There are multiple kasan modes. It makes sense that we add some
messages to know which kasan mode is active when booting up [1].
Link: https://bugzilla.kernel.org/show_bug.cgi?id=212195 [1]
Link: https://lkml.kernel.org/r/20211020094850.4113-1-Kuan-Ying.Lee@mediatek.com
Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Yee Lee <yee.lee@mediatek.com>
Cc: Nicholas Tang <nicholas.tang@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These are only used in built-in core mm code.
Link: https://lkml.kernel.org/r/20210820095815.445392-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "unexport memcg locking helpers".
Neither the old page-based nor the new folio-based memcg locking helpers
are used in modular code at all, so drop the exports.
This patch (of 2):
folio_memcg_{,un}lock are only used in built-in core mm code.
Link: https://lkml.kernel.org/r/20210820095815.445392-1-hch@lst.de
Link: https://lkml.kernel.org/r/20210820095815.445392-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MIGRATE_PFN_LOCKED is used to indicate to migrate_vma_prepare() that a
source page was already locked during migrate_vma_collect(). If it
wasn't then the a second attempt is made to lock the page. However if
the first attempt failed it's unlikely a second attempt will succeed,
and the retry adds complexity. So clean this up by removing the retry
and MIGRATE_PFN_LOCKED flag.
Destination pages are also meant to have the MIGRATE_PFN_LOCKED flag
set, but nothing actually checks that.
Link: https://lkml.kernel.org/r/20211025041608.289017-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to validate the file-backed page's refcount before
trying to freeze the page's expected refcount, instead we can rely on
the folio_ref_freeze() to validate if the page has the expected refcount
before migrating its mapping.
Moreover we are always under the page lock when migrating the page
mapping, which means nowhere else can remove it from the page cache, so
we can remove the xas_load() validation under the i_pages lock.
Link: https://lkml.kernel.org/r/cover.1629447552.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/df4c129fd8e86a95dbc55f4663d77441cc0d3bd1.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory allocators may disable interrupts or preemption as part of the
allocation and freeing process. For PREEMPT_RT it is important that
these sections remain deterministic and short and therefore don't depend
on the size of the memory to allocate/ free or the inner state of the
algorithm.
Until v3.12-RT the SLAB allocator was an option but involved several
changes to meet all the requirements. The SLUB design fits better with
PREEMPT_RT model and so the SLAB patches were dropped in the 3.12-RT
patchset. Comparing the two allocator, SLUB outperformed SLAB in both
throughput (time needed to allocate and free memory) and the maximal
latency of the system measured with cyclictest during hackbench.
SLOB was never evaluated since it was unlikely that it preforms better
than SLAB. During a quick test, the kernel crashed with SLOB enabled
during boot.
Disable SLAB and SLOB on PREEMPT_RT.
[bigeasy@linutronix.de: commit description]
Link: https://lkml.kernel.org/r/20211015210336.gen3tib33ig5q2md@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The type of "order" in struct page_owner is unsigned short.
However, it is unsigned int in the following 3 functions:
__reset_page_owner
__set_page_owner_handle
__set_page_owner_handle
The type of "order" in argument list is unsigned int, which is
inconsistent.
[akpm@linux-foundation.org: update include/linux/page_owner.h]
Link: https://lkml.kernel.org/r/20211020125945.47792-1-caoyixuan2019@email.szu.edu.cn
Signed-off-by: Yixuan Cao <caoyixuan2019@email.szu.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sync this one last bit of discrepancy between kernel and userspace
libxfs.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status
* Fix selftests on APICv machines
* Fix sparse warnings
* Fix detection of KVM features in CPUID
* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN
* Fixes and cleanups for MSR bitmap handling
* Cleanups for INVPCID
* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
Add support for AMD SEV and SEV-ES intra-host migration support. Intra
host migration provides a low-cost mechanism for userspace VMM upgrades.
