- Define a stub irq_create_of_mapping for x86 as a stop-gap solution until
drivers/of/irq is further along.
- Define irq_dispose_mapping for x86 to appease of_i2c.c
These are needed to allow stuff in drivers/of/ to build on x86. This stuff
will eventually get replaced; quoting Grant,
"The long term plan is to have the drivers/of/ code handling the mapping
intelligently like powerpc currently does." But for now, just provide
these functions.
Signed-off-by: Andres Salomon <dilinger@queued.net>
LKML-Reference: <20101111214526.5de7121b@queued.net>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (96 commits)
apic, x86: Use BIOS settings for IBS and MCE threshold interrupt LVT offsets
apic, x86: Check if EILVT APIC registers are available (AMD only)
x86: ioapic: Call free_irte only if interrupt remapping enabled
arm: Use ARCH_IRQ_INIT_FLAGS
genirq, ARM: Fix boot on ARM platforms
genirq: Fix CONFIG_GENIRQ_NO_DEPRECATED=y build
x86: Switch sparse_irq allocations to GFP_KERNEL
genirq: Switch sparse_irq allocator to GFP_KERNEL
genirq: Make sparse_lock a mutex
x86: lguest: Use new irq allocator
genirq: Remove the now unused sparse irq leftovers
genirq: Sanitize dynamic irq handling
genirq: Remove arch_init_chip_data()
x86: xen: Sanitise sparse_irq handling
x86: Use sane enumeration
x86: uv: Clean up the direct access to irq_desc
x86: Make io_apic.c local functions static
genirq: Remove irq_2_iommu
x86: Speed up the irq_remapped check in hot pathes
intr_remap: Simplify the code further
...
Fix up trivial conflicts in arch/x86/Kconfig
Provide a mechanism that allows running code in IRQ context. It is
most useful for NMI code that needs to interact with the rest of the
system -- like wakeup a task to drain buffers.
Perf currently has such a mechanism, so extract that and provide it as
a generic feature, independent of perf so that others may also
benefit.
The IRQ context callback is generated through self-IPIs where
possible, or on architectures like powerpc the decrementer (the
built-in timer facility) is set to generate an interrupt immediately.
Architectures that don't have anything like this get to do with a
callback from the timer tick. These architectures can call
irq_work_run() at the tail of any IRQ handlers that might enqueue such
work (like the perf IRQ handler) to avoid undue latencies in
processing the work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[ various fixes ]
Signed-off-by: Huang Ying <ying.huang@intel.com>
LKML-Reference: <1287036094.7768.291.camel@yhuang-dev>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Before moving the irq chips to the new functions, fixup direct callers.
The cpu offline irq fixup code needs to become generic and archs need
to honour the "force" flag as an indicator, but that's for later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Convert locks which cannot be sleeping locks in preempt-rt to
raw_spinlocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits)
x86, apic: Enable lapic nmi watchdog on AMD Family 11h
x86: Remove unnecessary mdelay() from cpu_disable_common()
x86, ioapic: Document another case when level irq is seen as an edge
x86, ioapic: Fix the EOI register detection mechanism
x86, io-apic: Move the effort of clearing remoteIRR explicitly before migrating the irq
x86: SGI UV: Map low MMR ranges
x86: apic: Print out SRAT table APIC id in hex
x86: Re-get cfg_new in case reuse/move irq_desc
x86: apic: Remove not needed #ifdef
x86: io-apic: IO-APIC MMIO should not fail on resource insertion
x86: Remove asm/apicnum.h
x86: apic: Do not use stacked physid_mask_t
x86, apic: Get rid of apicid_to_cpu_present assign on 64-bit
x86, ioapic: Use snrpintf while set names for IO-APIC resourses
x86, apic: Use PAGE_SIZE instead of numbers
x86: Remove local_irq_enable()/local_irq_disable() in fixup_irqs()
x86: Use EOI register in io-apic on intel platforms
x86: Force irq complete move during cpu offline
x86: Remove move_cleanup_count from irq_cfg
x86, intr-remap: Avoid irq_chip mask/unmask in fixup_irqs() for intr-remapping
...
irq_thermal_count is only being maintained when
X86_THERMAL_VECTOR, and both X86_THERMAL_VECTOR and
X86_MCE_THRESHOLD don't need extra wrapping in X86_MCE
conditionals.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Yong Wang <yong.y.wang@intel.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Arjan van de Ven <arjan@infradead.org>
LKML-Reference: <4B06AFA902000078000211F8@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
To ensure that we handle all the pending interrupts (destined
for this cpu that is going down) in the interrupt subsystem
before the cpu goes offline, fixup_irqs() does:
local_irq_enable();
mdelay(1);
local_irq_disable();
Enabling interrupts is not a good thing as this cpu is already
offline. So this patch replaces that logic with,
mdelay(1);
check APIC_IRR bits
Retrigger the irq at the new destination if any interrupt has arrived
via IPI.
