* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rric/oprofile: (31 commits)
powerpc/oprofile: fix whitespaces in op_model_cell.c
powerpc/oprofile: IBM CELL: add SPU event profiling support
powerpc/oprofile: fix cell/pr_util.h
powerpc/oprofile: IBM CELL: cleanup and restructuring
oprofile: make new cpu buffer functions part of the api
oprofile: remove #ifdef CONFIG_OPROFILE_IBS in non-ibs code
ring_buffer: fix ring_buffer_event_length()
oprofile: use new data sample format for ibs
oprofile: add op_cpu_buffer_get_data()
oprofile: add op_cpu_buffer_add_data()
oprofile: rework implementation of cpu buffer events
oprofile: modify op_cpu_buffer_read_entry()
oprofile: add op_cpu_buffer_write_reserve()
oprofile: rename variables in add_ibs_begin()
oprofile: rename add_sample() in cpu_buffer.c
oprofile: rename variable ibs_allowed to has_ibs in op_model_amd.c
oprofile: making add_sample_entry() inline
oprofile: remove backtrace code for ibs
oprofile: remove unused ibs macro
oprofile: remove unused components in struct oprofile_cpu_buffer
...
The ifdefs can be removed since the code is no longer ibs specific and
can be used for other purposes as well. IBS specific code is only in
op_model_amd.c.
Signed-off-by: Robert Richter <robert.richter@amd.com>
The new ring buffer implementation allows the storage of samples with
different size. This patch implements the usage of the new sample
format to store ibs samples in the cpu buffer. Until now, writing to
the cpu buffer could lead to incomplete sampling sequences since IBS
samples were transfered in multiple samples. Due to a full buffer,
data could be lost at any time. This can't happen any more since the
complete data is reserved in advance and then stored in a single
sample.
Signed-off-by: Robert Richter <robert.richter@amd.com>
This function provides access to attached data of a sample. It returns
the size of data including the current value. Also,
op_cpu_buffer_get_size() is available to check if there is data
attached.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Special events such as task or context switches are marked with an
escape code in the cpu buffer followed by an event code or a task
identifier. There is one escape code per event. To make escape
sequences also available for data samples the internal cpu buffer
format must be changed. The current implementation does not allow the
extension of event codes since this would lead to collisions with the
task identifiers. To avoid this, this patch introduces an event mask
that allows the storage of multiple events with one escape code. Now,
task identifiers are stored in the data section of the sample. The
implementation also allows the usage of custom data in a sample. As a
side effect the new code is much more readable and easier to
understand.
Signed-off-by: Robert Richter <robert.richter@amd.com>
This code is broken since a TRACE_BEGIN_CODE is never sent to the
daemon. The data becomes corrupt since the backtrace is interpreted as
ibs sample.
Signed-off-by: Robert Richter <robert.richter@amd.com>
struct dentry is one of the most critical structures in the kernel. So it's
sad to see it going neglected.
With CONFIG_PROFILING turned on (which is probably the common case at least
for distros and kernel developers), sizeof(struct dcache) == 208 here
(64-bit). This gives 19 objects per slab.
I packed d_mounted into a hole, and took another 4 bytes off the inline
name length to take the padding out from the end of the structure. This
shinks it to 200 bytes. I could have gone the other way and increased the
length to 40, but I'm aiming for a magic number, read on...
I then got rid of the d_cookie pointer. This shrinks it to 192 bytes. Rant:
why was this ever a good idea? The cookie system should increase its hash
size or use a tree or something if lookups are a problem. Also the "fast
dcookie lookups" in oprofile should be moved into the dcookie code -- how
can oprofile possibly care about the dcookie_mutex? It gets dropped after
get_dcookie() returns so it can't be providing any sort of protection.
At 192 bytes, 21 objects fit into a 4K page, saving about 3MB on my system
with ~140 000 entries allocated. 192 is also a multiple of 64, so we get
nice cacheline alignment on 64 and 32 byte line systems -- any given dentry
will now require 3 cachelines to touch all fields wheras previously it
would require 4.
I know the inline name size was chosen quite carefully, however with the
reduction in cacheline footprint, it should actually be just about as fast
to do a name lookup for a 36 character name as it was before the patch (and
faster for other sizes). The memory footprint savings for names which are
<= 32 or > 36 bytes long should more than make up for the memory cost for
33-36 byte names.
