Commit Graph

14 Commits

Author SHA1 Message Date
Miklos Szeredi c8ffd8bcdd vfs: add faccessat2 syscall
POSIX defines faccessat() as having a fourth "flags" argument, while the
linux syscall doesn't have it.  Glibc tries to emulate AT_EACCESS and
AT_SYMLINK_NOFOLLOW, but AT_EACCESS emulation is broken.

Add a new faccessat(2) syscall with the added flags argument and implement
both flags.

The value of AT_EACCESS is defined in glibc headers to be the same as
AT_REMOVEDIR.  Use this value for the kernel interface as well, together
with the explanatory comment.

Also add AT_EMPTY_PATH support, which is not documented by POSIX, but can
be useful and is trivial to implement.

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-05-14 16:44:25 +02:00
Linus Torvalds 83fa805bcb threads-v5.6
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXjFo8wAKCRCRxhvAZXjc
 omaGAQDVwCHQekqxp2eC8EJH4Pkt+Bn1BLrA25stlTo93YBPHgEAsPVUCRNcrZAl
 VncYmxCfpt3Yu0S/MTVXu5xrRiIXPQk=
 =uqTN
 -----END PGP SIGNATURE-----

Merge tag 'threads-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull thread management updates from Christian Brauner:
 "Sargun Dhillon over the last cycle has worked on the pidfd_getfd()
  syscall.

  This syscall allows for the retrieval of file descriptors of a process
  based on its pidfd. A task needs to have ptrace_may_access()
  permissions with PTRACE_MODE_ATTACH_REALCREDS (suggested by Oleg and
  Andy) on the target.

  One of the main use-cases is in combination with seccomp's user
  notification feature. As a reminder, seccomp's user notification
  feature was made available in v5.0. It allows a task to retrieve a
  file descriptor for its seccomp filter. The file descriptor is usually
  handed of to a more privileged supervising process. The supervisor can
  then listen for syscall events caught by the seccomp filter of the
  supervisee and perform actions in lieu of the supervisee, usually
  emulating syscalls. pidfd_getfd() is needed to expand its uses.

  There are currently two major users that wait on pidfd_getfd() and one
  future user:

   - Netflix, Sargun said, is working on a service mesh where users
     should be able to connect to a dns-based VIP. When a user connects
     to e.g. 1.2.3.4:80 that runs e.g. service "foo" they will be
     redirected to an envoy process. This service mesh uses seccomp user
     notifications and pidfd to intercept all connect calls and instead
     of connecting them to 1.2.3.4:80 connects them to e.g.
     127.0.0.1:8080.

   - LXD uses the seccomp notifier heavily to intercept and emulate
     mknod() and mount() syscalls for unprivileged containers/processes.
     With pidfd_getfd() more uses-cases e.g. bridging socket connections
     will be possible.

   - The patchset has also seen some interest from the browser corner.
     Right now, Firefox is using a SECCOMP_RET_TRAP sandbox managed by a
     broker process. In the future glibc will start blocking all signals
     during dlopen() rendering this type of sandbox impossible. Hence,
     in the future Firefox will switch to a seccomp-user-nofication
     based sandbox which also makes use of file descriptor retrieval.
     The thread for this can be found at
     https://sourceware.org/ml/libc-alpha/2019-12/msg00079.html

  With pidfd_getfd() it is e.g. possible to bridge socket connections
  for the supervisee (binding to a privileged port) and taking actions
  on file descriptors on behalf of the supervisee in general.

  Sargun's first version was using an ioctl on pidfds but various people
  pushed for it to be a proper syscall which he duely implemented as
  well over various review cycles. Selftests are of course included.
  I've also added instructions how to deal with merge conflicts below.

  There's also a small fix coming from the kernel mentee project to
  correctly annotate struct sighand_struct with __rcu to fix various
  sparse warnings. We've received a few more such fixes and even though
  they are mostly trivial I've decided to postpone them until after -rc1
  since they came in rather late and I don't want to risk introducing
  build warnings.