In the common case for intra host migration, we can rely on the normal
ioctls for passing data from one VMM to the next. SEV, SEV-ES, and other
confidential compute environments make most of this information opaque, and
render KVM ioctls such as "KVM_GET_REGS" irrelevant. As a result, we need
the ability to pass this opaque metadata from one VMM to the next. The
easiest way to do this is to leave this data in the kernel, and transfer
ownership of the metadata from one KVM VM (or vCPU) to the next. In-kernel
hand off makes it possible to move any data that would be
unsafe/impossible for the kernel to hand directly to userspace, and
cannot be reproduced using data that can be handed to userspace.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_CAP_NR_VCPUS is used to get the "recommended" maximum number of
VCPUs and arm64/mips/riscv report num_online_cpus(). Powerpc reports
either num_online_cpus() or num_present_cpus(), s390 has multiple
constants depending on hardware features. On x86, KVM reports an
arbitrary value of '710' which is supposed to be the maximum tested
value but it's possible to test all KVM_MAX_VCPUS even when there are
less physical CPUs available.
Drop the arbitrary '710' value and return num_online_cpus() on x86 as
well. The recommendation will match other architectures and will mean
'no CPU overcommit'.
For reference, QEMU only queries KVM_CAP_NR_VCPUS to print a warning
when the requested vCPU number exceeds it. The static limit of '710'
is quite weird as smaller systems with just a few physical CPUs should
certainly "recommend" less.
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211111134733.86601-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle #GP on INVPCID due to an invalid type in the common switch
statement instead of relying on the callers (VMX and SVM) to manually
validate the type.
Unlike INVVPID and INVEPT, INVPCID is not explicitly documented to check
the type before reading the operand from memory, so deferring the
type validity check until after that point is architecturally allowed.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109174426.2350547-3-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
handle_invept(), handle_invvpid(), handle_invpcid() read the same reg2
field in vmcs.VMX_INSTRUCTION_INFO to get the index of the GPR that
holds the invalidation type. Add a helper to retrieve reg2 from VMX
instruction info to consolidate and document the shift+mask magic.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109174426.2350547-2-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean up the x2APIC MSR bitmap intereption code for L2, which is the last
holdout of open coded bitmap manipulations. Freshen up the SDM/PRM
comment, rename the function to make it abundantly clear the funky
behavior is x2APIC specific, and explain _why_ vmcs01's bitmap is ignored
(the previous comment was flat out wrong for x2APIC behavior).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add builder macros to generate the MSR bitmap helpers to reduce the
amount of copy-paste code, especially with respect to all the magic
numbers needed to calc the correct bit location.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Always check vmcs01's MSR bitmap when merging L0 and L1 bitmaps for L2,
and always update the relevant bits in vmcs02. This fixes two distinct,
but intertwined bugs related to dynamic MSR bitmap modifications.
The first issue is that KVM fails to enable MSR interception in vmcs02
for the FS/GS base MSRs if L1 first runs L2 with interception disabled,
and later enables interception.
The second issue is that KVM fails to honor userspace MSR filtering when
preparing vmcs02.
Fix both issues simultaneous as fixing only one of the issues (doesn't
matter which) would create a mess that no one should have to bisect.
Fixing only the first bug would exacerbate the MSR filtering issue as
userspace would see inconsistent behavior depending on the whims of L1.
Fixing only the second bug (MSR filtering) effectively requires fixing
the first, as the nVMX code only knows how to transition vmcs02's
bitmap from 1->0.
Move the various accessor/mutators that are currently buried in vmx.c
into vmx.h so that they can be shared by the nested code.
Fixes: 1a155254ff ("KVM: x86: Introduce MSR filtering")
Fixes: d69129b4e4 ("KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible")
Cc: stable@vger.kernel.org
Cc: Alexander Graf <graf@amazon.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check the current VMCS controls to determine if an MSR write will be
intercepted due to MSR bitmaps being disabled. In the nested VMX case,
KVM will disable MSR bitmaps in vmcs02 if they're disabled in vmcs12 or
if KVM can't map L1's bitmaps for whatever reason.
