Commit Graph

10 Commits

Author SHA1 Message Date
Sudeep Holla af391b15f7 arm64: kernel: rename __cpu_suspend to keep it aligned with arm
This patch renames __cpu_suspend to cpu_suspend so that it's aligned
with ARM32. It also removes the redundant wrapper created.

This is in preparation to implement generic PSCI system suspend using
the cpu_{suspend,resume} which now has the same interface on both ARM
and ARM64.

Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-06-19 14:46:39 +01:00
Ard Biesheuvel 9acdc2af0c arm64: drop sleep_idmap_phys and clean up cpu_resume()
Two cleanups of the asm function cpu_resume():
- The global variable sleep_idmap_phys always points to idmap_pg_dir,
  so we can just use that value directly in the CPU resume path.
- Unclutter the load of sleep_save_sp::save_ptr_stash_phys.

Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-06-02 17:45:07 +01:00
Lorenzo Pieralisi af3cfdbf56 arm64: kernel: remove ARM64_CPU_SUSPEND config option
ARM64_CPU_SUSPEND config option was introduced to make code providing
context save/restore selectable only on platforms requiring power
management capabilities.

Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which
in turn is set by the SUSPEND config option.

The introduction of CPU_IDLE for arm64 requires that code configured
by ARM64_CPU_SUSPEND (context save/restore) should be compiled in
in order to enable the CPU idle driver to rely on CPU operations
carrying out context save/restore.

The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore
forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP)
failed dependencies, which is not a clean way of handling the kernel
configuration option.

For these reasons, this patch removes the ARM64_CPU_SUSPEND config option
and makes the context save/restore dependent on CPU_PM, which is selected
whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies
in the process.

This way, code previously configured through ARM64_CPU_SUSPEND is
compiled in whenever a power management subsystem requires it to be
present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour
expected on ARM64 kernels.

The cpu_suspend and cpu_init_idle CPU operations are added only if
CPU_IDLE is selected, since they are CPU_IDLE specific methods and
should be grouped and defined accordingly.

PSCI CPU operations are updated to reflect the introduced changes.

Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-27 11:35:33 +00:00
Lorenzo Pieralisi f43c27188a arm64: kernel: fix __cpu_suspend mm switch on warm-boot
On arm64 the TTBR0_EL1 register is set to either the reserved TTBR0
page tables on boot or to the active_mm mappings belonging to user space
processes, it must never be set to swapper_pg_dir page tables mappings.

When a CPU is booted its active_mm is set to init_mm even though its
TTBR0_EL1 points at the reserved TTBR0 page mappings. This implies
that when __cpu_suspend is triggered the active_mm can point at
init_mm even if the current TTBR0_EL1 register contains the reserved
TTBR0_EL1 mappings.

Therefore, the mm save and restore executed in __cpu_suspend might
turn out to be erroneous in that, if the current->active_mm corresponds
to init_mm, on resume from low power it ends up restoring in the
TTBR0_EL1 the init_mm mappings that are global and can cause speculation
of TLB entries which end up being propagated to user space.

This patch fixes the issue by checking the active_mm pointer before
restoring the TTBR0 mappings. If the current active_mm == &init_mm,
the code sets the TTBR0_EL1 to the reserved TTBR0 mapping instead of
switching back to the active_mm, which is the expected behaviour
corresponding to the TTBR0_EL1 settings when __cpu_suspend was entered.

Fixes: 95322526ef ("arm64: kernel: cpu_{suspend/resume} implementation")
Cc: <stable@vger.kernel.org> # 3.14+: 18ab7db
Cc: <stable@vger.kernel.org> # 3.14+: 714f599
Cc: <stable@vger.kernel.org> # 3.14+: c3684fb
Cc: <stable@vger.kernel.org> # 3.14+
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-12-23 16:38:50 +00:00
Laura Abbott c3684fbb44 arm64: Move cpu_resume into the text section
The function cpu_resume currently lives in the .data section.
There's no reason for it to be there since we can use relative
instructions without a problem. Move a few cpu_resume data
structures out of the assembly file so the .data annotation
can be dropped completely and cpu_resume ends up in the read
only text section.

Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Kees Cook <keescook@chromium.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-11-25 15:56:44 +00:00
Lorenzo Pieralisi 714f599255 arm64: kernel: refactor the CPU suspend API for retention states
CPU suspend is the standard kernel interface to be used to enter
low-power states on ARM64 systems. Current cpu_suspend implementation
by default assumes that all low power states are losing the CPU context,
so the CPU registers must be saved and cleaned to DRAM upon state
entry. Furthermore, the current cpu_suspend() implementation assumes
that if the CPU suspend back-end method returns when called, this has
to be considered an error regardless of the return code (which can be
successful) since the CPU was not expected to return from a code path that
is different from cpu_resume code path - eg returning from the reset vector.

All in all this means that the current API does not cope well with low-power
states that preserve the CPU context when entered (ie retention states),
since first of all the context is saved for nothing on state entry for
those states and a successful state entry can return as a normal function
return, which is considered an error by the current CPU suspend
implementation.

This patch refactors the cpu_suspend() API so that it can be split in
two separate functionalities. The arm64 cpu_suspend API just provides
a wrapper around CPU suspend operation hook. A new function is
introduced (for architecture code use only) for states that require
context saving upon entry:

__cpu_suspend(unsigned long arg, int (*fn)(unsigned long))

__cpu_suspend() saves the context on function entry and calls the
so called suspend finisher (ie fn) to complete the suspend operation.
The finisher is not expected to return, unless it fails in which case
the error is propagated back to the __cpu_suspend caller.

The API refactoring results in the following pseudo code call sequence for a
suspending CPU, when triggered from a kernel subsystem:

/*
 * int cpu_suspend(unsigned long idx)
 * @idx: idle state index
 */
{
-> cpu_suspend(idx)
	|---> CPU operations suspend hook called, if present
		|--> if (retention_state)
			|--> direct suspend back-end call (eg PSCI suspend)
		     else
			|--> __cpu_suspend(idx, &back_end_finisher);
}

By refactoring the cpu_suspend API this way, the CPU operations back-end
has a chance to detect whether idle states require state saving or not
and can call the required suspend operations accordingly either through
simple function call or indirectly through __cpu_suspend() which carries out
state saving and suspend finisher dispatching to complete idle state entry.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-09-12 10:48:55 +01:00
Lorenzo Pieralisi 18ab7db6b7 arm64: kernel: add missing __init section marker to cpu_suspend_init
Suspend init function must be marked as __init, since it is not needed
after the kernel has booted. This patch moves the cpu_suspend_init()
function to the __init section.

Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-07-18 15:23:59 +01:00
Lorenzo Pieralisi fb4a96029c arm64: kernel: fix per-cpu offset restore on resume
The introduction of percpu offset optimisation through tpidr_el1 in:

Commit id :7158627686f02319c50c8d9d78f75d4c8
"arm64: percpu: implement optimised pcpu access using tpidr_el1"

requires cpu_{suspend/resume} to restore the tpidr_el1 register upon resume
so that percpu variables can be addressed correctly when a CPU comes out
of reset from warm-boot.

This patch fixes cpu_{suspend}/{resume} tpidr_el1 restoration on resume, by
calling the set_my_cpu_offset C API, as it is done on primary and secondary
CPUs on cold boot, so that, even if the register used to store the percpu
offset is changed, the save and restore of general purpose registers does not
have to be updated.

Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-01-24 14:27:40 +00:00
Lorenzo Pieralisi 65c021bb49 arm64: kernel: restore HW breakpoint registers in cpu_suspend
When a CPU resumes from low-power, it restores HW breakpoint and
watchpoint slots through a CPU PM notifier. Since we want to enable
debugging as early as possible in the resume path, the mdscr content
is restored along the general purpose registers in the cpu_suspend API
and debug exceptions are reenabled when cpu_suspend returns. Since the
CPU PM notifier is run after a CPU has been resumed, we cannot expect
HW breakpoint registers to contain sane values till the notifier is run,
since the HW breakpoints registers content is unknown at reset; this means
that the CPU might run with debug exceptions enabled, mdscr restored but HW
breakpoint registers containing junk values that can trigger spurious
debug exceptions.

This patch fixes current HW breakpoints restore by moving the HW breakpoints
registers restoration to the cpu_suspend API, before the debug exceptions are
enabled. This way, as soon as the cpu_suspend function returns the
kernel can resume debugging with sane values in HW breakpoint registers.

Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-01-10 17:51:35 +00:00
Lorenzo Pieralisi 95322526ef arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.

The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:

int cpu_suspend(unsigned long arg);

allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.

Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.

Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.

Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.

The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.

Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.

Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-12-16 17:17:31 +00:00