloads); if (rtp->nr < nr) { node->parent = rtp->nodes; rtp->nodes = node; rtp->nr++; } else { kmem_cache_free(radix_tree_node_cachep, node); } } ret = 0; out: return ret; } /* * Load up this CPU's radix_tree_node buffer with sufficient objects to * ensure that the addition of a single element in the tree cannot fail. On * success, return zero, with preemption disabled. On error, return -ENOMEM * with preemption not disabled. * * To make use of this facility, the radix tree must be initialised without * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). */ int radix_tree_preload(gfp_t gfp_mask) { /* Warn on non-sensical use... */ WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); } EXPORT_SYMBOL(radix_tree_preload); /* * The same as above function, except we don't guarantee preloading happens. * We do it, if we decide it helps. On success, return zero with preemption * disabled. On error, return -ENOMEM with preemption not disabled. */ int radix_tree_maybe_preload(gfp_t gfp_mask) { if (gfpflags_allow_blocking(gfp_mask)) return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); /* Preloading doesn't help anything with this gfp mask, skip it */ preempt_disable(); return 0; } EXPORT_SYMBOL(radix_tree_maybe_preload); #ifdef CONFIG_RADIX_TREE_MULTIORDER /* * Preload with enough objects to ensure that we can split a single entry * of order @old_order into many entries of size @new_order */ int radix_tree_split_preload(unsigned int old_order, unsigned int new_order, gfp_t gfp_mask) { unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT); unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) - (new_order / RADIX_TREE_MAP_SHIFT); unsigned nr = 0; WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); BUG_ON(new_order >= old_order); while (layers--) nr = nr * RADIX_TREE_MAP_SIZE + 1; return __radix_tree_preload(gfp_mask, top * nr); } #endif /* * The same as function above, but preload number of nodes required to insert * (1 << order) continuous naturally-aligned elements. */ int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) { unsigned long nr_subtrees; int nr_nodes, subtree_height; /* Preloading doesn't help anything with this gfp mask, skip it */ if (!gfpflags_allow_blocking(gfp_mask)) { preempt_disable(); return 0; } /* * Calculate number and height of fully populated subtrees it takes to * store (1 << order) elements. */ nr_subtrees = 1 << order; for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; subtree_height++) nr_subtrees >>= RADIX_TREE_MAP_SHIFT; /* * The worst case is zero height tree with a single item at index 0 and * then inserting items starting at ULONG_MAX - (1 << order). * * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to * 0-index item. */ nr_nodes = RADIX_TREE_MAX_PATH; /* Plus branch to fully populated subtrees. */ nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; /* Root node is shared. */ nr_nodes--; /* Plus nodes required to build subtrees. */ nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; return __radix_tree_preload(gfp_mask, nr_nodes); } static unsigned radix_tree_load_root(const struct radix_tree_root *root, struct radix_tree_node **nodep, unsigned long *maxindex) { struct radix_tree_node *node = rcu_dereference_raw(root->rnode); *nodep = node; if (likely(radix_tree_is_internal_node(node))) { node = entry_to_node(node); *maxindex = node_maxindex(node); return node->shift + RADIX_TREE_MAP_SHIFT; } *maxindex = 0; return 0; } /* * Extend a radix tree so it can store key @index. */ static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp, unsigned long index, unsigned int shift) { void *entry; unsigned int maxshift; int tag; /* Figure out what the shift should be. */ maxshift = shift; while (index > shift_maxindex(maxshift)) maxshift += RADIX_TREE_MAP_SHIFT; entry = rcu_dereference_raw(root->rnode); if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE))) goto out; do { struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL, root, shift, 0, 1, 0); if (!node) return -ENOMEM; if (is_idr(root)) { all_tag_set(node, IDR_FREE); if (!root_tag_get(root, IDR_FREE)) { tag_clear(node, IDR_FREE, 0); root_tag_set(root, IDR_FREE); } } else { /* Propagate the aggregated tag info to the new child */ for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { if (root_tag_get(root, tag)) tag_set(node, tag, 0); } } BUG_ON(shift > BITS_PER_LONG); if (radix_tree_is_internal_node(entry)) { entry_to_node(entry)->parent = node; } else if (xa_is_value(entry)) { /* Moving an exceptional root->rnode to a node */ node->exceptional = 1; } /* * entry was already in the radix tree, so we do not need * rcu_assign_pointer here */ node->slots[0] = (void __rcu *)entry; entry = node_to_entry(node); rcu_assign_pointer(root->rnode, entry); shift += RADIX_TREE_MAP_SHIFT; } while (shift <= maxshift); out: return maxshift + RADIX_TREE_MAP_SHIFT; } /** * radix_tree_shrink - shrink radix tree to minimum height * @root radix tree root */ static inline bool radix_tree_shrink(struct radix_tree_root *root, radix_tree_update_node_t update_node) { bool shrunk = false; for (;;) { struct radix_tree_node *node = rcu_dereference_raw(root->rnode); struct radix_tree_node *child; if (!radix_tree_is_internal_node(node)) break; node = entry_to_node(node); /* * The candidate node has more than one child, or its child * is not at the leftmost slot, or the child is a multiorder * entry, we cannot shrink. */ if (node->count != 1) break; child = rcu_dereference_raw(node->slots[0]); if (!child) break; if (!radix_tree_is_internal_node(child) && node->shift) break; /* * For an IDR, we must not shrink entry 0 into the root in * case somebody calls idr_replace() with a pointer that * appears to be an internal entry */ if (!node->shift && is_idr(root)) break; if (radix_tree_is_internal_node(child)) entry_to_node(child)->parent = NULL; /* * We don't need rcu_assign_pointer(), since we are simply * moving the node from one part of the tree to another: if it * was safe to dereference the old pointer to it * (node->slots[0]), it will be safe to dereference the new * one (root->rnode) as far as dependent read barriers go. */ root->rnode = (void __rcu *)child; if (is_idr(root) && !tag_get(node, IDR_FREE, 0)) root_tag_clear(root, IDR_FREE); /* * We have a dilemma here. The node's slot[0] must not be * NULLed in case there are concurrent lookups expecting to * find the item. However if this was a bottom-level node, * then it may be subject to the slot pointer being visible * to callers dereferencing it. If item corresponding to * slot[0] is subsequently deleted, these callers would expect * their slot to become empty sooner or later. * * For example, lockless pagecache will look up a slot, deref * the page pointer, and if the page has 0 refcount it means it * was concurrently deleted from pagecache so try the deref * again. Fortunately there is already a requirement for logic * to retry the entire slot lookup -- the indirect pointer * problem (replacing direct root node with an indirect pointer * also results in a stale slot). So tag the slot as indirect * to force callers to retry. */ node->count = 0; if (!radix_tree_is_internal_node(child)) { node->slots[0] = (void __rcu *)RADIX_TREE_RETRY; if (update_node) update_node(node); } WARN_ON_ONCE(!list_empty(&node->private_list)); radix_tree_node_free(node); shrunk = true; } return shrunk; } static bool delete_node(struct radix_tree_root *root, struct radix_tree_node *node, radix_tree_update_node_t update_node) { bool deleted = false; do { struct radix_tree_node *parent; if (node->count) { if (node_to_entry(node) == rcu_dereference_raw(root->rnode)) deleted |= radix_tree_shrink(root, update_node); return deleted; } parent = node->parent; if (parent) { parent->slots[node->offset] = NULL; parent->count--; } else { /* * Shouldn't the tags already have all been cleared * by the caller? */ if (!is_idr(root)) root_tag_clear_all(root); root->rnode = NULL; } WARN_ON_ONCE(!list_empty(&node->private_list)); radix_tree_node_free(node); deleted = true; node = parent; } while (node); return deleted; } /** * __radix_tree_create - create a slot in a radix tree * @root: radix tree root * @index: index key * @order: index occupies 2^order aligned slots * @nodep: returns node * @slotp: returns slot * * Create, if necessary, and return the node and slot for an item * at position @index in the radix tree @root. * * Until there is more than one item in the tree, no nodes are * allocated and @root->rnode is used as a direct slot instead of * pointing to a node, in which case *@nodep will be NULL. * * Returns -ENOMEM, or 0 for success. */ int __radix_tree_create(struct radix_tree_root *root, unsigned long index, unsigned order, struct radix_tree_node **nodep, void __rcu ***slotp) { struct radix_tree_node *node = NULL, *child; void __rcu **slot = (void __rcu **)&root->rnode; unsigned long maxindex; unsigned int shift, offset = 0; unsigned long max = index | ((1UL << order) - 1); gfp_t gfp = root_gfp_mask(root); shift = radix_tree_load_root(root, &child, &maxindex); /* Make sure the tree is high enough. */ if (order > 0 && max == ((1UL << order) - 1)) max++; if (max > maxindex) { int error = radix_tree_extend(root, gfp, max, shift); if (error < 0) return error; shift = error; child = rcu_dereference_raw(root->rnode); } while (shift > order) { shift -= RADIX_TREE_MAP_SHIFT; if (child == NULL) { /* Have to add a child node. */ child = radix_tree_node_alloc(gfp, node, root, shift, offset, 0, 0); if (!child) return -ENOMEM; rcu_assign_pointer(*slot, node_to_entry(child)); if (node) node->count++; } else if (!radix_tree_is_internal_node(child)) break; /* Go a level down */ node = entry_to_node(child); offset = radix_tree_descend(node, &child, index); slot = &node->slots[offset]; } if (nodep) *nodep = node; if (slotp) *slotp = slot; return 0; } /* * Free any nodes below this node. The tree is presumed to not need * shrinking, and any user data in the tree is presumed to not need a * destructor called on it. If we need to add a destructor, we can * add that functionality later. Note that we may not clear tags or * slots from the tree as an RCU walker may still have a pointer into * this subtree. We could replace the entries with RADIX_TREE_RETRY, * but we'll still have to clear those in rcu_free. */ static void radix_tree_free_nodes(struct radix_tree_node *node) { unsigned offset = 0; struct radix_tree_node *child = entry_to_node(node); for (;;) { void *entry = rcu_dereference_raw(child->slots[offset]); if (xa_is_node(entry) && child->shift) { child = entry_to_node(entry); offset = 0; continue; } offset++; while (offset == RADIX_TREE_MAP_SIZE) { struct radix_tree_node *old = child; offset = child->offset + 1; child = child->parent; WARN_ON_ONCE(!list_empty(&old->private_list)); radix_tree_node_free(old); if (old == entry_to_node(node)) return; } } } #ifdef CONFIG_RADIX_TREE_MULTIORDER static inline int insert_entries(struct radix_tree_node *node, void __rcu **slot, void *item, unsigned order, bool replace) { void *sibling; unsigned i, n, tag, offset, tags = 0; if (node) { if (order > node->shift) n = 1 << (order - node->shift); else n = 1; offset = get_slot_offset(node, slot); } else { n = 1; offset = 0; } if (n > 1) { offset = offset & ~(n - 1); slot = &node->slots[offset]; } sibling = xa_mk_sibling(offset); for (i = 0; i < n; i++) { if (slot[i]) { if (replace) { node->count--; for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) if (tag_get(node, tag, offset + i)) tags |= 1 << tag; } else