Note, the bad behavior is relatively benign in the current code base as
KVM sets all bits in vmcs02's MSR bitmap by default, clears bits if and
only if L0 KVM also disables interception of an MSR, and only uses the
buggy helper for MSR_IA32_SPEC_CTRL. Because KVM explicitly tests WRMSR
before disabling interception of MSR_IA32_SPEC_CTRL, the flawed check
will only result in KVM reading MSR_IA32_SPEC_CTRL from hardware when it
isn't strictly necessary.
Tag the fix for stable in case a future fix wants to use
msr_write_intercepted(), in which case a buggy implementation in older
kernels could prove subtly problematic.
Fixes: d28b387fb7 ("KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When kvm_gfn_to_hva_cache_init() call from kvm_lapic_set_pv_eoi() fails,
MSR write to MSR_KVM_PV_EOI_EN results in #GP so it is reasonable to
expect that the value we keep internally in KVM wasn't updated.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211108152819.12485-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_lapic_enable_pv_eoi() is a misnomer as the function is also
used to disable PV EOI. Rename it to kvm_lapic_set_pv_eoi().
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211108152819.12485-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently when kvm_update_cpuid_runtime() runs, it assumes that the
KVM_CPUID_FEATURES leaf is located at 0x40000001. This is not true,
however, if Hyper-V support is enabled. In this case the KVM leaves will
be offset.
This patch introdues as new 'kvm_cpuid_base' field into struct
kvm_vcpu_arch to track the location of the KVM leaves and function
kvm_update_kvm_cpuid_base() (called from kvm_set_cpuid()) to locate the
leaves using the 'KVMKVMKVM\0\0\0' signature (which is now given a
definition in kvm_para.h). Adjustment of KVM_CPUID_FEATURES will hence now
target the correct leaf.
NOTE: A new for_each_possible_hypervisor_cpuid_base() macro is intoduced
into processor.h to avoid having duplicate code for the iteration
over possible hypervisor base leaves.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Message-Id: <20211105095101.5384-3-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the core logic of SET_CPUID and SET_CPUID2 to a common helper, the
only difference between the two ioctls() is the format of the userspace
struct. A future fix will add yet more code to the core logic.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211105095101.5384-2-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fast page fault path bails out on write faults to huge pages in
order to accommodate dirty logging. This change adds a check to do that
only when dirty logging is actually enabled, so that access tracking for
huge pages can still use the fast path for write faults in the common
case.
Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211104003359.2201967-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Wrap the read of iter->sptep in tdp_mmu_map_handle_target_level() with
rcu_dereference(). Shadow pages in the TDP MMU, and thus their SPTEs,
are protected by rcu.
This fixes a Sparse warning at tdp_mmu.c:900:51:
warning: incorrect type in argument 1 (different address spaces)
expected unsigned long long [usertype] *sptep
got unsigned long long [noderef] [usertype] __rcu *[usertype] sptep
Fixes: 7158bee4b4 ("KVM: MMU: pass kvm_mmu_page struct to make_spte")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211103161833.3769487-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GUESTDBG_BLOCKIRQ relies on interrupts being injected using
standard kvm's inject_pending_event, and not via APICv/AVIC.
Since this is a debug feature, just inhibit APICv/AVIC while
KVM_GUESTDBG_BLOCKIRQ is in use on at least one vCPU.
Fixes: 61e5f69ef0 ("KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211108090245.166408-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These function names sound like predicates, and they have siblings,
*is_valid_msr(), which _are_ predicates. Moreover, there are comments
that essentially warn that these functions behave unexpectedly.
Flip the polarity of the return values, so that they become
predicates, and convert the boolean result to a success/failure code
at the outer call site.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211105202058.1048757-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is
not missed") we switched to using a gfn_to_pfn_cache for accessing the
guest steal time structure in order to allow for an atomic xchg of the
preempted field. This has a couple of problems.
Firstly, kvm_map_gfn() doesn't work at all for IOMEM pages when the
atomic flag is set, which it is in kvm_steal_time_set_preempted(). So a
guest vCPU using an IOMEM page for its steal time would never have its
preempted field set.
