For the common cases where 1000 is a multiple of HZ, or HZ is a multiple of
1000, jiffies_to_msecs() never returns zero when passed a non-zero time
period.
However, if HZ > 1000 and not an integer multiple of 1000 (e.g. 1024 or
1200, as used on alpha and DECstation), jiffies_to_msecs() may return zero
for small non-zero time periods. This may break code that relies on
receiving back a non-zero value.
jiffies_to_usecs() does not need such a fix: one jiffy can only be less
than one µs if HZ > 1000000, and such large values of HZ are already
rejected at build time, twice:
- include/linux/jiffies.h does #error if HZ >= 12288,
- kernel/time/time.c has BUILD_BUG_ON(HZ > USEC_PER_SEC).
Broken since forever.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: linux-alpha@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180622143357.7495-1-geert@linux-m68k.org
At this point, we have converted most of the kernel to use timespec64
consistently in place of timespec, so it seems it's time to make
timespec64 the native structure and define timespec in terms of that
one on 64-bit architectures.
Starting with gcc-5, the compiler can completely optimize away the
timespec_to_timespec64 and timespec64_to_timespec functions on 64-bit
architectures. With older compilers, we introduce a couple of extra
copies of local variables, but those are easily avoided by using
the timespec64 based interfaces consistently, as we do in most of the
important code paths already.
The main upside of removing the hack is that printing the tv_sec
field of a timespec64 structure can now use the %lld format
string on all architectures without a cast to time64_t. Without
this patch, the field is a 'long' type and would have to be printed
using %ld on 64-bit architectures.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: y2038@lists.linaro.org
Cc: John Stultz <john.stultz@linaro.org>
Link: https://lkml.kernel.org/r/20180427134016.2525989-2-arnd@arndb.de
get/put_timespec64() interfaces will eventually be used for
conversions between the new y2038 safe struct __kernel_timespec
and struct timespec64.
The new y2038 safe syscalls have a common entry for native
and compat interfaces.
On compat interfaces, the high order bits of nanoseconds
should be zeroed out. This is because the application code
or the libc do not guarantee zeroing of these. If used without
zeroing, kernel might be at risk of using timespec values
incorrectly.
Note that clearing of bits is dependent on CONFIG_64BIT_TIME
for now. This is until COMPAT_USE_64BIT_TIME has been handled
correctly. x86 will be the first architecture that will use the
CONFIG_64BIT_TIME.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
These functions are used in the repurposed compat syscalls
to provide backward compatibility for using 32 bit time_t
on 32 bit systems.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Dealing with 'struct timeval' users in the y2038 series is a bit tricky:
We have two definitions of timeval that are visible to user space,
one comes from glibc (or some other C library), the other comes from
linux/time.h. The kernel copy is what we want to be used for a number of
structures defined by the kernel itself, e.g. elf_prstatus (used it core
dumps), sysinfo and rusage (used in system calls). These generally tend
to be used for passing time intervals rather than absolute (epoch-based)
times, so they do not suffer from the y2038 overflow. Some of them
could be changed to use 64-bit timestamps by creating new system calls,
others like the core files cannot easily be changed.
An application using these interfaces likely also uses gettimeofday()
or other interfaces that use absolute times, and pass 'struct timeval'
pointers directly into kernel interfaces, so glibc must redefine their
timeval based on a 64-bit time_t when they introduce their y2038-safe
interfaces.
The only reasonable way forward I see is to remove the 'timeval'
definion from the kernel's uapi headers, and change the interfaces that
we do not want to (or cannot) duplicate for 64-bit times to use a new
__kernel_old_timeval definition instead. This type should be avoided
for all new interfaces (those can use 64-bit nanoseconds, or the 64-bit
version of timespec instead), and should be used with great care when
converting existing interfaces from timeval, to be sure they don't suffer
from the y2038 overflow, and only with consensus for the particular user
that using __kernel_old_timeval is better than moving to a 64-bit based
interface. The structure name is intentionally chosen to not conflict
with user space types, and to be ugly enough to discourage its use.