  Finally, there's a new prctl() command PR_{G,S}ET_IO_FLUSHER which is
  needed to avoid allocation recursions triggerable by storage drivers
  that have userspace parts that run in the IO path (e.g. dm-multipath,
  iscsi, etc). These allocation recursions deadlock the device.

  The new prctl() allows such privileged userspace components to avoid
  allocation recursions by setting the PF_MEMALLOC_NOIO and
  PF_LESS_THROTTLE flags. The patch carries the necessary acks from the
  relevant maintainers and is routed here as part of prctl()
  thread-management."

* tag 'threads-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
  prctl: PR_{G,S}ET_IO_FLUSHER to support controlling memory reclaim
  sched.h: Annotate sighand_struct with __rcu
  test: Add test for pidfd getfd
  arch: wire up pidfd_getfd syscall
  pid: Implement pidfd_getfd syscall
  vfs, fdtable: Add fget_task helper
2020-01-29 19:38:34 -08:00
Aleksa Sarai fddb5d430a open: introduce openat2(2) syscall
/* Background. */
For a very long time, extending openat(2) with new features has been
incredibly frustrating. This stems from the fact that openat(2) is
possibly the most famous counter-example to the mantra "don't silently
accept garbage from userspace" -- it doesn't check whether unknown flags
are present[1].

This means that (generally) the addition of new flags to openat(2) has
been fraught with backwards-compatibility issues (O_TMPFILE has to be
defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old
kernels gave errors, since it's insecure to silently ignore the
flag[2]). All new security-related flags therefore have a tough road to
being added to openat(2).

Userspace also has a hard time figuring out whether a particular flag is
supported on a particular kernel. While it is now possible with
contemporary kernels (thanks to [3]), older kernels will expose unknown
flag bits through fcntl(F_GETFL). Giving a clear -EINVAL during
openat(2) time matches modern syscall designs and is far more
fool-proof.

In addition, the newly-added path resolution restriction LOOKUP flags
(which we would like to expose to user-space) don't feel related to the
pre-existing O_* flag set -- they affect all components of path lookup.
We'd therefore like to add a new flag argument.

Adding a new syscall allows us to finally fix the flag-ignoring problem,
and we can make it extensible enough so that we will hopefully never
need an openat3(2).

/* Syscall Prototype. */
  /*
   * open_how is an extensible structure (similar in interface to
   * clone3(2) or sched_setattr(2)). The size parameter must be set to
   * sizeof(struct open_how), to allow for future extensions. All future
   * extensions will be appended to open_how, with their zero value
   * acting as a no-op default.
   */
  struct open_how { /* ... */ };

  int openat2(int dfd, const char *pathname,
              struct open_how *how, size_t size);

/* Description. */
The initial version of 'struct open_how' contains the following fields:

  flags
    Used to specify openat(2)-style flags. However, any unknown flag
    bits or otherwise incorrect flag combinations (like O_PATH|O_RDWR)
    will result in -EINVAL. In addition, this field is 64-bits wide to
    allow for more O_ flags than currently permitted with openat(2).

  mode
    The file mode for O_CREAT or O_TMPFILE.

    Must be set to zero if flags does not contain O_CREAT or O_TMPFILE.

  resolve
    Restrict path resolution (in contrast to O_* flags they affect all
    path components). The current set of flags are as follows (at the
    moment, all of the RESOLVE_ flags are implemented as just passing
    the corresponding LOOKUP_ flag).

    RESOLVE_NO_XDEV       => LOOKUP_NO_XDEV
    RESOLVE_NO_SYMLINKS   => LOOKUP_NO_SYMLINKS
    RESOLVE_NO_MAGICLINKS => LOOKUP_NO_MAGICLINKS
    RESOLVE_BENEATH       => LOOKUP_BENEATH
    RESOLVE_IN_ROOT       => LOOKUP_IN_ROOT

open_how does not contain an embedded size field, because it is of
little benefit (userspace can figure out the kernel open_how size at
runtime fairly easily without it). It also only contains u64s (even
though ->mode arguably should be a u16) to avoid having padding fields
which are never used in the future.

