Earlier KEYS code used pure subject key identifiers (fingerprint)
for searching keys. Latest merged code removed that and broke
compatibility with integrity subsytem signatures and original
format of module signatures.
This patch returns back partial matching on SKID.
Reported-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Module signing matches keys by comparing against the key description exactly.
However, the way the key description gets constructed got changed to be
composed of the subject name plus the certificate serial number instead of the
subject name and the subjectKeyId. I changed this to avoid problems with
certificates that don't *have* a subjectKeyId.
Instead, if available, use the raw subjectKeyId to form the key description
and only use the serial number if the subjectKeyId doesn't exist.
Reported-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Make use of the new match string preparsing to overhaul key identification
when searching for asymmetric keys. The following changes are made:
(1) Use the previously created asymmetric_key_id struct to hold the following
key IDs derived from the X.509 certificate or PKCS#7 message:
id: serial number + issuer
skid: subjKeyId + subject
authority: authKeyId + issuer
(2) Replace the hex fingerprint attached to key->type_data[1] with an
asymmetric_key_ids struct containing the id and the skid (if present).
(3) Make the asymmetric_type match data preparse select one of two searches:
(a) An iterative search for the key ID given if prefixed with "id:". The
prefix is expected to be followed by a hex string giving the ID to
search for. The criterion key ID is checked against all key IDs
recorded on the key.
(b) A direct search if the key ID is not prefixed with "id:". This will
look for an exact match on the key description.
(4) Make x509_request_asymmetric_key() take a key ID. This is then converted
into "id:<hex>" and passed into keyring_search() where match preparsing
will turn it back into a binary ID.
(5) X.509 certificate verification then takes the authority key ID and looks
up a key that matches it to find the public key for the certificate
signature.
(6) PKCS#7 certificate verification then takes the id key ID and looks up a
key that matches it to find the public key for the signed information
block signature.
Additional changes:
(1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the
cert to be rejected with -EBADMSG.
(2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP
public key fingerprints. If PGP is supported in future, this should
generate a key ID that carries the fingerprint.
(3) Th ca_keyid= kernel command line option is now converted to a key ID and
used to match the authority key ID. Possibly this should only match the
actual authKeyId part and not the issuer as well.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
PKCS#7 validation requires access to the serial number and the raw names in an
X.509 certificate.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
This patch makes use of the newly defined common hash algorithm info,
replacing, for example, PKEY_HASH with HASH_ALGO.
Changelog:
- Lindent fixes - Mimi
CC: David Howells <dhowells@redhat.com>
Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Embed a public_key_signature struct in struct x509_certificate, eliminating
now unnecessary fields, and split x509_check_signature() to create a filler
function for it that attaches a digest of the signed data and an MPI that
represents the signature data. x509_free_certificate() is then modified to
deal with these.
Whilst we're at it, export both x509_check_signature() and the new
x509_get_sig_params().
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
Store public key algo ID in public_key struct for reference purposes. This
allows it to be removed from the x509_certificate struct and used to find a
default in public_key_verify_signature().
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
Per X.509 spec in 4.2.1.1 section, the structure of Authority Key
Identifier Extension is:
AuthorityKeyIdentifier ::= SEQUENCE {
keyIdentifier [0] KeyIdentifier OPTIONAL,
authorityCertIssuer [1] GeneralNames OPTIONAL,
authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }
KeyIdentifier ::= OCTET STRING
When a certificate also provides
authorityCertIssuer and authorityCertSerialNumber then the length of
AuthorityKeyIdentifier SEQUENCE is likely to long form format.
e.g.
The example certificate demos/tunala/A-server.pem in openssl source:
X509v3 Authority Key Identifier:
keyid:49:FB:45:72:12:C4:CC:E1:45:A1:D3:08:9E:95:C4:2C:6D:55:3F:17
DirName:/C=NZ/L=Wellington/O=Really Irresponsible Authorisation Authority (RIAA)/OU=Cert-stamping/CN=Jackov al-Trades/emailAddress=none@fake.domain
serial:00
Current parsing rule of OID_authorityKeyIdentifier only take care the
short form format, it causes load certificate to modsign_keyring fail:
[ 12.061147] X.509: Extension: 47
[ 12.075121] MODSIGN: Problem loading in-kernel X.509 certificate (-74)
So, this patch add the parsing rule for support long form format against
Authority Key Identifier.
v3:
Changed the size check in "Short Form length" case, we allow v[3] smaller
then (vlen - 4) because authorityCertIssuer and authorityCertSerialNumber
are also possible attach in AuthorityKeyIdentifier sequence.
v2:
- Removed comma from author's name.
- Moved 'Short Form length' comment inside the if-body.
- Changed the type of sub to size_t.
- Use ASN1_INDEFINITE_LENGTH rather than writing 0x80 and 127.
- Moved the key_len's value assignment before alter v.
- Fixed the typo of octets.
- Add 2 to v before entering the loop for calculate the length.
- Removed the comment of check vlen.
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Josh Boyer <jwboyer@redhat.com>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Chun-Yi Lee <jlee@suse.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Fix printk format warning in x509_cert_parser.c:
crypto/asymmetric_keys/x509_cert_parser.c: In function 'x509_note_OID':
crypto/asymmetric_keys/x509_cert_parser.c:113:3: warning: format '%zu' expects type 'size_t', but argument 2 has type 'long unsigned int'
Builds cleanly on i386 and x86_64.
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Cc: David Howells <dhowells@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The current choice of lifetime for the autogenerated X.509 of 100 years,
putting the validTo date in 2112, causes problems on 32-bit systems where a
32-bit time_t wraps in 2106. 64-bit x86_64 systems seem to be unaffected.
This can result in something like:
Loading module verification certificates
X.509: Cert 6e03943da0f3b015ba6ed7f5e0cac4fe48680994 has expired
MODSIGN: Problem loading in-kernel X.509 certificate (-127)
Or:
X.509: Cert 6e03943da0f3b015ba6ed7f5e0cac4fe48680994 is not yet valid
MODSIGN: Problem loading in-kernel X.509 certificate (-129)
Instead of turning the dates into time_t values and comparing, turn the system
clock and the ASN.1 dates into tm structs and compare those piecemeal instead.
Reported-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Josh Boyer <jwboyer@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Add a crypto key parser for binary (DER) encoded X.509 certificates. The
certificate is parsed and, if possible, the signature is verified.
An X.509 key can be added like this:
# keyctl padd crypto bar @s </tmp/x509.cert
15768135
and displayed like this:
# cat /proc/keys
00f09a47 I--Q--- 1 perm 39390000 0 0 asymmetri bar: X509.RSA e9fd6d08 []
Note that this only works with binary certificates. PEM encoded certificates
are ignored by the parser.
Note also that the X.509 key ID is not congruent with the PGP key ID, but for
the moment, they will match.
If a NULL or "" name is given to add_key(), then the parser will generate a key
description from the CertificateSerialNumber and Name fields of the
TBSCertificate:
00aefc4e I--Q--- 1 perm 39390000 0 0 asymmetri bfbc0cd76d050ea4:/C=GB/L=Cambridge/O=Red Hat/CN=kernel key: X509.RSA 0c688c7b []
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>