Note that ioctl based interfaces that pass a bare 'timeval' pointer
cannot change to '__kernel_old_timeval' because the user space source
code refers to 'timeval' instead, and we don't want to modify the user
space sources if possible. However, any application that relies on a
structure to contain an embedded 'timeval' (e.g. by passing a pointer
to the member into a function call that expects a timeval pointer) is
broken when that structure gets converted to __kernel_old_timeval. I
don't see any way around that, and we have to rely on the compiler to
produce a warning or compile failure that will alert users when they
recompile their sources against a new libc.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lkml.kernel.org/r/20180315161739.576085-1-arnd@arndb.de
Pull timekeeping updates from John Stultz:
- More y2038 work from Arnd Bergmann
- A new mechanism to allow RTC drivers to specify the resolution of the
RTC so the suspend/resume code can make informed decisions whether to
inject the suspended time or not in case of fast suspend/resume cycles.
On 64-bit architectures, the timespec64 based helpers in linux/time.h
are defined as macros pointing to their timespec based counterparts.
This made sense when they were first introduced, but as we are migrating
away from timespec in general, it's much less intuitive now.
This changes the macros to work in the exact opposite way: we always
provide the timespec64 based helpers and define the old interfaces as
macros for them. Now we can move those macros into linux/time32.h, which
already contains the respective helpers for 32-bit architectures.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The (slow but) ongoing work on conversion from timespec to timespec64
has led some timespec based helper functions to become unused.
No new code should use them, so we can remove the functions entirely.
I'm planning to obsolete additional interfaces next and remove
more of these.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The code to check the adjtimex() or clock_adjtime() arguments is spread
out across multiple files for presumably only historic reasons. As a
preparatation for a rework to get rid of the use of 'struct timeval'
and 'struct timespec' in there, this moves all the portions into
kernel/time/timekeeping.c and marks them as 'static'.
The warp_clock() function here is not as closely related as the others,
but I feel it still makes sense to move it here in order to consolidate
all callers of timekeeping_inject_offset().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
[jstultz: Whitespace fixup]
Signed-off-by: John Stultz <john.stultz@linaro.org>
do_settimeofday() is a wrapper around do_settimeofday64(), so that function
can be called directly. The wrapper can be removed once the last user is
gone.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: y2038@lists.linaro.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Deepa Dinamani <deepa.kernel@gmail.com>
Link: https://lkml.kernel.org/r/20171013183452.3635956-1-arnd@arndb.de
As we change the user space type for the timerfd and posix timer
functions to newer data types, we need some form of conversion
helpers to avoid duplicating that logic.
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add helper functions to convert between struct timespec64 and
struct timespec at userspace boundaries.
This is a preparatory patch to use timespec64 as the basic type
internally in the kernel as timespec is not y2038 safe on 32 bit systems.
The patch helps the cause by containing all data conversions at the
userspace boundaries within these functions.
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Get rid of set_fs() mess and sanitize compat_{get,put}_timex(),
while we are at it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20170607084241.28657-9-viro@ZenIV.linux.org.uk
All uses of the current_fs_time() function have been replaced by other
time interfaces.
And, its use cases can be fulfilled by current_time() or ktime_get_*
variants.
Link: http://lkml.kernel.org/r/1491613030-11599-13-git-send-email-deepa.kernel@gmail.com
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will be needed for the cputime_t to nsec conversion.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I ran into this:
================================================================================
UBSAN: Undefined behaviour in kernel/time/time.c:783:2
signed integer overflow:
5273 + 9223372036854771711 cannot be represented in type 'long int'
CPU: 0 PID: 17363 Comm: trinity-c0 Not tainted 4.8.0-rc1+ #88
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.3-0-ge2fc41e-prebuilt.qemu-project.org
04/01/2014
0000000000000000 ffff88011457f8f0 ffffffff82344f50 0000000041b58ab3
ffffffff84f98080 ffffffff82344ea4 ffff88011457f918 ffff88011457f8c8
ffff88011457f8e0 7fffffffffffefff ffff88011457f6d8 dffffc0000000000
Call Trace:
[<ffffffff82344f50>] dump_stack+0xac/0xfc
[<ffffffff82344ea4>] ? _atomic_dec_and_lock+0xc4/0xc4
[<ffffffff8242f4c8>] ubsan_epilogue+0xd/0x8a
[<ffffffff8242fc04>] handle_overflow+0x202/0x23d
[<ffffffff8242fa02>] ? val_to_string.constprop.6+0x11e/0x11e
[<ffffffff823c7837>] ? debug_smp_processor_id+0x17/0x20
[<ffffffff8131b581>] ? __sigqueue_free.part.13+0x51/0x70
[<ffffffff8146d4e0>] ? rcu_is_watching+0x110/0x110
[<ffffffff8242fc4d>] __ubsan_handle_add_overflow+0xe/0x10
[<ffffffff81476ef8>] timespec64_add_safe+0x298/0x340
[<ffffffff81476c60>] ? timespec_add_safe+0x330/0x330
[<ffffffff812f7990>] ? wait_noreap_copyout+0x1d0/0x1d0
[<ffffffff8184bf18>] poll_select_set_timeout+0xf8/0x170
[<ffffffff8184be20>] ? poll_schedule_timeout+0x2b0/0x2b0
[<ffffffff813aa9bb>] ? __might_sleep+0x5b/0x260
[<ffffffff833c8a87>] __sys_recvmmsg+0x107/0x790
[<ffffffff833c8980>] ? SyS_recvmsg+0x20/0x20
[<ffffffff81486378>] ? hrtimer_start_range_ns+0x3b8/0x1380
[<ffffffff845f8bfb>] ? _raw_spin_unlock_irqrestore+0x3b/0x60
[<ffffffff8148bcea>] ? do_setitimer+0x39a/0x8e0
[<ffffffff813aa9bb>] ? __might_sleep+0x5b/0x260
[<ffffffff833c9110>] ? __sys_recvmmsg+0x790/0x790
[<ffffffff833c91e9>] SyS_recvmmsg+0xd9/0x160
[<ffffffff833c9110>] ? __sys_recvmmsg+0x790/0x790
[<ffffffff823c7853>] ? __this_cpu_preempt_check+0x13/0x20
[<ffffffff8162f680>] ? __context_tracking_exit.part.3+0x30/0x1b0
[<ffffffff833c9110>] ? __sys_recvmmsg+0x790/0x790
[<ffffffff81007bd3>] do_syscall_64+0x1b3/0x4b0
[<ffffffff845f936a>] entry_SYSCALL64_slow_path+0x25/0x25
================================================================================
Line 783 is this:
783 set_normalized_timespec64(&res, lhs.tv_sec + rhs.tv_sec,
784 lhs.tv_nsec + rhs.tv_nsec);
In other words, since lhs.tv_sec and rhs.tv_sec are both time64_t, this
is a signed addition which will cause undefined behaviour on overflow.
Note that this is not currently a huge concern since the kernel should be
built with -fno-strict-overflow by default, but could be a problem in the
future, a problem with older compilers, or other compilers than gcc.
The easiest way to avoid the overflow is to cast one of the arguments to
unsigned (so the addition will be done using unsigned arithmetic).
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
All references to timespec_add_safe() now use timespec64_add_safe().
The plan is to replace struct timespec references with struct timespec64
throughout the kernel as timespec is not y2038 safe.
Drop timespec_add_safe() and use timespec64_add_safe() for all
architectures.
Link: http://lkml.kernel.org/r/1461947989-21926-4-git-send-email-deepa.kernel@gmail.com
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
timespec64_add_safe() has been defined in time64.h for 64 bit systems.
But, 32 bit systems only have an extern function prototype defined.
Provide a definition for the above function.
The function will be necessary as part of y2038 changes. struct
timespec is not y2038 safe. All references to timespec will be replaced
by struct timespec64. The function is meant to be a replacement for
timespec_add_safe().
The implementation is similar to timespec_add_safe().
Link: http://lkml.kernel.org/r/1461947989-21926-2-git-send-email-deepa.kernel@gmail.com
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The do_sys_settimeofday() function uses a timespec, which is not year
2038 safe on 32bit systems.
Thus this patch introduces do_sys_settimeofday64(), which allows us to
transition users of do_sys_settimeofday() to using 64bit time types.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
[jstultz: Include errno-base.h to avoid build issue on some arches]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Handle the following ISO 8601 features in mktime64():
(1) Leap seconds.
Leap seconds are indicated by the seconds parameter being the value
60. Handle this by treating it the same as 00 of the following
minute.
It has been pointed out that a minute may contain two leap seconds.
However, pending discussion of what that looks like and how to handle
it, I'm not going to concern myself with it.
(2) Alternate encodings of midnight.
Two different encodings of midnight are permitted - 00:00:00 and
24:00:00 - the first is midnight today and the second is midnight
tomorrow and is exactly equivalent to the first with tomorrow's date.
As it happens, we don't actually need to change mktime64() to handle either
of these - just comment them as valid parameters.
These facility will be used by the X.509 parser. Doing it in mktime64()
makes the policy common to the whole kernel and easier to find.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
cc: John Stultz <john.stultz@linaro.org>
cc: Rudolf Polzer <rpolzer@google.com>
cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Pull timer updates from Thomas Gleixner:
"Rather large, but nothing exiting:
- new range check for settimeofday() to prevent that boot time
becomes negative.
