Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Design for Mediated Device Driver:
Main purpose of this driver is to provide a common interface for mediated
device management that can be used by different drivers of different
devices.
This module provides a generic interface to create the device, add it to
mediated bus, add device to IOMMU group and then add it to vfio group.
Below is the high Level block diagram, with Nvidia, Intel and IBM devices
as example, since these are the devices which are going to actively use
this module as of now.
+---------------+
| |
| +-----------+ | mdev_register_driver() +--------------+
| | | +<------------------------+ __init() |
| | mdev | | | |
| | bus | +------------------------>+ |<-> VFIO user
| | driver | | probe()/remove() | vfio_mdev.ko | APIs
| | | | | |
| +-----------+ | +--------------+
| |
| MDEV CORE |
| MODULE |
| mdev.ko |
| +-----------+ | mdev_register_device() +--------------+
| | | +<------------------------+ |
| | | | | nvidia.ko |<-> physical
| | | +------------------------>+ | device
| | | | callback +--------------+
| | Physical | |
| | device | | mdev_register_device() +--------------+
| | interface | |<------------------------+ |
| | | | | i915.ko |<-> physical
| | | +------------------------>+ | device
| | | | callback +--------------+
| | | |
| | | | mdev_register_device() +--------------+
| | | +<------------------------+ |
| | | | | ccw_device.ko|<-> physical
| | | +------------------------>+ | device
| | | | callback +--------------+
| +-----------+ |
+---------------+
Core driver provides two types of registration interfaces:
1. Registration interface for mediated bus driver:
/**
* struct mdev_driver - Mediated device's driver
* @name: driver name
* @probe: called when new device created
* @remove:called when device removed
* @driver:device driver structure
*
**/
struct mdev_driver {
const char *name;
int (*probe) (struct device *dev);
void (*remove) (struct device *dev);
struct device_driver driver;
};
Mediated bus driver for mdev device should use this interface to register
and unregister with core driver respectively:
int mdev_register_driver(struct mdev_driver *drv, struct module *owner);
void mdev_unregister_driver(struct mdev_driver *drv);
Mediated bus driver is responsible to add/delete mediated devices to/from
VFIO group when devices are bound and unbound to the driver.
2. Physical device driver interface
This interface provides vendor driver the set APIs to manage physical
device related work in its driver. APIs are :
* dev_attr_groups: attributes of the parent device.
* mdev_attr_groups: attributes of the mediated device.
* supported_type_groups: attributes to define supported type. This is
mandatory field.
* create: to allocate basic resources in vendor driver for a mediated
device. This is mandatory to be provided by vendor driver.
* remove: to free resources in vendor driver when mediated device is
destroyed. This is mandatory to be provided by vendor driver.
* open: open callback of mediated device
* release: release callback of mediated device
* read : read emulation callback.
* write: write emulation callback.
* ioctl: ioctl callback.
* mmap: mmap emulation callback.
Drivers should use these interfaces to register and unregister device to
mdev core driver respectively:
extern int mdev_register_device(struct device *dev,
const struct parent_ops *ops);
extern void mdev_unregister_device(struct device *dev);
There are no locks to serialize above callbacks in mdev driver and
vfio_mdev driver. If required, vendor driver can have locks to serialize
above APIs in their driver.
Signed-off-by: Kirti Wankhede <kwankhede@nvidia.com>
Signed-off-by: Neo Jia <cjia@nvidia.com>
Reviewed-by: Jike Song <jike.song@intel.com>
Reviewed-by: Dong Jia Shi <bjsdjshi@linux.vnet.ibm.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
An unintended consequence of commit 42ac9bd18d ("vfio: initialize
the virqfd workqueue in VFIO generic code") is that the vfio module
is renamed to vfio_core so that it can include both vfio and virqfd.
That's a user visible change that may break module loading scritps
and it imposes eventfd support as a dependency on the core vfio code,
which it's really not. virqfd is intended to be provided as a service
to vfio bus drivers, so instead of wrapping it into vfio.ko, we can
make it a stand-alone module toggled by vfio bus drivers. This has
the additional benefit of removing initialization and exit from the
core vfio code.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Now we have finally completely decoupled virqfd from VFIO_PCI. We can
initialize it from the VFIO generic code, in order to safely use it from
multiple independent VFIO bus drivers.
Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com>
Signed-off-by: Baptiste Reynal <b.reynal@virtualopensystems.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Tested-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Enable building the VFIO PLATFORM driver that allows to use Linux platform
devices with VFIO.
Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com>
Signed-off-by: Baptiste Reynal <b.reynal@virtualopensystems.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Tested-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
The VFIO related components could be built as dynamic modules.
Unfortunately, CONFIG_EEH can't be configured to "m". The patch
fixes the build errors when configuring VFIO related components
as dynamic modules as follows:
CC [M] drivers/vfio/vfio_iommu_spapr_tce.o
In file included from drivers/vfio/vfio.c:33:0:
include/linux/vfio.h:101:43: warning: ‘struct pci_dev’ declared \
inside parameter list [enabled by default]
:
WRAP arch/powerpc/boot/zImage.pseries
WRAP arch/powerpc/boot/zImage.maple
WRAP arch/powerpc/boot/zImage.pmac
WRAP arch/powerpc/boot/zImage.epapr
MODPOST 1818 modules
ERROR: ".vfio_spapr_iommu_eeh_ioctl" [drivers/vfio/vfio_iommu_spapr_tce.ko]\
undefined!
ERROR: ".vfio_spapr_pci_eeh_open" [drivers/vfio/pci/vfio-pci.ko] undefined!
ERROR: ".vfio_spapr_pci_eeh_release" [drivers/vfio/pci/vfio-pci.ko] undefined!
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
The patch adds new IOCTL commands for sPAPR VFIO container device
to support EEH functionality for PCI devices, which have been passed
through from host to somebody else via VFIO.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Alexander Graf <agraf@suse.de>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
VFIO implements platform independent stuff such as
a PCI driver, BAR access (via read/write on a file descriptor
or direct mapping when possible) and IRQ signaling.
The platform dependent part includes IOMMU initialization
and handling. This implements an IOMMU driver for VFIO
which does mapping/unmapping pages for the guest IO and
provides information about DMA window (required by a POWER
guest).
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This VFIO IOMMU backend is designed primarily for AMD-Vi and Intel
VT-d hardware, but is potentially usable by anything supporting
similar mapping functionality. We arbitrarily call this a Type1
backend for lack of a better name. This backend has no IOVA
or host memory mapping restrictions for the user and is optimized
for relatively static mappings. Mapped areas are pinned into system
memory.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
VFIO is a secure user level driver for use with both virtual machines
and user level drivers. VFIO makes use of IOMMU groups to ensure the
isolation of devices in use, allowing unprivileged user access. It's
intended that VFIO will replace KVM device assignment and UIO drivers
(in cases where the target platform includes a sufficiently capable
IOMMU).
New in this version of VFIO is support for IOMMU groups managed
through the IOMMU core as well as a rework of the API, removing the
group merge interface. We now go back to a model more similar to
original VFIO with UIOMMU support where the file descriptor obtained
from /dev/vfio/vfio allows access to the IOMMU, but only after a
group is added, avoiding the previous privilege issues with this type
of model. IOMMU support is also now fully modular as IOMMUs have
vastly different interface requirements on different platforms. VFIO
users are able to query and initialize the IOMMU model of their
choice.
Please see the follow-on Documentation commit for further description
and usage example.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>