Secondly, the gfn_to_pfn_cache is not invalidated in all cases where it
should have been. There are two stages to the GFN->PFN conversion;
first the GFN is converted to a userspace HVA, and then that HVA is
looked up in the process page tables to find the underlying host PFN.
Correct invalidation of the latter would require being hooked up to the
MMU notifiers, but that doesn't happen---so it just keeps mapping and
unmapping the *wrong* PFN after the userspace page tables change.
In the !IOMEM case at least the stale page *is* pinned all the time it's
cached, so it won't be freed and reused by anyone else while still
receiving the steal time updates. The map/unmap dance only takes care
of the KVM administrivia such as marking the page dirty.
Until the gfn_to_pfn cache handles the remapping automatically by
integrating with the MMU notifiers, we might as well not get a
kernel mapping of it, and use the perfectly serviceable userspace HVA
that we already have. We just need to implement the atomic xchg on
the userspace address with appropriate exception handling, which is
fairly trivial.
Cc: stable@vger.kernel.org
Fixes: b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <3645b9b889dac6438394194bb5586a46b68d581f.camel@infradead.org>
[I didn't entirely agree with David's assessment of the
usefulness of the gfn_to_pfn cache, and integrated the outcome
of the discussion in the above commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds testcases for intra host migration for SEV and SEV-ES. Also adds
locking test to confirm no deadlock exists.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-6-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactors out open path support from open_kvm_dev_path_or_exit() and
adds new helper for SEV device path.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-5-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For SEV-ES to work with intra host migration the VMSAs, GHCB metadata,
and other SEV-ES info needs to be preserved along with the guest's
memory.
Signed-off-by: Peter Gonda <pgonda@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-4-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For SEV to work with intra host migration, contents of the SEV info struct
such as the ASID (used to index the encryption key in the AMD SP) and
the list of memory regions need to be transferred to the target VM.
This change adds a commands for a target VMM to get a source SEV VM's sev
info.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-3-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Avoid code duplication across all callers of misc_cg_try_charge and
misc_cg_uncharge. The resource type for KVM is always derived from
sev->es_active, and the quantity is always 1.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Generalize KVM_REQ_VM_BUGGED so that it can be called even in cases
where it is by design that the VM cannot be operated upon. In this
case any KVM_BUG_ON should still warn, so introduce a new flag
kvm->vm_dead that is separate from kvm->vm_bugged.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move SEV-ES vCPU metadata into new sev_es_state struct from vcpu_svm.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-2-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add guest api and guest kernel support for SEV live migration.
Introduces a new hypercall to notify the host of changes to the page
encryption status. If the page is encrypted then it must be migrated
through the SEV firmware or a helper VM sharing the key. If page is
not encrypted then it can be migrated normally by userspace. This new
hypercall is invoked using paravirt_ops.
Conflicts: sev_active() replaced by cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT).
Reset the host's shared pages list related to kernel
specific page encryption status settings before we load a
new kernel by kexec. We cannot reset the complete
shared pages list here as we need to retain the
UEFI/OVMF firmware specific settings.
The host's shared pages list is maintained for the
guest to keep track of all unencrypted guest memory regions,
therefore we need to explicitly mark all shared pages as
encrypted again before rebooting into the new guest kernel.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Message-Id: <3e051424ab839ea470f88333273d7a185006754f.1629726117.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The guest support for detecting and enabling SEV Live migration
feature uses the following logic :
- kvm_init_plaform() checks if its booted under the EFI
- If not EFI,
i) if kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL), issue a wrmsrl()
to enable the SEV live migration support
- If EFI,
i) If kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL), read
the UEFI variable which indicates OVMF support for live migration
ii) the variable indicates live migration is supported, issue a wrmsrl() to
enable the SEV live migration support
The EFI live migration check is done using a late_initcall() callback.