- fix for file time rounding
- a few simplifications of the hrtimer code
- fix for the proc/timerlist code so the output of clock realtime
timers is accurate
- more y2038 work
- tree wide conversion of clockevent drivers to the new callbacks"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (88 commits)
hrtimer: Handle failure of tick_init_highres() gracefully
hrtimer: Unconfuse switch_hrtimer_base() a bit
hrtimer: Simplify get_target_base() by returning current base
hrtimer: Drop return code of hrtimer_switch_to_hres()
time: Introduce timespec64_to_jiffies()/jiffies_to_timespec64()
time: Introduce current_kernel_time64()
time: Introduce struct itimerspec64
time: Add the common weak version of update_persistent_clock()
time: Always make sure wall_to_monotonic isn't positive
time: Fix nanosecond file time rounding in timespec_trunc()
timer_list: Add the base offset so remaining nsecs are accurate for non monotonic timers
cris/time: Migrate to new 'set-state' interface
kernel: broadcast-hrtimer: Migrate to new 'set-state' interface
xtensa/time: Migrate to new 'set-state' interface
unicore/time: Migrate to new 'set-state' interface
um/time: Migrate to new 'set-state' interface
sparc/time: Migrate to new 'set-state' interface
sh/localtimer: Migrate to new 'set-state' interface
score/time: Migrate to new 'set-state' interface
s390/time: Migrate to new 'set-state' interface
...
The conversion between struct timespec and jiffies is not year 2038
safe on 32bit systems. Introduce timespec64_to_jiffies() and
jiffies_to_timespec64() functions which use struct timespec64 to
make it ready for 2038 issue.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
timespec_trunc() avoids rounding if granularity <= nanoseconds-per-jiffie
(or TICK_NSEC). This optimization assumes that:
1. current_kernel_time().tv_nsec is already rounded to TICK_NSEC (i.e.
with HZ=1000 you'd get 1000000, 2000000, 3000000... but never 1000001).
This is no longer true (probably since hrtimers introduced in 2.6.16).
2. TICK_NSEC is evenly divisible by all possible granularities. This may
be true for HZ=100, 250, 1000, but obviously not for HZ=300 /
TICK_NSEC=3333333 (introduced in 2.6.20).
Thus, sub-second portions of in-core file times are not rounded to on-disk
granularity. I.e. file times may change when the inode is re-read from disk
or when the file system is remounted.
This affects all file systems with file time granularities > 1 ns and < 1s,
e.g. CEPH (1000 ns), UDF (1000 ns), CIFS (100 ns), NTFS (100 ns) and FUSE
(configurable from user mode via struct fuse_init_out.time_gran).
Steps to reproduce with e.g. UDF:
$ dd if=/dev/zero of=udfdisk count=10000 && mkudffs udfdisk
$ mkdir udf && mount udfdisk udf
$ touch udf/test && stat -c %y udf/test
2015-06-09 10:22:56.130006767 +0200
$ umount udf && mount udfdisk udf
$ stat -c %y udf/test
2015-06-09 10:22:56.130006000 +0200
Remounting truncates the mtime to 1 µs.
Fix the rounding in timespec_trunc() and update the documentation.
timespec_trunc() is exclusively used to calculate inode's [acm]time (mostly
via current_fs_time()), and always with super_block.s_time_gran as second
argument. So this can safely be changed without side effects.
Note: This does _not_ fix the issue for FAT's 2 second mtime resolution,
as super_block.s_time_gran isn't prepared to handle different ctime /
mtime / atime resolutions nor resolutions > 1 second.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Karsten Blees <blees@dcon.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
HZ never goes much further 1000 and a bit. And if we ever reach one tick
per microsecond, we might be having a problem.
Lets stop maintaining this special case, just leave a paranoid check.
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc; John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Refactor the usecs_to_jiffies conditional code part in time.c and
jiffies.h putting it into conditional functions rather than #ifdefs
to improve readability. This is analogous to the msecs_to_jiffies()
cleanup in commit ca42aaf0c8 ("time: Refactor msecs_to_jiffies")
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Michal Marek <mmarek@suse.cz>
Link: http://lkml.kernel.org/r/1432832996-12129-1-git-send-email-hofrat@osadl.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Invalid values may overflow later, leading to undefined behaviour when
multiplied by 60 to get the amount of seconds.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Refactor the msecs_to_jiffies conditional code part in time.c and
jiffies.h putting it into conditional functions rather than #ifdefs
to improve readability.