For IO-APIC level triggered interrupts, this retrigger IPI will
appear as an edge interrupt. ack_apic_level() will detect this
condition and IO-APIC RTE's remoteIRR is cleared using directed
EOI(using IO-APIC EOI register) on Intel platforms and for
others it uses the existing mask+edge logic followed by
unmask+level.
We can also remove mdelay() and then send spuriuous interrupts
to new cpu targets for all the irqs that were handled previously
by this cpu that is going offline. While it works, I have seen
spurious interrupt messages (nothing wrong but still annoying
messages during cpu offline, which can be seen during
suspend/resume etc)
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Gary Hade <garyhade@us.ibm.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
LKML-Reference: <20091026230002.043281924@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a cpu goes offline, fixup_irqs() try to move irq's
currently destined to the offline cpu to a new cpu. But this
attempt will fail if the irq is recently moved to this cpu and
the irq still hasn't arrived at this cpu (for non intr-remapping
platforms this is when we free the vector allocation at the
previous destination) that is about to go offline.
This will endup with the interrupt subsystem still pointing the
irq to the offline cpu, causing that irq to not work any more.
Fix this by forcing the irq to complete its move (its been a
long time we moved the irq to this cpu which we are offlining
now) and then move this irq to a new cpu before this cpu goes
offline.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Gary Hade <garyhade@us.ibm.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
LKML-Reference: <20091026230001.848830905@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In the presence of interrupt-remapping, irqs will be migrated in
the process context and we don't do (and there is no need to)
irq_chip mask/unmask while migrating the interrupt.
Similarly fix the fixup_irqs() that get called during cpu
offline and avoid calling irq_chip mask/unmask for irqs that are
ok to be migrated in the process context.
While we didn't observe any race condition with the existing
code, this change takes complete advantage of
interrupt-remapping in the newer generation platforms and avoids
any potential HW lockup's (that often worry Eric :)
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: garyhade@us.ibm.com
LKML-Reference: <20091026230001.661423939@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is no reason to have different fixup_irqs() for 32-bit and
64-bit kernels. Unify by using the superior 64-bit version for
both the kernels.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Gary Hade <garyhade@us.ibm.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
LKML-Reference: <20091026230001.562512739@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In 'cdd6c482c9ff9c55475ee7392ec8f672eddb7be6', we renamed
Performance Counters -> Performance Events.
The name showed up in /proc/interrupts also needs a change. I use
PMI (Performance monitoring interrupt) here, since it is the
official name used in Intel's documents.
Signed-off-by: Li Hong <lihong.hi@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <20091014105039.GA22670@uhli>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This reverts commit 9bcbdd9c58.
The real bug producing LatencyTop latencies has been fixed in:
f5dc375: sched: Update the clock of runqueue select_task_rq() selected
And the commit being reverted here triggers local timer processing
from every device IRQ. If device IRQs come in at a high frequency,
this could cause a performance regression.
The commit being reverted here purely 'fixed' the reported latency
as a side effect, because CPUs were being moved out of idle more
often.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Frans Pop <elendil@planet.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <20091008064041.67219b13@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that range timers and deferred timers are common, I found a
problem with these using the "perf timechart" tool. Frans Pop also
reported high scheduler latencies via LatencyTop, when using
iwlagn.
It turns out that on x86, these two 'opportunistic' timers only get
checked when another "real" timer happens. These opportunistic
timers have the objective to save power by hitchhiking on other
wakeups, as to avoid CPU wakeups by themselves as much as possible.
The change in this patch runs this check not only at timer
interrupts, but at all (device) interrupts. The effect is that:
1) the deferred timers/range timers get delayed less
2) the range timers cause less wakeups by themselves because
the percentage of hitchhiking on existing wakeup events goes up.