return -EEXIST; } } for (i = 0; i < n; i++) { struct radix_tree_node *old = rcu_dereference_raw(slot[i]); if (i) { rcu_assign_pointer(slot[i], sibling); for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) if (tags & (1 << tag)) tag_clear(node, tag, offset + i); } else { rcu_assign_pointer(slot[i], item); for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) if (tags & (1 << tag)) tag_set(node, tag, offset); } if (xa_is_node(old)) radix_tree_free_nodes(old); if (xa_is_value(old)) node->exceptional--; } if (node) { node->count += n; if (xa_is_value(item)) node->exceptional += n; } return n; } #else static inline int insert_entries(struct radix_tree_node *node, void __rcu **slot, void *item, unsigned order, bool replace) { if (*slot) return -EEXIST; rcu_assign_pointer(*slot, item); if (node) { node->count++; if (xa_is_value(item)) node->exceptional++; } return 1; } #endif /** * __radix_tree_insert - insert into a radix tree * @root: radix tree root * @index: index key * @order: key covers the 2^order indices around index * @item: item to insert * * Insert an item into the radix tree at position @index. */ int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, unsigned order, void *item) { struct radix_tree_node *node; void __rcu **slot; int error; BUG_ON(radix_tree_is_internal_node(item)); error = __radix_tree_create(root, index, order, &node, &slot); if (error) return error; error = insert_entries(node, slot, item, order, false); if (error < 0) return error; if (node) { unsigned offset = get_slot_offset(node, slot); BUG_ON(tag_get(node, 0, offset)); BUG_ON(tag_get(node, 1, offset)); BUG_ON(tag_get(node, 2, offset)); } else { BUG_ON(root_tags_get(root)); } return 0; } EXPORT_SYMBOL(__radix_tree_insert); /** * __radix_tree_lookup - lookup an item in a radix tree * @root: radix tree root * @index: index key * @nodep: returns node * @slotp: returns slot * * Lookup and return the item at position @index in the radix * tree @root. * * Until there is more than one item in the tree, no nodes are * allocated and @root->rnode is used as a direct slot instead of * pointing to a node, in which case *@nodep will be NULL. */ void *__radix_tree_lookup(const struct radix_tree_root *root, unsigned long index, struct radix_tree_node **nodep, void __rcu ***slotp) { struct radix_tree_node *node, *parent; unsigned long maxindex; void __rcu **slot; restart: parent = NULL; slot = (void __rcu **)&root->rnode; radix_tree_load_root(root, &node, &maxindex); if (index > maxindex) return NULL; while (radix_tree_is_internal_node(node)) { unsigned offset; if (node == RADIX_TREE_RETRY) goto restart; parent = entry_to_node(node); offset = radix_tree_descend(parent, &node, index); slot = parent->slots + offset; if (parent->shift == 0) break; } if (nodep) *nodep = parent; if (slotp) *slotp = slot; return node; } /** * radix_tree_lookup_slot - lookup a slot in a radix tree * @root: radix tree root * @index: index key * * Returns: the slot corresponding to the position @index in the * radix tree @root. This is useful for update-if-exists operations. * * This function can be called under rcu_read_lock iff the slot is not * modified by radix_tree_replace_slot, otherwise it must be called * exclusive from other writers. Any dereference of the slot must be done * using radix_tree_deref_slot. */ void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root, unsigned long index) { void __rcu **slot; if (!__radix_tree_lookup(root, index, NULL, &slot)) return NULL; return slot; } EXPORT_SYMBOL(radix_tree_lookup_slot); /** * radix_tree_lookup - perform lookup operation on a radix tree * @root: radix tree root * @index: index key * * Lookup the item at the position @index in the radix tree @root. * * This function can be called under rcu_read_lock, however the caller * must manage lifetimes of leaf nodes (eg. RCU may also be used to free * them safely). No RCU barriers are required to access or modify the * returned item, however. */ void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index) { return __radix_tree_lookup(root, index, NULL, NULL); } EXPORT_SYMBOL(radix_tree_lookup); static inline void replace_sibling_entries(struct radix_tree_node *node, void __rcu **slot, int count, int exceptional) { #ifdef CONFIG_RADIX_TREE_MULTIORDER unsigned offset = get_slot_offset(node, slot); void *ptr = xa_mk_sibling(offset); while (++offset < RADIX_TREE_MAP_SIZE) { if (rcu_dereference_raw(node->slots[offset]) != ptr) break; if (count < 0) { node->slots[offset] = NULL; node->count--; } node->exceptional += exceptional; } #endif } static void replace_slot(void __rcu **slot, void *item, struct radix_tree_node *node, int count, int exceptional) { if (node && (count || exceptional)) { node->count += count; node->exceptional += exceptional; replace_sibling_entries(node, slot, count, exceptional); } rcu_assign_pointer(*slot, item); } static bool node_tag_get(const struct radix_tree_root *root, const struct radix_tree_node *node, unsigned int tag, unsigned int offset) { if (node) return tag_get(node, tag, offset); return root_tag_get(root, tag); } /* * IDR users want to be able to store NULL in the tree, so if the slot isn't * free, don't adjust the count, even if it's transitioning between NULL and * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still * have empty bits, but it only stores NULL in slots when they're being * deleted. */ static int calculate_count(struct radix_tree_root *root, struct radix_tree_node *node, void __rcu **slot, void *item, void *old) { if (is_idr(root)) { unsigned offset = get_slot_offset(node, slot); bool free = node_tag_get(root, node, IDR_FREE, offset); if (!free) return 0; if (!old) return 1; } return !!item - !!old; } /** * __radix_tree_replace - replace item in