[ tglx: Verified that there is no binary code change ]
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Michal Marek <mmarek@suse.cz>
Link: http://lkml.kernel.org/r/1431951554-5563-2-git-send-email-hofrat@osadl.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
kernel/time/timeconst.h is moved to include/generated/ and generated
by the top level Kbuild. This allows using timeconst.h in an earlier
build stage.
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Michal Marek <mmarek@suse.cz>
Link: http://lkml.kernel.org/r/1431951554-5563-1-git-send-email-hofrat@osadl.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer fixes from Thomas Gleixner:
"A set of small fixes:
- regression fix for exynos_mct clocksource
- trivial build fix for kona clocksource
- functional one liner fix for the sh_tmu clocksource
- two validation fixes to prevent (root only) data corruption in the
kernel via settimeofday and adjtimex. Tagged for stable"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: adjtimex: Validate the ADJ_FREQUENCY values
time: settimeofday: Validate the values of tv from user
clocksource: sh_tmu: Set cpu_possible_mask to fix SMP broadcast
clocksource: kona: fix __iomem annotation
clocksource: exynos_mct: Fix bitmask regression for exynos4_mct_write
An unvalidated user input is multiplied by a constant, which can result in
an undefined behaviour for large values. While this is validated later,
we should avoid triggering undefined behaviour.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
[jstultz: include trivial milisecond->microsecond correction noticed
by Andy]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Pull drm updates from Dave Airlie:
"Highlights:
- AMD KFD driver merge
This is the AMD HSA interface for exposing a lowlevel interface for
GPGPU use. They have an open source userspace built on top of this
interface, and the code looks as good as it was going to get out of
tree.
- Initial atomic modesetting work
The need for an atomic modesetting interface to allow userspace to
try and send a complete set of modesetting state to the driver has
arisen, and been suffering from neglect this past year. No more,
the start of the common code and changes for msm driver to use it
are in this tree. Ongoing work to get the userspace ioctl finished
and the code clean will probably wait until next kernel.
- DisplayID 1.3 and tiled monitor exposed to userspace.
Tiled monitor property is now exposed for userspace to make use of.
- Rockchip drm driver merged.
- imx gpu driver moved out of staging
Other stuff:
- core:
panel - MIPI DSI + new panels.
expose suggested x/y properties for virtual GPUs
- i915:
Initial Skylake (SKL) support
gen3/4 reset work
start of dri1/ums removal
infoframe tracking
fixes for lots of things.
- nouveau:
tegra k1 voltage support
GM204 modesetting support
GT21x memory reclocking work
- radeon:
CI dpm fixes
GPUVM improvements
Initial DPM fan control
- rcar-du:
HDMI support added
removed some support for old boards
slave encoder driver for Analog Devices adv7511
- exynos:
Exynos4415 SoC support
- msm:
a4xx gpu support
atomic helper conversion
- tegra:
iommu support
universal plane support
ganged-mode DSI support
- sti:
HDMI i2c improvements
- vmwgfx:
some late fixes.
- qxl:
use suggested x/y properties"
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits)
drm: sti: fix module compilation issue
drm/i915: save/restore GMBUS freq across suspend/resume on gen4
drm: sti: correctly cleanup CRTC and planes
drm: sti: add HQVDP plane
drm: sti: add cursor plane
drm: sti: enable auxiliary CRTC
drm: sti: fix delay in VTG programming
drm: sti: prepare sti_tvout to support auxiliary crtc
drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off}
drm: sti: fix hdmi avi infoframe
drm: sti: remove event lock while disabling vblank
drm: sti: simplify gdp code
drm: sti: clear all mixer control
drm: sti: remove gpio for HDMI hot plug detection
drm: sti: allow to change hdmi ddc i2c adapter
drm/doc: Document drm_add_modes_noedid() usage
drm/i915: Remove '& 0xffff' from the mask given to WA_REG()
drm/i915: Invert the mask and val arguments in wa_add() and WA_REG()
drm: Zero out DRM object memory upon cleanup
drm/i915/bdw: Fix the write setting up the WIZ hashing mode
...