Performance is a feature...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch renames cpu buffer functions to something more oprofile
specific names. Functions will be moved to the global name space.
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Robert Richter <robert.richter@amd.com>
This patch replaces the current oprofile cpu buffer implementation
with the ring buffer provided by the tracing framework. The motivation
here is to leave the pain of implementing ring buffers to others. Oh,
no, there are more advantages. Main reason is the support of different
sample sizes that could be stored in the buffer. Use cases for this
are IBS and Cell spu profiling. Using the new ring buffer ensures
valid and complete samples and allows copying the cpu buffer stateless
without knowing its content. Second it will use generic kernel API and
also reduce code size. And hopefully, there are less bugs.
Since the new tracing ring buffer implementation uses spin locks to
protect the buffer during read/write access, it is difficult to use
the buffer in an NMI handler. In this case, writing to the buffer by
the NMI handler (x86) could occur also during critical sections when
reading the buffer. To avoid this, there are 2 buffers for independent
read and write access. Read access is in process context only, write
access only in the NMI handler. If the read buffer runs empty, both
buffers are swapped atomically. There is potentially a small window
during swapping where the buffers are disabled and samples could be
lost.
Using 2 buffers is a little bit overhead, but the solution is clear
and does not require changes in the ring buffer implementation. It can
be changed to a single buffer solution when the ring buffer access is
implemented as non-locking atomic code.
The new buffer requires more size to store the same amount of samples
because each sample includes an u32 header. Also, there is more code
to execute for buffer access. Nonetheless, the buffer implementation
is proven in the ftrace environment and worth to use also in oprofile.
Patches that changes the internal IBS buffer usage will follow.
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Robert Richter <robert.richter@amd.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rric/oprofile: (21 commits)
OProfile: Fix buffer synchronization for IBS
oprofile: hotplug cpu fix
oprofile: fixing whitespaces in arch/x86/oprofile/*
oprofile: fixing whitespaces in arch/x86/oprofile/*
oprofile: fixing whitespaces in drivers/oprofile/*
x86/oprofile: add the logic for enabling additional IBS bits
x86/oprofile: reordering functions in nmi_int.c
x86/oprofile: removing unused function parameter in add_ibs_begin()
oprofile: more whitespace fixes
oprofile: whitespace fixes
OProfile: Rename IBS sysfs dir into "ibs_op"
OProfile: Rework string handling in setup_ibs_files()
OProfile: Rework oprofile_add_ibs_sample() function
oprofile: discover counters for op ppro too
oprofile: Implement Intel architectural perfmon support
oprofile: Don't report Nehalem as core_2
oprofile: drop const in num counters field
Revert "Oprofile Multiplexing Patch"
x86, oprofile: BUG: using smp_processor_id() in preemptible code
x86/oprofile: fix on_each_cpu build error
...
Manually fixed trivial conflicts in
drivers/oprofile/{cpu_buffer.c,event_buffer.h}
The issue is the SPU code is not holding the kernel mutex lock while
adding samples to the kernel buffer.
This patch creates per SPU buffers to hold the data. Data
is added to the buffers from in interrupt context. The data
is periodically pushed to the kernel buffer via a new Oprofile
function oprofile_put_buff(). The oprofile_put_buff() function
is called via a work queue enabling the funtion to acquire the
mutex lock.
The existing user controls for adjusting the per CPU buffer
size is used to control the size of the per SPU buffers.
Similarly, overflows of the SPU buffers are reported by
incrementing the per CPU buffer stats. This eliminates the
need to have architecture specific controls for the per SPU
buffers which is not acceptable to the OProfile user tool
maintainer.
The export of the oprofile add_event_entry() is removed as it
is no longer needed given this patch.
Note, this patch has not addressed the issue of indexing arrays
by the spu number. This still needs to be fixed as the spu
numbering is not guarenteed to be 0 to max_num_spus-1.
Signed-off-by: Carl Love <carll@us.ibm.com>
Signed-off-by: Maynard Johnson <maynardj@us.ibm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Acked-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch is needed since there is some IBS code in add_ibs_begin()
that handles more than one sample per iteration. This requires calling
get_slots() during each loop.