a slot * @root: radix tree root * @node: pointer to tree node * @slot: pointer to slot in @node * @item: new item to store in the slot. * @update_node: callback for changing leaf nodes * * For use with __radix_tree_lookup(). Caller must hold tree write locked * across slot lookup and replacement. */ void __radix_tree_replace(struct radix_tree_root *root, struct radix_tree_node *node, void __rcu **slot, void *item, radix_tree_update_node_t update_node) { void *old = rcu_dereference_raw(*slot); int exceptional = !!xa_is_value(item) - !!xa_is_value(old); int count = calculate_count(root, node, slot, item, old); /* * This function supports replacing exceptional entries and * deleting entries, but that needs accounting against the * node unless the slot is root->rnode. */ WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) && (count || exceptional)); replace_slot(slot, item, node, count, exceptional); if (!node) return; if (update_node) update_node(node); delete_node(root, node, update_node); } /** * radix_tree_replace_slot - replace item in a slot * @root: radix tree root * @slot: pointer to slot * @item: new item to store in the slot. * * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(), * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked * across slot lookup and replacement. * * NOTE: This cannot be used to switch between non-entries (empty slots), * regular entries, and exceptional entries, as that requires accounting * inside the radix tree node. When switching from one type of entry or * deleting, use __radix_tree_lookup() and __radix_tree_replace() or * radix_tree_iter_replace(). */ void radix_tree_replace_slot(struct radix_tree_root *root, void __rcu **slot, void *item) { __radix_tree_replace(root, NULL, slot, item, NULL); } EXPORT_SYMBOL(radix_tree_replace_slot); /** * radix_tree_iter_replace - replace item in a slot * @root: radix tree root * @slot: pointer to slot * @item: new item to store in the slot. * * For use with radix_tree_split() and radix_tree_for_each_slot(). * Caller must hold tree write locked across split and replacement. */ void radix_tree_iter_replace(struct radix_tree_root *root, const struct radix_tree_iter *iter, void __rcu **slot, void *item) { __radix_tree_replace(root, iter->node, slot, item, NULL); } #ifdef CONFIG_RADIX_TREE_MULTIORDER /** * radix_tree_join - replace multiple entries with one multiorder entry * @root: radix tree root * @index: an index inside the new entry * @order: order of the new entry * @item: new entry * * Call this function to replace several entries with one larger entry. * The existing entries are presumed to not need freeing as a result of * this call. * * The replacement entry will have all the tags set on it that were set * on any of the entries it is replacing. */ int radix_tree_join(struct radix_tree_root *root, unsigned long index, unsigned order, void *item) { struct radix_tree_node *node; void __rcu **slot; int error; BUG_ON(radix_tree_is_internal_node(item)); error = __radix_tree_create(root, index, order, &node, &slot); if (!error) error = insert_entries(node, slot, item, order, true); if (error > 0) error = 0; return error; } /** * radix_tree_split - Split an entry into smaller entries * @root: radix tree root * @index: An index within the large entry * @order: Order of new entries * * Call this function as the first step in replacing a multiorder entry * with several entries of lower order. After this function returns, * loop over the relevant portion of the tree using radix_tree_for_each_slot() * and call radix_tree_iter_replace() to set up each new entry. * * The tags from this entry are replicated to all the new entries. * * The radix tree should be locked against modification during the entire * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which * should prompt RCU walkers to restart the lookup from the root. */ int radix_tree_split(struct radix_tree_root *root, unsigned long index, unsigned order) { struct radix_tree_node *parent, *node, *child; void __rcu **slot; unsigned int offset, end; unsigned n, tag, tags = 0; gfp_t gfp = root_gfp_mask(root); if (!__radix_tree_lookup(root, index, &parent, &slot)) return -ENOENT; if (!parent) return -ENOENT; offset = get_slot_offset(parent, slot); for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) if (tag_get(parent, tag, offset)) tags |= 1 << tag; for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) { if (!xa_is_sibling(rcu_dereference_raw(parent->slots[end]))) break; for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) if (tags & (1 << tag)) tag_set(parent, tag, end); /* rcu_assign_pointer ensures tags are set before RETRY */ rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY); } rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY); parent->exceptional -= (end - offset); if (order == parent->shift) return 0; if (order > parent->shift) { while (offset < end) offset += insert_entries(parent, &parent->slots[offset], RADIX_TREE_RETRY, order, true); return 0; } node = parent; for (;;) { if (node->shift > order) { child = radix_tree_node_alloc(gfp, node, root, node->shift - RADIX_TREE_MAP_SHIFT, offset, 0, 0); if (!child) goto nomem; if (node != parent) { node->count++; rcu_assign_pointer(node->slots[offset], node_to_entry(child)); for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) if (tags & (1 << tag)) tag_set(node, tag, offset); } node = child; offset = 0; continue; } n = insert_entries(node, &node->slots[offset], RADIX_TREE_RETRY, order, false); BUG_ON(n > RADIX_TREE_MAP_SIZE); for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) if (tags & (1 << tag)) tag_set(node, tag, offset); offset += n; while (offset == RADIX_TREE_MAP_SIZE) { if (node == parent) break; offset = node->offset; child = node; node = node->parent; rcu_assign_pointer(node->slots[offset], node_to_entry(child)); offset++; } if ((node == parent) && (offset == end)) return 0; } nomem: /* Shouldn't happen; did user forget to preload? */ /* TODO: free all the allocated nodes */ WARN_ON(1); return -ENOMEM; } #endif static void node_tag_set(struct radix_tree_root *root, struct radix_tree_node *node, unsigned int tag, unsigned int offset) { while (node) { if (tag_get(node, tag, offset)) return; tag_set(node, tag, offset); offset = node->offset; node = node->parent; } if (!root_tag_get(root, tag)) root_tag_set(root, tag); } /** * radix_tree_tag_set - set a tag on a radix tree node * @root: radix tree root * @index: index key * @tag: tag index * * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) * corresponding to @index in the radix tree. From * the root all the way down to the leaf node. * * Returns the address of the tagged item. Setting a tag on a not-present * item is a bug. */ void *radix_tree_tag_set(struct radix_tree_root *root, unsigned long index, unsigned int tag) { struct radix_tree_node *node, *parent; unsigned long maxindex; radix_tree_load_root(root, &node, &maxindex); BUG_ON(index > maxindex); while (radix_tree_is_internal_node(node)) { unsigned offset; parent = entry_to_node(node); offset = radix_tree_descend(parent, &node, index); BUG_ON(!node); if (!tag_get(parent, tag, offset)) tag_set(parent, tag, offset); } /* set the root's tag bit */ if (!root_tag_get(root, tag)) root_tag_set(root, tag); return node; } EXPORT_SYMBOL(radix_tree_tag_set); /** * radix_tree_iter_tag_set - set a tag on the current iterator entry * @root: radix tree root * @iter: iterator state * @tag: tag to set */ void radix_tree_iter_tag_set(struct radix_tree_root *root, const struct radix_tree_iter *iter, unsigned int tag) { node_tag_set(root, iter->node, tag, iter_offset(iter)); } static void node_tag_clear(struct radix_tree_root *root, struct radix_tree_node *node, unsigned int tag, unsigned int offset) { while (node) { if (!tag_get(node, tag, offset)) return; tag_clear(node, tag, offset); if (any_tag_set(node, tag)) return; offset = node->offset; node = node->parent; } /* clear the root's tag bit */ if (root_tag_get(root, tag)) root_tag_clear(root, tag); } /** * radix_tree_tag_clear - clear a tag on a radix tree node * @root: radix tree root * @index: index key * @tag: tag index * * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) * corresponding to @index in the radix tree. If this causes * the leaf node to have no tags set then clear the tag in the * next-to-leaf node, etc. * * Returns the address of the tagged item on success, else NULL. ie: * has the same return value and semantics as radix_tree_lookup(). */ void *radix_tree_tag_clear(struct radix_tree_root *root, unsigned long index, unsigned int tag) { struct radix_tree_node *node, *parent; unsigned long maxindex; int uninitialized_var(offset); radix_tree_load_root(root, &node, &maxindex); if (index > maxindex) return NULL; parent = NULL; while (radix_tree_is_internal_node(node)) { parent = entry_to_node(node); offset = radix_tree_descend(parent, &node, index); } if (node) node_tag_clear(root, parent, tag, offset); return node; } EXPORT_SYMBOL(radix_tree_tag_clear); /** * radix_tree_iter_tag_clear - clear a tag on the current iterator entry * @root: radix tree root * @iter: iterator state * @tag: tag to clear */ void radix_tree_iter_tag_clear(struct radix_tree_root *root, const struct radix_tree_iter *iter, unsigned int tag) { node_tag_clear(root, iter->node, tag, iter_offset(iter)); } /** * radix_tree_tag_get - get a tag on a radix tree node * @root: radix tree root * @index: index key * @tag: tag index (< RADIX_TREE_MAX_TAGS) * * Return values: * * 0: tag not present or not set * 1: tag set * * Note that the return value of this function may not be relied on, even if * the RCU lock is held, unless tag modification and node deletion are excluded * from concurrency. */ int radix_tree_tag_get(const struct radix_tree_root *root, unsigned long index, unsigned int tag) { struct radix_tree_node *node, *parent; unsigned long maxindex; if (!root_tag_get(root, tag)) return 0; radix_tree_load_root(root, &node, &maxindex); if (index > maxindex) return 0; while (radix_tree_is_internal_node(node)) { unsigned offset; parent = entry_to_node(node); offset = radix_tree_descend(parent, &node, index); if (!tag_get(parent, tag, offset)) return 0; if (node == RADIX_TREE_RETRY) break; } return 1; } EXPORT_SYMBOL(radix_tree_tag_get); static inline void __set_iter_shift(struct radix_tree_iter *iter, unsigned int shift) { #ifdef CONFIG_RADIX_TREE_MULTIORDER iter->shift = shift; #endif } /* Construct iter->tags bit-mask from node->tags[tag] array */ static void set_iter_tags(struct radix_tree_iter *iter, struct radix_tree_node *node, unsigned offset, unsigned tag) { unsigned tag_long = offset / BITS_PER_LONG; unsigned tag_bit = offset % BITS_PER_LONG; if (!node) { iter->tags = 1; return; } iter->tags = node->tags[tag][tag_long] >> tag_bit; /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ if (tag_long < RADIX_TREE_TAG_LONGS - 1) { /* Pick tags from next element */ if (tag_bit) iter->tags |= node->tags[tag][tag_long + 1] << (BITS_PER_LONG - tag_bit); /* Clip chunk size, here only BITS_PER_LONG tags */ iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG); } } #ifdef CONFIG_RADIX_TREE_MULTIORDER static void __rcu **skip_siblings(struct radix_tree_node **nodep, void __rcu **slot, struct radix_tree_iter *iter) { while (iter->index < iter->next_index) { *nodep = rcu_dereference_raw(*slot); if (*nodep && !xa_is_sibling(*nodep)) return slot; slot++; iter->index = __radix_tree_iter_add(iter, 1); iter->tags >>= 1; } *nodep = NULL; return NULL; } void __rcu **__radix_tree_next_slot(void __rcu **slot, struct radix_tree_iter *iter, unsigned flags) { unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; struct radix_tree_node *node; slot = skip_siblings(&node, slot, iter); while (radix_tree_is_internal_node(node)) { unsigned offset; unsigned long next_index; if (node == RADIX_TREE_RETRY) return slot; node = entry_to_node(node); iter->node = node; iter->shift = node->shift; if (flags & RADIX_TREE_ITER_TAGGED) { offset = radix_tree_find_next_bit(node, tag, 0); if (offset == RADIX_TREE_MAP_SIZE) return NULL; slot = &node->slots[offset]; iter->index = __radix_tree_iter_add(iter, offset); set_iter_tags(iter, node, offset, tag); node = rcu_dereference_raw(*slot); } else { offset = 0; slot = &node->slots[0]; for (;;) { node = rcu_dereference_raw(*slot); if (node) break; slot++; offset++; if (offset == RADIX_TREE_MAP_SIZE) return NULL; } iter->index = __radix_tree_iter_add(iter, offset); } if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0)) goto none; next_index = (iter->index | shift_maxindex(iter->shift)) + 1; if (next_index < iter->next_index) iter->next_index = next_index; } return slot; none: iter->next_index = 0; return NULL; } EXPORT_SYMBOL(__radix_tree_next_slot); #else static void __rcu **skip_siblings(struct radix_tree_node **nodep, void __rcu **slot, struct radix_tree_iter *iter) { return slot; } #endif void __rcu **radix_tree_iter_resume(void __rcu **slot, struct radix_tree_iter *iter) { struct radix_tree_node *node; slot++; iter->index = __radix_tree_iter_add(iter, 1); skip_siblings(&node, slot, iter); iter->next_index = iter->index; iter->tags = 0; return NULL; } EXPORT_SYMBOL(radix_tree_iter_resume); /** * radix_tree_next_chunk - find next chunk of slots for iteration * * @root: radix tree root * @iter: iterator state * @flags: RADIX_TREE_ITER_* flags and tag index * Returns: pointer to chunk first slot, or NULL if iteration is over */ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root, struct radix_tree_iter *iter, unsigned flags) { unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; struct radix_tree_node *node, *child; unsigned long index, offset, maxindex; if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) return NULL; /* * Catch next_index overflow after ~0UL. iter->index never overflows * during iterating; it can be zero only at the beginning. * And we cannot overflow iter->next_index in a single step, * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. * * This condition also used by radix_tree_next_slot() to stop * contiguous iterating, and forbid switching to the next chunk. */ index = iter->next_index; if (!index && iter->index) return NULL; restart: radix_tree_load_root(root, &child, &maxindex); if (index > maxindex) return NULL; if (!child) return NULL; if (!radix_tree_is_internal_node(child)) { /* Single-slot tree */ iter->index = index; iter->next_index = maxindex + 1; iter->tags = 1; iter->node = NULL; __set_iter_shift(iter, 0); return (void __rcu **)&root->rnode; } do { node = entry_to_node(child); offset = radix_tree_descend(node, &child, index); if ((flags & RADIX_TREE_ITER_TAGGED) ? !tag_get(node, tag, offset) : !child) { /* Hole detected */ if (flags & RADIX_TREE_ITER_CONTIG) return NULL; if (flags & RADIX_TREE_ITER_TAGGED) offset = radix_tree_find_next_bit(node, tag, offset + 1); else while (++offset < RADIX_TREE_MAP_SIZE) { void *slot = rcu_dereference_raw( node->slots[offset]); if (xa_is_sibling(slot)) continue; if (slot) break; } index &= ~node_maxindex(node); index += offset << node->shift; /* Overflow after ~0UL */ if (!index) return NULL; if (offset == RADIX_TREE_MAP_SIZE) goto restart; child = rcu_dereference_raw(node->slots[offset]); } if (!child) goto restart; if (child == RADIX_TREE_RETRY) break; } while (node->shift && radix_tree_is_internal_node(child)); /* Update the iterator state */ iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); iter->next_index = (index | node_maxindex(node)) + 1; iter->node = node; __set_iter_shift(iter, node->shift); if (flags & RADIX_TREE_ITER_TAGGED) set_iter_tags(iter, node, offset, tag); return node->slots + offset; } EXPORT_SYMBOL(radix_tree_next_chunk); /** * radix_tree_gang_lookup - perform multiple lookup on a radix tree * @root: radix tree root * @results: where the results of the lookup are placed * @first_index: start the lookup from this key * @max_items: place up to this many items at *results * * Performs an index-ascending scan of the tree for present items. Places * them at *@results and returns the number of items which were placed at * *@results. * * The implementation is naive. * * Like radix_tree_lookup, radix_tree_gang_lookup may be called under * rcu_read_lock. In this case, rather than the returned results being * an atomic snapshot of the tree at a single point in time, the * semantics of an RCU protected gang lookup are as though multiple * radix_tree_lookups have been issued in individual locks, and results * stored in 'results'. */ unsigned int radix_tree_gang_lookup(const struct radix_tree_root *root, void **results, unsigned long first_index, unsigned int max_items) { struct radix_tree_iter iter; void __rcu **slot; unsigned int ret = 0; if (unlikely(!max_items)) return 0; radix_tree_for_each_slot(slot, root, &iter, first_index) { results[ret] = rcu_dereference_raw(*slot); if (!results[ret]) continue; if (radix_tree_is_internal_node(results[ret])) { slot = radix_tree_iter_retry(&iter); continue; } if (++ret == max_items) break; } return ret; } EXPORT_SYMBOL(radix_tree_gang_lookup); /** * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree * @root: radix tree root * @results: where the results of the lookup are placed * @indices: where their indices should be placed (but usually