Note that as a result of the new how->flags handling, O_PATH|O_TMPFILE
is no longer permitted for openat(2). As far as I can tell, this has
always been a bug and appears to not be used by userspace (and I've not
seen any problems on my machines by disallowing it). If it turns out
this breaks something, we can special-case it and only permit it for
openat(2) but not openat2(2).

After input from Florian Weimer, the new open_how and flag definitions
are inside a separate header from uapi/linux/fcntl.h, to avoid problems
that glibc has with importing that header.

/* Testing. */
In a follow-up patch there are over 200 selftests which ensure that this
syscall has the correct semantics and will correctly handle several
attack scenarios.

In addition, I've written a userspace library[4] which provides
convenient wrappers around openat2(RESOLVE_IN_ROOT) (this is necessary
because no other syscalls support RESOLVE_IN_ROOT, and thus lots of care
must be taken when using RESOLVE_IN_ROOT'd file descriptors with other
syscalls). During the development of this patch, I've run numerous
verification tests using libpathrs (showing that the API is reasonably
usable by userspace).

/* Future Work. */
Additional RESOLVE_ flags have been suggested during the review period.
These can be easily implemented separately (such as blocking auto-mount
during resolution).

Furthermore, there are some other proposed changes to the openat(2)
interface (the most obvious example is magic-link hardening[5]) which
would be a good opportunity to add a way for userspace to restrict how
O_PATH file descriptors can be re-opened.

Another possible avenue of future work would be some kind of
CHECK_FIELDS[6] flag which causes the kernel to indicate to userspace
which openat2(2) flags and fields are supported by the current kernel
(to avoid userspace having to go through several guesses to figure it
out).

[1]: https://lwn.net/Articles/588444/
[2]: https://lore.kernel.org/lkml/CA+55aFyyxJL1LyXZeBsf2ypriraj5ut1XkNDsunRBqgVjZU_6Q@mail.gmail.com
[3]: commit 629e014bb8 ("fs: completely ignore unknown open flags")
[4]: https://sourceware.org/bugzilla/show_bug.cgi?id=17523
[5]: https://lore.kernel.org/lkml/20190930183316.10190-2-cyphar@cyphar.com/
[6]: https://youtu.be/ggD-eb3yPVs

Suggested-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-01-18 09:19:18 -05:00
Sargun Dhillon 9a2cef09c8
arch: wire up pidfd_getfd syscall
This wires up the pidfd_getfd syscall for all architectures.

Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20200107175927.4558-4-sargun@sargun.me
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-01-13 21:49:47 +01:00
Christian Brauner 1a271a68e0
arch: mark syscall number 435 reserved for clone3
A while ago Arnd made it possible to give new system calls the same
syscall number on all architectures (except alpha). To not break this
nice new feature let's mark 435 for clone3 as reserved on all
architectures that do not yet implement it.
Even if an architecture does not plan to implement it this ensures that
new system calls coming after clone3 will have the same number on all
architectures.

Signed-off-by: Christian Brauner <christian@brauner.io>
Cc: linux-arch@vger.kernel.org
Cc: linux-alpha@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-mips@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Link: https://lore.kernel.org/r/20190714192205.27190-2-christian@brauner.io
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Christian Brauner <christian@brauner.io>
2019-07-15 00:39:33 +02:00
Christian Brauner 7615d9e178
arch: wire-up pidfd_open()
This wires up the pidfd_open() syscall into all arches at once.

Signed-off-by: Christian Brauner <christian@brauner.io>
Reviewed-by: David Howells <dhowells@redhat.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jannh@google.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-api@vger.kernel.org
Cc: linux-alpha@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-mips@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linux-arch@vger.kernel.org
Cc: x86@kernel.org
2019-06-28 12:17:55 +02:00
David Howells d8076bdb56 uapi: Wire up the mount API syscalls on non-x86 arches [ver #2]
Wire up the mount API syscalls on non-x86 arches.