We've lost the +1 required for correct timeouts in
commit 5ed0bdf21a
Author: Thomas Gleixner <tglx@linutronix.de>
Date: Wed Jul 16 21:05:06 2014 +0000
drm: i915: Use nsec based interfaces
Use ktime_get_raw_ns() and get rid of the back and forth timespec
conversions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: John Stultz <john.stultz@linaro.org>
So fix this up by reinstating our handrolled _timeout function. While
at it bother with handling MAX_JIFFIES.
v2: Convert to usecs (we don't care about the accuracy anyway) first
to avoid overflow issues Dave Gordon spotted.
v3: Drop the explicit MAX_JIFFY_OFFSET check, usecs_to_jiffies should
take care of that already. It might be a bit too enthusiastic about it
though.
v4: Chris has a much nicer color, so use his implementation.
This requires to export nsec_to_jiffies from time.c.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dave Gordon <david.s.gordon@intel.com>
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=82749
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
As part of addressing "y2038 problem" for in-kernel uses, this
patch adds safe mktime64() using time64_t.
After this patch, mktime() is deprecated and all its call sites
will be fixed using mktime64(), after that it can be removed.
Signed-off-by: pang.xunlei <pang.xunlei@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
timeval_to_jiffies tried to round a timeval up to an integral number
of jiffies, but the logic for doing so was incorrect: intervals
corresponding to exactly N jiffies would become N+1. This manifested
itself particularly repeatedly stopping/starting an itimer:
setitimer(ITIMER_PROF, &val, NULL);
setitimer(ITIMER_PROF, NULL, &val);
would add a full tick to val, _even if it was exactly representable in
terms of jiffies_ (say, the result of a previous rounding.) Doing
this repeatedly would cause unbounded growth in val. So fix the math.
Here's what was wrong with the conversion: we essentially computed
(eliding seconds)
jiffies = usec * (NSEC_PER_USEC/TICK_NSEC)
by using scaling arithmetic, which took the best approximation of
NSEC_PER_USEC/TICK_NSEC with denominator of 2^USEC_JIFFIE_SC =
x/(2^USEC_JIFFIE_SC), and computed:
jiffies = (usec * x) >> USEC_JIFFIE_SC
and rounded this calculation up in the intermediate form (since we
can't necessarily exactly represent TICK_NSEC in usec.) But the
scaling arithmetic is a (very slight) *over*approximation of the true
value; that is, instead of dividing by (1 usec/ 1 jiffie), we
effectively divided by (1 usec/1 jiffie)-epsilon (rounding
down). This would normally be fine, but we want to round timeouts up,
and we did so by adding 2^USEC_JIFFIE_SC - 1 before the shift; this
would be fine if our division was exact, but dividing this by the
slightly smaller factor was equivalent to adding just _over_ 1 to the
final result (instead of just _under_ 1, as desired.)
In particular, with HZ=1000, we consistently computed that 10000 usec
was 11 jiffies; the same was true for any exact multiple of
TICK_NSEC.
We could possibly still round in the intermediate form, adding
something less than 2^USEC_JIFFIE_SC - 1, but easier still is to
convert usec->nsec, round in nanoseconds, and then convert using
time*spec*_to_jiffies. This adds one constant multiplication, and is
not observably slower in microbenchmarks on recent x86 hardware.
Tested: the following program:
int main() {
struct itimerval zero = {{0, 0}, {0, 0}};
/* Initially set to 10 ms. */
struct itimerval initial = zero;
initial.it_interval.tv_usec = 10000;
setitimer(ITIMER_PROF, &initial, NULL);
/* Save and restore several times. */
for (size_t i = 0; i < 10; ++i) {
struct itimerval prev;
setitimer(ITIMER_PROF, &zero, &prev);
/* on old kernels, this goes up by TICK_USEC every iteration */
printf("previous value: %ld %ld %ld %ld\n",
prev.it_interval.tv_sec, prev.it_interval.tv_usec,
prev.it_value.tv_sec, prev.it_value.tv_usec);
setitimer(ITIMER_PROF, &prev, NULL);
}
return 0;
}
Cc: stable@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paul Turner <pjt@google.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Reviewed-by: Paul Turner <pjt@google.com>
Reported-by: Aaron Jacobs <jacobsa@google.com>
Signed-off-by: Andrew Hunter <ahh@google.com>
[jstultz: Tweaked to apply to 3.17-rc]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Required for moving drivers to the nanosecond based interfaces.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Right now we have time related prototypes in 3 different header
files. Move it to a single timekeeping header file and move the core
internal stuff into a core private header.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Helper and conversion functions for timespec64.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>