This fixes the current problem, but a proper solution that reworks the
cpu buffer synchronization is needed here in the future.
Signed-off-by: Barry Kasindorf <barry.kasindorf@amd.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
This patchset supports the new profiling hardware available in the
latest AMD CPUs in the oProfile driver.
Signed-off-by: Barry Kasindorf <barry.kasindorf@amd.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Cc: oprofile-list <oprofile-list@lists.sourceforge.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change cpu_buffer from array to per_cpu variable in oprofile functions.
[akpm@linux-foundation.org: coding-style fixes]
Cc: Philippe Elie <phil.el@wanadoo.fr>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_dcookie() is always called with a dentry and a vfsmount from a struct
path. Make get_dcookie() take it directly as an argument.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Jan Blunck <jblunck@suse.de>
Acked-by: Christoph Hellwig <hch@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
From: Maynard Johnson <mpjohn@us.ibm.com>
This patch updates the existing arch/powerpc/oprofile/op_model_cell.c
to add in the SPU profiling capabilities. In addition, a 'cell' subdirectory
was added to arch/powerpc/oprofile to hold Cell-specific SPU profiling code.
Exports spu_set_profile_private_kref and spu_get_profile_private_kref which
are used by OProfile to store private profile information in spufs data
structures.
Also incorporated several fixes from other patches (rrn). Check pointer
returned from kzalloc. Eliminated unnecessary cast. Better error
handling and cleanup in the related area. 64-bit unsigned long parameter
was being demoted to 32-bit unsigned int and eventually promoted back to
unsigned long.
Signed-off-by: Carl Love <carll@us.ibm.com>
Signed-off-by: Maynard Johnson <mpjohn@us.ibm.com>
Signed-off-by: Bob Nelson <rrnelson@us.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Cc: Philippe Elie <phil.el@wanadoo.fr>
Cc: John Levon <levon@movementarian.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Applying RCU to the task structure broke oprofile, because
free_task_notify() can now be called from softirq. This means that the
task_mortuary lock must be acquired with irq disabled in order to avoid
intermittent self-deadlock. Since irq is now disabled, the critical
section within process_task_mortuary() has been restructured to be O(1) in
order to maximize scalability and minimize realtime latency degradation.
Kudos to Wu Fengguang for finding this problem!
CC: Wu Fengguang <wfg@mail.ustc.edu.cn>
Cc: Philippe Elie <phil.el@wanadoo.fr>
Cc: John Levon <levon@movementarian.org>
Signed-off-by: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The below patch passes samples from anonymous regions to userspace instead
of just dropping them. This provides the support needed for reporting
anonymous-region code samples (today: basic accumulated results; later:
Java and other dynamically compiled code).
As this changes the format, an upgrade to the just-released 0.9 release of
the userspace tools is required.
This patch is based upon an earlier one by Will Cohen <wcohen@redhat.com>
Signed-off-by: John Levon <levon@movementarian.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch implements a number of smp_processor_id() cleanup ideas that
Arjan van de Ven and I came up with.
The previous __smp_processor_id/_smp_processor_id/smp_processor_id API
spaghetti was hard to follow both on the implementational and on the
usage side.
Some of the complexity arose from picking wrong names, some of the
complexity comes from the fact that not all architectures defined
__smp_processor_id.
In the new code, there are two externally visible symbols:
- smp_processor_id(): debug variant.
- raw_smp_processor_id(): nondebug variant. Replaces all existing
uses of _smp_processor_id() and __smp_processor_id(). Defined
by every SMP architecture in include/asm-*/smp.h.
There is one new internal symbol, dependent on DEBUG_PREEMPT:
- debug_smp_processor_id(): internal debug variant, mapped to
smp_processor_id().
Also, i moved debug_smp_processor_id() from lib/kernel_lock.c into a new
lib/smp_processor_id.c file. All related comments got updated and/or
clarified.
I have build/boot tested the following 8 .config combinations on x86:
{SMP,UP} x {PREEMPT,!PREEMPT} x {DEBUG_PREEMPT,!DEBUG_PREEMPT}
I have also build/boot tested x64 on UP/PREEMPT/DEBUG_PREEMPT. (Other
architectures are untested, but should work just fine.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!