I've verified the working of the patch using "perf timechart", the
original exposed bug is gone with this patch. Frans also reported
success - the latencies are now down in the expected ~10 msec
range.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Tested-by: Frans Pop <elendil@planet.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091008064041.67219b13@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Drop the CONFIG_X86_NEW_MCE symbol and change all
references to it to check for CONFIG_X86_MCE directly.
No code changes
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, nmi: Use predefined numbers instead of hardcoded one
x86: asm/processor.h: remove double declaration
x86, mtrr: replace MTRRdefType_MSR with msr-index's MSR_MTRRdefType
x86, mtrr: replace MTRRfix4K_C0000_MSR with msr-index's MSR_MTRRfix4K_C0000
x86, mtrr: remove mtrr MSRs double declaration
x86, mtrr: replace MTRRfix16K_80000_MSR with msr-index's MSR_MTRRfix16K_80000
x86, mtrr: replace MTRRfix64K_00000_MSR with msr-index's MSR_MTRRfix64K_00000
x86, mtrr: replace MTRRcap_MSR with msr-index's MSR_MTRRcap
x86: mce: remove duplicated #include
x86: msr-index.h remove duplicate MSR C001_0015 declaration
x86: clean up arch/x86/kernel/tsc_sync.c a bit
x86: use symbolic name for VM86_SIGNAL when used as vm86 default return
x86: added 'ifndef _ASM_X86_IOMAP_H' to iomap.h
x86: avoid multiple declaration of kstack_depth_to_print
x86: vdso/vma.c declare vdso_enabled and arch_setup_additional_pages before they get used
x86: clean up declarations and variables
x86: apic/x2apic_cluster.c x86_cpu_to_logical_apicid should be static
x86 early quirks: eliminate unused function
Make the MCE counters work on 32bit and add poll count in
arch_irq_stat_cpu.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Keep a count of the machine check polls (or CMCI events) in
/proc/interrupts.
Andi needs this for debugging, but it's also useful in general
to see what's going in by the kernel.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Useful for debugging, but it's also good general policy
to have a counter for all special interrupts there. This makes it easier
to diagnose where a CPU is spending its time.
[ Impact: feature, debugging tool ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Merge reason: arch/x86/kernel/irqinit_{32,64}.c unified in irq/numa
and modified in x86/mce3; this merge resolves the conflict.
Conflicts:
arch/x86/kernel/irqinit.c
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The 64bit machine check code is in many ways much better than
the 32bit machine check code: it is more specification compliant,
is cleaner, only has a single code base versus one per CPU,
has better infrastructure for recovery, has a cleaner way to communicate
with user space etc. etc.
Use the 64bit code for 32bit too.
This is the second attempt to do this. There was one a couple of years
ago to unify this code for 32bit and 64bit. Back then this ran into some
trouble with K7s and was reverted.
I believe this time the K7 problems (and some others) are addressed.
I went over the old handlers and was very careful to retain
all quirks.
But of course this needs a lot of testing on old systems. On newer
64bit capable systems I don't expect much problems because they have been
already tested with the 64bit kernel.
I made this a CONFIG for now that still allows to select the old
machine check code. This is mostly to make testing easier,
if someone runs into a problem we can ask them to try
with the CONFIG switched.
The new code is default y for more coverage.
Once there is confidence the 64bit code works well on older hardware
too the CONFIG_X86_OLD_MCE and the associated code can be easily
removed.
This causes a behaviour change for 32bit installations. They now
have to install the mcelog package to be able to log
corrected machine checks.
The 64bit machine check code only handles CPUs which support the
standard Intel machine check architecture described in the IA32 SDM.
The 32bit code has special support for some older CPUs which
have non standard machine check architectures, in particular
WinChip C3 and Intel P5. I made those a separate CONFIG option
and kept them for now. The WinChip variant could be probably
removed without too much pain, it doesn't really do anything
interesting. P5 is also disabled by default (like it
was before) because many motherboards have it miswired, but
according to Alan Cox a few embedded setups use that one.
Forward ported/heavily changed version of old patch, original patch
included review/fixes from Thomas Gleixner, Bert Wesarg.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: refactor, speed up and robustize code
In case if apic was disabled by kernel option
or by hardware limits we can use dummy operations
in apic->write to simplify the ack_APIC_irq() code.
At the lame time the patch fixes the missed EOI in
do_IRQ function (which has place if kernel is compiled
as X86-32 and interrupt without handler happens where
apic was not asked to be disabled via kernel option).