NULL) * @first_index: start the lookup from this key * @max_items: place up to this many items at *results * * Performs an index-ascending scan of the tree for present items. Places * their slots at *@results and returns the number of items which were * placed at *@results. * * The implementation is naive. * * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must * be dereferenced with radix_tree_deref_slot, and if using only RCU * protection, radix_tree_deref_slot may fail requiring a retry. */ unsigned int radix_tree_gang_lookup_slot(const struct radix_tree_root *root, void __rcu ***results, unsigned long *indices, unsigned long first_index, unsigned int max_items) { struct radix_tree_iter iter; void __rcu **slot; unsigned int ret = 0; if (unlikely(!max_items)) return 0; radix_tree_for_each_slot(slot, root, &iter, first_index) { results[ret] = slot; if (indices) indices[ret] = iter.index; if (++ret == max_items) break; } return ret; } EXPORT_SYMBOL(radix_tree_gang_lookup_slot); /** * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree * based on a tag * @root: radix tree root * @results: where the results of the lookup are placed * @first_index: start the lookup from this key * @max_items: place up to this many items at *results * @tag: the tag index (< RADIX_TREE_MAX_TAGS) * * Performs an index-ascending scan of the tree for present items which * have the tag indexed by @tag set. Places the items at *@results and * returns the number of items which were placed at *@results. */ unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results, unsigned long first_index, unsigned int max_items, unsigned int tag) { struct radix_tree_iter iter; void __rcu **slot; unsigned int ret = 0; if (unlikely(!max_items)) return 0; radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { results[ret] = rcu_dereference_raw(*slot); if (!results[ret]) continue; if (radix_tree_is_internal_node(results[ret])) { slot = radix_tree_iter_retry(&iter); continue; } if (++ret == max_items) break; } return ret; } EXPORT_SYMBOL(radix_tree_gang_lookup_tag); /** * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a * radix tree based on a tag * @root: radix tree root * @results: where the results of the lookup are placed * @first_index: start the lookup from this key * @max_items: place up to this many items at *results * @tag: the tag index (< RADIX_TREE_MAX_TAGS) * * Performs an index-ascending scan of the tree for present items which * have the tag indexed by @tag set. Places the slots at *@results and * returns the number of slots which were placed at *@results. */ unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root, void __rcu ***results, unsigned long first_index, unsigned int max_items, unsigned int tag) { struct radix_tree_iter iter; void __rcu **slot; unsigned int ret = 0; if (unlikely(!max_items)) return 0; radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { results[ret] = slot; if (++ret == max_items) break; } return ret; } EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); /** * __radix_tree_delete_node - try to free node after clearing a slot * @root: radix tree root * @node: node containing @index * @update_node: callback for changing leaf nodes * * After clearing the slot at @index in @node from radix tree * rooted at @root, call this function to attempt freeing the * node and shrinking the tree. */ void __radix_tree_delete_node(struct radix_tree_root *root, struct radix_tree_node *node, radix_tree_update_node_t update_node) { delete_node(root, node, update_node); } static bool __radix_tree_delete(struct radix_tree_root *root, struct radix_tree_node *node, void __rcu **slot) { void *old = rcu_dereference_raw(*slot); int exceptional = xa_is_value(old) ? -1 : 0; unsigned offset = get_slot_offset(node, slot); int tag; if (is_idr(root)) node_tag_set(root, node, IDR_FREE, offset); else for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) node_tag_clear(root, node, tag, offset); replace_slot(slot, NULL, node, -1, exceptional); return node && delete_node(root, node, NULL); } /** * radix_tree_iter_delete - delete the entry at this iterator position * @root: radix tree root * @iter: iterator state * @slot: pointer to slot * * Delete the entry at the position currently pointed to by the iterator. * This may result in the current node being freed; if it is, the iterator * is advanced so that it will not reference the freed memory. This * function may be called without any locking if there are no other threads * which can access this tree. */ void radix_tree_iter_delete(struct radix_tree_root *root, struct radix_tree_iter *iter, void __rcu **slot) { if (__radix_tree_delete(root, iter->node, slot)) iter->index = iter->next_index; } EXPORT_SYMBOL(radix_tree_iter_delete); /** * radix_tree_delete_item - delete an item from a radix tree * @root: radix tree root * @index: index key * @item: expected item * * Remove @item at @index from the radix tree rooted at @root. * * Return: the deleted entry, or %NULL if it was not present * or the entry at the given @index was not @item. */ void *radix_tree_delete_item(struct radix_tree_root *root, unsigned long index, void *item) { struct radix_tree_node *node = NULL; void __rcu **slot = NULL; void *entry; entry = __radix_tree_lookup(root, index, &node, &slot); if (!slot) return NULL; if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE, get_slot_offset(node, slot)))) return NULL; if (item && entry != item) return NULL; __radix_tree_delete(root, node, slot); return entry; } EXPORT_SYMBOL(radix_tree_delete_item); /** * radix_tree_delete - delete an entry from a radix tree * @root: radix tree root * @index: index key * * Remove the entry at @index from the radix tree rooted at @root. * * Return: The deleted entry, or %NULL if it was not present. */ void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) { return radix_tree_delete_item(root, index, NULL); } EXPORT_SYMBOL(radix_tree_delete); void radix_tree_clear_tags(struct radix_tree_root *root, struct radix_tree_node *node, void __rcu **slot) { if (node) { unsigned int tag, offset = get_slot_offset(node, slot); for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) node_tag_clear(root, node, tag, offset); } else { root_tag_clear_all(root); } } /** * radix_tree_tagged - test whether any items in the tree are tagged * @root: radix tree root * @tag: tag to test */ int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag) { return root_tag_get(root, tag); } EXPORT_SYMBOL(radix_tree_tagged); /** * idr_preload - preload for idr_alloc() * @gfp_mask: allocation mask to use for preloading * * Preallocate memory to use for the next call to idr_alloc(). This function * returns with preemption disabled. It will be enabled by idr_preload_end(). */ void idr_preload(gfp_t gfp_mask) { if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE)) preempt_disable(); } EXPORT_SYMBOL(idr_preload); int ida_pre_get(struct ida *ida, gfp_t gfp) { /* * The IDA API has no preload_end() equivalent. Instead, * ida_get_new() can return -EAGAIN, prompting the caller * to return to the ida_pre_get() step. */ if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE)) preempt_enable(); if (!this_cpu_read(ida_bitmap)) { struct ida_bitmap *bitmap = kzalloc(sizeof(*bitmap), gfp); if (!bitmap) return 0; if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap)) kfree(bitmap); } return 1; } void __rcu **idr_get_free(struct radix_tree_root *root, struct radix_tree_iter *iter, gfp_t gfp, unsigned long max) { struct radix_tree_node *node = NULL, *child; void __rcu **slot = (void __rcu **)&root->rnode; unsigned long maxindex, start = iter->next_index; unsigned int shift, offset = 0; grow: shift = radix_tree_load_root(root, &child, &maxindex); if (!radix_tree_tagged(root, IDR_FREE)) start = max(start, maxindex + 1); if (start > max) return ERR_PTR(-ENOSPC); if (start > maxindex) { int error = radix_tree_extend(root, gfp, start, shift); if (error < 0) return ERR_PTR(error); shift = error; child = rcu_dereference_raw(root->rnode); } if (start == 0 && shift == 0) shift = RADIX_TREE_MAP_SHIFT; while (shift) { shift -= RADIX_TREE_MAP_SHIFT; if (child == NULL) { /* Have to add a child node. */ child = radix_tree_node_alloc(gfp, node, root, shift, offset, 0, 0); if (!child) return ERR_PTR(-ENOMEM); all_tag_set(child, IDR_FREE); rcu_assign_pointer(*slot, node_to_entry(child)); if (node) node->count++; } else if (!radix_tree_is_internal_node(child)) break; node = entry_to_node(child); offset = radix_tree_descend(node, &child, start); if (!tag_get(node, IDR_FREE, offset)) { offset = radix_tree_find_next_bit(node, IDR_FREE, offset + 1); start = next_index(start, node, offset); if (start > max) return ERR_PTR(-ENOSPC); while (offset == RADIX_TREE_MAP_SIZE) { offset = node->offset + 1; node = node->parent; if (!node) goto grow; shift = node->shift; } child = rcu_dereference_raw(node->slots[offset]); } slot = &node->slots[offset]; } iter->index = start; if (node) iter->next_index = 1 + min(max, (start | node_maxindex(node))); else iter->next_index = 1; iter->node = node; __set_iter_shift(iter, shift); set_iter_tags(iter, node, offset, IDR_FREE); return slot; } /** * idr_destroy - release all internal memory from an IDR * @idr: idr handle * * After this function is called, the IDR is empty, and may be reused or * the data structure containing it may be freed. * * A typical clean-up sequence for objects stored in an idr tree will use * idr_for_each() to free all objects, if necessary, then idr_destroy() to * free the memory used to keep track of those objects. */ void idr_destroy(struct idr *idr) { struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode); if (radix_tree_is_internal_node(node)) radix_tree_free_nodes(node); idr->idr_rt.rnode = NULL; root_tag_set(&idr->idr_rt, IDR_FREE); } EXPORT_SYMBOL(idr_destroy); static void radix_tree_node_ctor(void *arg) { struct radix_tree_node *node = arg; memset(node, 0, sizeof(*node)); INIT_LIST_HEAD(&node->private_list); } static __init unsigned long __maxindex(unsigned int height) { unsigned int width = height * RADIX_TREE_MAP_SHIFT; int shift = RADIX_TREE_INDEX_BITS - width; if (shift < 0) return ~0UL; if (shift >= BITS_PER_LONG) return 0UL; return ~0UL >> shift; } static __init void radix_tree_init_maxnodes(void) { unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; unsigned int i, j; for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) height_to_maxindex[i] = __maxindex(i); for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { for (j = i; j > 0; j--) height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; } } static int radix_tree_cpu_dead(unsigned int cpu) { struct radix_tree_preload *rtp; struct radix_tree_node *node; /* Free per-cpu pool of preloaded nodes */ rtp = &per_cpu(radix_tree_preloads, cpu); while (rtp->nr) { node = rtp->nodes; rtp->nodes = node->parent; kmem_cache_free(radix_tree_node_cachep, node); rtp->nr--; } kfree(per_cpu(ida_bitmap, cpu)); per_cpu(ida_bitmap, cpu) = NULL; return 0; } void __init radix_tree_init(void) { int ret; BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32); BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK); BUILD_BUG_ON(XA_CHUNK_SIZE > 255); radix_tree_node_cachep = kmem_cache_create("radix_tree_node", sizeof(struct radix_tree_node), 0, SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, radix_tree_node_ctor); radix_tree_init_maxnodes(); ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead", NULL, radix_tree_cpu_dead); WARN_ON(ret < 0); }