Also, ensure that _bss_decrypted section is marked as decrypted in the
hypervisor's guest page encryption status tracking.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Message-Id: <b4453e4c87103ebef12217d2505ea99a1c3e0f0f.1629726117.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a new AMD Memory Encryption GUID which is currently
used for defining a new UEFI environment variable which indicates
UEFI/OVMF support for the SEV live migration feature. This variable
is setup when UEFI/OVMF detects host/hypervisor support for SEV
live migration and later this variable is read by the kernel using
EFI runtime services to verify if OVMF supports the live migration
feature.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Message-Id: <1cea22976d2208f34d47e0c1ce0ecac816c13111.1629726117.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invoke a hypercall when a memory region is changed from encrypted ->
decrypted and vice versa. Hypervisor needs to know the page encryption
status during the guest migration.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Reviewed-by: Venu Busireddy <venu.busireddy@oracle.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Message-Id: <0a237d5bb08793916c7790a3e653a2cbe7485761.1629726117.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM hypercall framework relies on alternative framework to patch the
VMCALL -> VMMCALL on AMD platform. If a hypercall is made before
apply_alternative() is called then it defaults to VMCALL. The approach
works fine on non SEV guest. A VMCALL would causes #UD, and hypervisor
will be able to decode the instruction and do the right things. But
when SEV is active, guest memory is encrypted with guest key and
hypervisor will not be able to decode the instruction bytes.
To highlight the need to provide this interface, capturing the
flow of apply_alternatives() :
setup_arch() call init_hypervisor_platform() which detects
the hypervisor platform the kernel is running under and then the
hypervisor specific initialization code can make early hypercalls.
For example, KVM specific initialization in case of SEV will try
to mark the "__bss_decrypted" section's encryption state via early
page encryption status hypercalls.
Now, apply_alternatives() is called much later when setup_arch()
calls check_bugs(), so we do need some kind of an early,
pre-alternatives hypercall interface. Other cases of pre-alternatives
hypercalls include marking per-cpu GHCB pages as decrypted on SEV-ES
and per-cpu apf_reason, steal_time and kvm_apic_eoi as decrypted for
SEV generally.
Add SEV specific hypercall3, it unconditionally uses VMMCALL. The hypercall
will be used by the SEV guest to notify encrypted pages to the hypervisor.
This kvm_sev_hypercall3() function is abstracted and used as follows :
All these early hypercalls are made through early_set_memory_XX() interfaces,
which in turn invoke pv_ops (paravirt_ops).
This early_set_memory_XX() -> pv_ops.mmu.notify_page_enc_status_changed()
is a generic interface and can easily have SEV, TDX and any other
future platform specific abstractions added to it.
Currently, pv_ops.mmu.notify_page_enc_status_changed() callback is setup to
invoke kvm_sev_hypercall3() in case of SEV.
Similarly, in case of TDX, pv_ops.mmu.notify_page_enc_status_changed()
can be setup to a TDX specific callback.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Reviewed-by: Venu Busireddy <venu.busireddy@oracle.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <6fd25c749205dd0b1eb492c60d41b124760cc6ae.1629726117.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The below commit added optional support for passing a bind address.
It configures the sockaddr bind arguments before parsing options and
reconfigures on options -b and -4.
This broke support for passing port (-p) on its own.
Configure sockaddr after parsing all arguments.
Fixes: 3327a9c463 ("selftests: add functionals test for UDP GRO")
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
PEBS PERF_SAMPLE_PHYS_ADDR events use perf_virt_to_phys() to convert PMU
sampled virtual addresses to physical using get_user_page_fast_only()
and page_to_phys().
Some get_user_page_fast_only() error cases return false, indicating no
page reference, but still initialize the output page pointer with an
unreferenced page. In these error cases perf_virt_to_phys() calls
put_page(). This causes page reference count underflow, which can lead
to unintentional page sharing.
Fix perf_virt_to_phys() to only put_page() if get_user_page_fast_only()
returns a referenced page.