Note that native_apic_write_dummy() consists of
WARN_ON_ONCE to catch any buggy writes on enabled
APICs. Could be removed after some time of testing.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
LKML-Reference: <20090412165058.724788431@openvz.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, robustization
1) guard ack_bad_irq with printk_ratelimit since there is no
guarantee we will not be flooded one day
2) use pr_emerg() helper
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
LKML-Reference: <20090412165058.277579847@openvz.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no code changed
- syscalls.h update declarations due to unifications
- irq.c declare smp_generic_interrupt() before it gets used
- process.c declare sys_fork() and sys_vfork() before they get used
- tsc.c rename tsc_khz shadowed variable
- apic/probe_32.c declare apic_default before it gets used
- apic/nmi.c prev_nmi_count should be unsigned
- apic/io_apic.c declare smp_irq_move_cleanup_interrupt() before it gets used
- mm/init.c declare direct_gbpages and free_initrd_mem before they get used
Signed-off-by: Jaswinder Singh Rajput <jaswinder@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now /proc/interrupts of tip tree has new counters:
PLT: Platform interrupts
Format change of output, as like that by commit:
commit 7a81d9a7da
x86: smarten /proc/interrupts output
should be applied to these new counters too.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Jan Beulich <jbeulich@novell.com>
LKML-Reference: <49C98DEA.8060208@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now /proc/interrupts of tip tree has new counters:
CNT: Performance counter interrupts
Format change of output, as like that by commit:
commit 7a81d9a7da
x86: smarten /proc/interrupts output
should be applied to these new counters too.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Jan Beulich <jbeulich@novell.com>
LKML-Reference: <49C98DEA.8060208@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Implement set_perf_counter_pending() with a self-IPI so that it will
run ASAP in a usable context.
For now use a second IRQ vector, because the primary vector pokes
the apic in funny ways that seem to confuse things.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094517.724626696@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Merge reason: we have gathered quite a few conflicts, need to merge upstream
Conflicts:
arch/powerpc/kernel/Makefile
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/hardirq.h
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/cpu/common.c
arch/x86/kernel/irq.c
arch/x86/kernel/syscall_table_32.S
arch/x86/mm/iomap_32.c
include/linux/sched.h
kernel/Makefile
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: change /proc/interrupts output ABI
With the number of interrupts on large systems growing, assumptions on
the width an interrupt number requires when converted to a decimal
string turn invalid. Therefore, calculate the maximum number of digits
dynamically.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
LKML-Reference: <49B911EB.76E4.0078.0@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch allocates a system interrupt vector for various platform
specific uses.
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: john stultz <johnstul@us.ibm.com>
LKML-Reference: <20090304185605.GA24419@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
make it simpler, don't need have one extra struct.
v2: fix the sgi_uv build
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the differences in interrupt handling hoisted into handle_irq(),
do_IRQ is more or less identical between 32 and 64 bit, so unify it.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts:
arch/x86/include/asm/pda.h
We merge tip/core/percpu into tip/perfcounters/core because of a
semantic and contextual conflict: the former eliminates the PDA,
while the latter extends it with apic_perf_irqs field.
Resolve the conflict by moving the new field to the irq_cpustat
structure on 64-bit too.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: build fix
lguest can be built as a module and makes use of this new symbol:
ERROR: "vector_used_by_percpu_irq" [drivers/lguest/lg.ko] undefined!
export it.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Implement performance counters for x86 Intel CPUs.
It's simplified right now: the PERFMON CPU feature is assumed,
which is available in Core2 and later Intel CPUs.
The design is flexible to be extended to more CPU types as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new feature
Problem on distro kernels: irq_desc[NR_IRQS] takes megabytes of RAM with
NR_CPUS set to large values. The goal is to be able to scale up to much
larger NR_IRQS value without impacting the (important) common case.
To solve this, we generalize irq_desc[NR_IRQS] to an (optional) array of
irq_desc pointers.
When CONFIG_SPARSE_IRQ=y is used, we use kzalloc_node to get irq_desc,
this also makes the IRQ descriptors NUMA-local (to the site that calls
request_irq()).
This gets rid of the irq_cfg[] static array on x86 as well: irq_cfg now
uses desc->chip_data for x86 to store irq_cfg.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix off-by-one in for_each_irq_desc_reverse().
Impact is near zero in practice, because nothing substantial wants to
iterate down to IRQ#0 - but fix it nevertheless.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
show_interrupts() and proc helpers are basically the same for
32 and 64 bit. Move them to a shared source file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>