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-05-16 12:23:45 -04:00
Arnd Bergmann 39036cd272 arch: add pidfd and io_uring syscalls everywhere
Add the io_uring and pidfd_send_signal system calls to all architectures.

These system calls are designed to handle both native and compat tasks,
so all entries are the same across architectures, only arm-compat and
the generic tale still use an old format.

Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> (s390)
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-04-15 16:31:17 +02:00
Arnd Bergmann 48166e6ea4 y2038: add 64-bit time_t syscalls to all 32-bit architectures
This adds 21 new system calls on each ABI that has 32-bit time_t
today. All of these have the exact same semantics as their existing
counterparts, and the new ones all have macro names that end in 'time64'
for clarification.

This gets us to the point of being able to safely use a C library
that has 64-bit time_t in user space. There are still a couple of
loose ends to tie up in various areas of the code, but this is the
big one, and should be entirely uncontroversial at this point.

In particular, there are four system calls (getitimer, setitimer,
waitid, and getrusage) that don't have a 64-bit counterpart yet,
but these can all be safely implemented in the C library by wrapping
around the existing system calls because the 32-bit time_t they
pass only counts elapsed time, not time since the epoch. They
will be dealt with later.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-07 00:13:28 +01:00
Arnd Bergmann b41c51c8e1 arch: add pkey and rseq syscall numbers everywhere
Most architectures define system call numbers for the rseq and pkey system
calls, even when they don't support the features, and perhaps never will.

Only a few architectures are missing these, so just define them anyway
for consistency. If we decide to add them later to one of these, the
system call numbers won't get out of sync then.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
2019-01-25 17:22:50 +01:00
Arnd Bergmann acce2f7177 ia64: assign syscall numbers for perf and seccomp
Most architectures have assigned numbers for both seccomp and
perf_event_open, even when they do not implement either.

ia64 is an exception here, so for consistency lets add numbers for both
of them. Unless CONFIG_PERF_EVENTS and CONFIG_SECCOMP are implemented,
the system calls just return -ENOSYS.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-01-25 17:22:20 +01:00
Arnd Bergmann 7349ee3a97 ia64: add statx and io_pgetevents syscalls
All architectures should implement these two, so assign numbers
and hook them up on ia64.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-01-25 17:22:20 +01:00
Arnd Bergmann 74cd218483 ia64: add __NR_umount2 definition
Other architectures commonly use __NR_umount2 for sys_umount,
only ia64 and alpha use __NR_umount here. In order to synchronize
the generated tables, use umount2 like everyone else, and add back
the old name from asm/unistd.h for compatibility.

The __IGNORE_* lines are now all obsolete and can be removed as
a side-effect.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-01-25 17:22:20 +01:00
Firoz Khan ffec921454 ia64: add system call table generation support
The system call tables are in different format in all
architecture and it will be difficult to manually add,
modify or delete the syscall table entries in the res-
pective files. To make it easy by keeping a script and
which will generate the uapi header and syscall table
file. This change will also help to unify the implemen-
tation across all architectures.

The system call table generation script is added in
kernel/syscalls directory which contain the scripts to
generate both uapi header file and system call table
files. The syscall.tbl will be input for the scripts.

syscall.tbl contains the list of available system calls
along with system call number and corresponding entry
point. Add a new system call in this architecture will
be possible by adding new entry in the syscall.tbl file.

Adding a new table entry consisting of:
  	- System call number.
	- ABI.
	- System call name.
	- Entry point name.

syscallhdr.sh and syscalltbl.sh will generate uapi header
unistd_64.h and syscall_table.h files respectively. Both
.sh files will parse the content syscall.tbl to generate
the header and table files. unistd_64.h will be included
by uapi/asm/unistd.h and syscall_table.h is included by
kernel/entry.S - the real system call table.

ARM, s390 and x86 architecuture does have similar support.
I leverage their implementation to come up with a generic
solution.

Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2018-11-13 08:56:19 -08:00