Fixes: fc7ce9c74c ("perf/core, x86: Add PERF_SAMPLE_PHYS_ADDR")
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211111021814.757086-1-gthelen@google.com
Just like what we do in the x86_get_event_constraints(), the
PERF_X86_EVENT_LBR_SELECT flag should also be propagated
to event->hw.flags so that the host lbr driver can save/restore
MSR_LBR_SELECT for the special vlbr event created by KVM or BPF.
Fixes: 097e4311cd ("perf/x86: Add constraint to create guest LBR event without hw counter")
Reported-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Wanpeng Li <wanpengli@tencent.com>
Link: https://lore.kernel.org/r/20211103091716.59906-1-likexu@tencent.com
lbr_select in kvm guest has residual data even if kvm guest is poweroff.
We can get residual data in the next boot. Because lbr_select is not
reset during kvm vlbr release. Let's reset LBR_SELECT during vlbr reset.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1636096851-36623-1-git-send-email-wanpengli@tencent.com
Commit c597bfddc9 ("sched: Provide Kconfig support for default dynamic
preempt mode") changed the selectable config names for the preemption
model. This means a config file must now select
CONFIG_PREEMPT_BEHAVIOUR=y
rather than
CONFIG_PREEMPT=y
to get a preemptible kernel. This means all arch config files would need to
be updated - right now they'll all end up with the default
CONFIG_PREEMPT_NONE_BEHAVIOUR.
Rather than touch a good hundred of config files, restore usage of
CONFIG_PREEMPT{_NONE, _VOLUNTARY}. Make them configure:
o The build-time preemption model when !PREEMPT_DYNAMIC
o The default boot-time preemption model when PREEMPT_DYNAMIC
Add siblings of those configs with the _BUILD suffix to unconditionally
designate the build-time preemption model (PREEMPT_DYNAMIC is built with
the "highest" preemption model it supports, aka PREEMPT). Downstream
configs should by now all be depending / selected by CONFIG_PREEMPTION
rather than CONFIG_PREEMPT, so only a few sites need patching up.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20211110202448.4054153-2-valentin.schneider@arm.com
Kevin is reporting crashes which point to a use-after-free of a cfs_rq
in update_blocked_averages(). Initial debugging revealed that we've
live cfs_rq's (on_list=1) in an about to be kfree()'d task group in
free_fair_sched_group(). However, it was unclear how that can happen.
His kernel config happened to lead to a layout of struct sched_entity
that put the 'my_q' member directly into the middle of the object
which makes it incidentally overlap with SLUB's freelist pointer.
That, in combination with SLAB_FREELIST_HARDENED's freelist pointer
mangling, leads to a reliable access violation in form of a #GP which
made the UAF fail fast.
Michal seems to have run into the same issue[1]. He already correctly
diagnosed that commit a7b359fc6a ("sched/fair: Correctly insert
cfs_rq's to list on unthrottle") is causing the preconditions for the
UAF to happen by re-adding cfs_rq's also to task groups that have no
more running tasks, i.e. also to dead ones. His analysis, however,
misses the real root cause and it cannot be seen from the crash
backtrace only, as the real offender is tg_unthrottle_up() getting
called via sched_cfs_period_timer() via the timer interrupt at an
inconvenient time.
When unregister_fair_sched_group() unlinks all cfs_rq's from the dying
task group, it doesn't protect itself from getting interrupted. If the
timer interrupt triggers while we iterate over all CPUs or after
unregister_fair_sched_group() has finished but prior to unlinking the
task group, sched_cfs_period_timer() will execute and walk the list of
task groups, trying to unthrottle cfs_rq's, i.e. re-add them to the
dying task group. These will later -- in free_fair_sched_group() -- be
kfree()'ed while still being linked, leading to the fireworks Kevin
and Michal are seeing.
To fix this race, ensure the dying task group gets unlinked first.
