Fix two issues:
- the per-cpu stat flush is unnecessary, nobody uses per-cpu stat except
sum it to global stat. We can do the calculation there. The flush just
wastes cpu time.
- some fields are signed int/s64. I don't see the point.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If PREEMPT_RCU is enabled, rcu_read_lock() isn't strong enough
for us to use this_cpu_ptr() in that section. Use the safer
get/put_cpu_ptr() variants instead.
Reported-by: Mike Galbraith <efault@gmx.de>
Fixes: 34dbad5d26 ("blk-stat: convert to callback-based statistics reporting")
Signed-off-by: Jens Axboe <axboe@fb.com>
No point in providing and exporting this helper. There's just
one (real) user of it, just use rq_data_dir().
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
In order to allow for filtering of IO based on some other properties
of the request than direction we allow the bucket function to return
an int.
If the bucket callback returns a negative do no count it in the stats
accumulation.
Signed-off-by: Stephen Bates <sbates@raithlin.com>
Fixed up Kyber scheduler stat callback.
Signed-off-by: Jens Axboe <axboe@fb.com>
User configures latency target, but the latency threshold for each
request size isn't fixed. For a SSD, the IO latency highly depends on
request size. To calculate latency threshold, we sample some data, eg,
average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency
threshold of each request size will be the sample latency (I'll call it
base latency) plus latency target. For example, the base latency for
request size 4k is 80us and user configures latency target 60us. The 4k
latency threshold will be 80 + 60 = 140us.
To sample data, we calculate the order base 2 of rounded up IO sectors.
If the IO size is bigger than 1M, it will be accounted as 1M. Since the
calculation does round up, the base latency will be slightly smaller
than actual value. Also if there isn't any IO dispatched for a specific
IO size, we will use the base latency of smaller IO size for this IO
size.
But we shouldn't sample data at any time. The base latency is supposed
to be latency where disk isn't congested, because we use latency
threshold to schedule IOs between cgroups. If disk is congested, the
latency is higher, using it for scheduling is meaningless. Hence we only
do the sampling when block throttling is in the LOW limit, with
assumption disk isn't congested in such state. If the assumption isn't
true, eg, low limit is too high, calculated latency threshold will be
higher.
Hard disk is completely different. Latency depends on spindle seek
instead of request size. Currently this feature is SSD only, we probably
can use a fixed threshold like 4ms for hard disk though.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
If a driver allocates a queue for stacked usage, then it does
not currently get stats allocated. This causes the later init
of, eg, writeback throttling to blow up. Move the init to the
queue allocation instead.
Additionally, allow a NULL callback unregistration. This avoids
having the caller check for that, fixing another oops on
removal of a block device that doesn't have poll stats allocated.
Fixes: 34dbad5d26 ("blk-stat: convert to callback-based statistics reporting")
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, statistics are gathered in ~0.13s windows, and users grab the
statistics whenever they need them. This is not ideal for both in-tree
users:
1. Writeback throttling wants its own dynamically sized window of
statistics. Since the blk-stats statistics are reset after every
window and the wbt windows don't line up with the blk-stats windows,
wbt doesn't see every I/O.
2. Polling currently grabs the statistics on every I/O. Again, depending
on how the window lines up, we may miss some I/Os. It's also
unnecessary overhead to get the statistics on every I/O; the hybrid
polling heuristic would be just as happy with the statistics from the
previous full window.
This reworks the blk-stats infrastructure to be callback-based: users
register a callback that they want called at a given time with all of
the statistics from the window during which the callback was active.
Users can dynamically bucketize the statistics. wbt and polling both
currently use read vs. write, but polling can be extended to further
subdivide based on request size.
The callbacks are kept on an RCU list, and each callback has percpu
stats buffers. There will only be a few users, so the overhead on the
I/O completion side is low. The stats flushing is also simplified
considerably: since the timer function is responsible for clearing the
statistics, we don't have to worry about stale statistics.
wbt is a trivial conversion. After the conversion, the windowing problem
mentioned above is fixed.
For polling, we register an extra callback that caches the previous
window's statistics in the struct request_queue for the hybrid polling
heuristic to use.
Since we no longer have a single stats buffer for the request queue,
this also removes the sysfs and debugfs stats entries. To replace those,
we add a debugfs entry for the poll statistics.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This is an implementation detail that no-one outside of blk-stat.c uses.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The stats buckets will become generic soon, so make the existing users
use the common READ and WRITE definitions instead of one internal to
blk-stat.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
We need to flush the batch _before_ we check the number of samples,
otherwise we'll miss all of the batched samples.
Fixes: cf43e6b ("block: add scalable completion tracking of requests")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Everytime we need to read ->nr_samples, we should have flushed
the batch first. The non-mq read path also needs to flush the
batch.
Signed-off-by: Jens Axboe <axboe@fb.com>
For legacy block, we simply track them in the request queue. For
blk-mq, we track them on a per-sw queue basis, which we can then
sum up through the hardware queues and finally to a per device
state.
The stats are tracked in, roughly, 0.1s interval windows.
Add sysfs files to display the stats.
The feature is off by default, to avoid any extra overhead. In-kernel
users of it can turn it on by setting QUEUE_FLAG_STATS in the queue
flags. We currently don't turn it on if someone just reads any of
the stats files, that is something we could add as well.
Signed-off-by: Jens Axboe <axboe@fb.com>