However, simply switching the order of unregistering and unlinking the
task group isn't sufficient, as concurrent RCU walkers might still see
it, as can be seen below:
CPU1: CPU2:
: timer IRQ:
: do_sched_cfs_period_timer():
: :
: distribute_cfs_runtime():
: rcu_read_lock();
: :
: unthrottle_cfs_rq():
sched_offline_group(): :
: walk_tg_tree_from(…,tg_unthrottle_up,…):
list_del_rcu(&tg->list); :
(1) : list_for_each_entry_rcu(child, &parent->children, siblings)
: :
(2) list_del_rcu(&tg->siblings); :
: tg_unthrottle_up():
unregister_fair_sched_group(): struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
: :
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); :
: :
: if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
(3) : list_add_leaf_cfs_rq(cfs_rq);
: :
: :
: :
: :
: :
(4) : rcu_read_unlock();
CPU 2 walks the task group list in parallel to sched_offline_group(),
specifically, it'll read the soon to be unlinked task group entry at
(1). Unlinking it on CPU 1 at (2) therefore won't prevent CPU 2 from
still passing it on to tg_unthrottle_up(). CPU 1 now tries to unlink
all cfs_rq's via list_del_leaf_cfs_rq() in
unregister_fair_sched_group(). Meanwhile CPU 2 will re-add some of
these at (3), which is the cause of the UAF later on.
To prevent this additional race from happening, we need to wait until
walk_tg_tree_from() has finished traversing the task groups, i.e.
after the RCU read critical section ends in (4). Afterwards we're safe
to call unregister_fair_sched_group(), as each new walk won't see the
dying task group any more.
On top of that, we need to wait yet another RCU grace period after
unregister_fair_sched_group() to ensure print_cfs_stats(), which might
run concurrently, always sees valid objects, i.e. not already free'd
ones.
This patch survives Michal's reproducer[2] for 8h+ now, which used to
trigger within minutes before.
[1] https://lore.kernel.org/lkml/20211011172236.11223-1-mkoutny@suse.com/
[2] https://lore.kernel.org/lkml/20211102160228.GA57072@blackbody.suse.cz/
Fixes: a7b359fc6a ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
[peterz: shuffle code around a bit]
Reported-by: Kevin Tanguy <kevin.tanguy@corp.ovh.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Nothing protects the access to the per_cpu variable sd_llc_id. When testing
the same CPU (i.e. this_cpu == that_cpu), a race condition exists with
update_top_cache_domain(). One scenario being:
CPU1 CPU2
==================================================================
per_cpu(sd_llc_id, CPUX) => 0
partition_sched_domains_locked()
detach_destroy_domains()
cpus_share_cache(CPUX, CPUX) update_top_cache_domain(CPUX)
per_cpu(sd_llc_id, CPUX) => 0
per_cpu(sd_llc_id, CPUX) = CPUX
per_cpu(sd_llc_id, CPUX) => CPUX
return false
ttwu_queue_cond() wouldn't catch smp_processor_id() == cpu and the result
is a warning triggered from ttwu_queue_wakelist().
Avoid a such race in cpus_share_cache() by always returning true when
this_cpu == that_cpu.
Fixes: 518cd62341 ("sched: Only queue remote wakeups when crossing cache boundaries")
Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20211104175120.857087-1-vincent.donnefort@arm.com
Commit 66558b730f ("sched: Add cluster scheduler level for x86")
introduced cpu_l2c_shared_map mask which is expected to be initialized
by smp_op.smp_prepare_cpus(). That commit only updated
native_smp_prepare_cpus() version but not xen_pv_smp_prepare_cpus().
As result Xen PV guests crash in set_cpu_sibling_map().
While the new mask can be allocated in xen_pv_smp_prepare_cpus() one can
see that both versions of smp_prepare_cpus ops share a number of common
operations that can be factored out. So do that instead.
Fixes: 66558b730f ("sched: Add cluster scheduler level for x86")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/1635896196-18961-1-git-send-email-boris.ostrovsky@oracle.com
Add a few signature bytes after the static call trampoline and verify
those bytes match before patching the trampoline. This avoids patching
random other JMPs (such as CFI jump-table entries) instead.
These bytes decode as:
d: 53 push %rbx
e: 43 54 rex.XB push %r12
And happen to spell "SCT".
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211030074758.GT174703@worktop.programming.kicks-ass.net