Trivial fix to spelling mistake in tb_sw_warn warning message
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We will be helping Andreas to maintain the Thunderbolt driver.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Since there are no such tool yet that handles all the low-level details
of connecting devices and upgrading their firmware, add a small document
that shows how the Thunderbolt bus can be used directly from command
line.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Starting from Intel Falcon Ridge the NVM firmware can be upgraded by
using DMA configuration based mailbox commands. If we detect that the
host or device (device support starts from Intel Alpine Ridge) has the
DMA configuration based mailbox we expose NVM information to the
userspace as two separate Linux NVMem devices: nvm_active and
nvm_non_active. The former is read-only portion of the active NVM which
firmware upgrade tools can be use to find out suitable NVM image if the
device identification strings are not enough.
The latter is write-only portion where the new NVM image is to be
written by the userspace. It is up to the userspace to find out right
NVM image (the kernel does very minimal validation). The ICM firmware
itself authenticates the new NVM firmware and fails the operation if it
is not what is expected.
We also expose two new sysfs files per each switch: nvm_version and
nvm_authenticate which can be used to read the active NVM version and
start the upgrade process.
We also introduce safe mode which is the mode a switch goes when it does
not have properly authenticated firmware. In this mode the switch only
accepts a couple of commands including flashing a new NVM firmware image
and triggering power cycle.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Starting from Intel Falcon Ridge the internal connection manager running
on the Thunderbolt host controller has been supporting 4 security
levels. One reason for this is to prevent DMA attacks and only allow
connecting devices the user trusts.
The internal connection manager (ICM) is the preferred way of connecting
Thunderbolt devices over software only implementation typically used on
Macs. The driver communicates with ICM using special Thunderbolt ring 0
(control channel) messages. In order to handle these messages we add
support for the ICM messages to the control channel.
The security levels are as follows:
none - No security, all tunnels are created automatically
user - User needs to approve the device before tunnels are created
secure - User need to approve the device before tunnels are created.
The device is sent a challenge on future connects to be able
to verify it is actually the approved device.
dponly - Only Display Port and USB tunnels can be created and those
are created automatically.
The security levels are typically configurable from the system BIOS and
by default it is set to "user" on many systems.
In this patch each Thunderbolt device will have either one or two new
sysfs attributes: authorized and key. The latter appears for devices
that support secure connect.
In order to identify the device the user can read identication
information, including UUID and name of the device from sysfs and based
on that make a decision to authorize the device. The device is
authorized by simply writing 1 to the "authorized" sysfs attribute. This
is following the USB bus device authorization mechanism. The secure
connect requires an additional challenge step (writing 2 to the
"authorized" attribute) in future connects when the key has already been
stored to the NVM of the device.
Non-ICM systems (before Alpine Ridge) continue to use the existing
functionality and the security level is set to none. For systems with
Alpine Ridge, even on Apple hardware, we will use ICM.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On PCs the NHI host controller is only present when there is a device
connected. When the last device is disconnected the host controller will
dissappear shortly (within 10s). Now if that happens when we are
suspended we should not try to touch the hardware anymore, so add a flag
for this and check it before we re-enable rings.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The DMA (NHI) port of a switch provides access to the NVM of the host
controller (and devices starting from Intel Alpine Ridge). The NVM
contains also more complete DROM for the root switch including vendor
and device identification strings.
This will look for the DMA port capability for each switch and if found
populates sw->dma_port. We then teach tb_drom_read() to read the DROM
information from NVM if available for the root switch.
The DMA port capability also supports upgrading the NVM for both host
controller and devices which will be added in subsequent patches.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In some cases it is useful to know what is the Thunderbolt generation
the switch supports. This introduces a new field to struct switch that
stores the generation of the switch based on the device ID. Unknown
switches (there should be none) are assumed to be first generation to be
on the safe side.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The host controller includes two sets of registers that are used to
communicate with the firmware. Add functions that can be used to access
these registers.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add Intel Win Ridge (Thunderbolt 2) and Alpine Ridge (Thunderbolt 3)
controller PCI IDs to the list of supported devices.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If a request times out the response might arrive right after the request
is failed. This response is pushed to the kfifo and next request will
read it instead. Since it most likely will not pass our validation
checks in parse_header() the next request will fail as well, and
response to that request will be pushed to the kfifo, ad infinitum.
We end up in a situation where all requests fail and no devices can be
added anymore until the driver is unloaded and reloaded again.
To overcome this, rework the control channel so that we will have a
queue of outstanding requests. Each request will be handled in turn and
the response is validated against what is expected. Unexpected packets
(for example responses for requests that have been timed out) are
dropped. This model is copied from Greybus implementation with small
changes here and there to get it cope with Thunderbolt control packets.
In addition the configuration packets support sequence number which the
switch is supposed to copy from the request to response. We use this to
drop responses that are already timed out. Taking advantage of the
sequence number, we automatically retry configuration read/write 4 times
before giving up.
Also timeout is not a programming error so there is no need to trigger a
scary backtrace (WARN), instead we just log a warning. After all
Thunderbolt devices are hot-pluggable by definition which means user can
unplug a device any time and that is totally acceptable.
With this change there is no need to take the global domain lock when
sending configuration packets anymore. This is useful when we add
support for cross-domain (XDomain) communication later on.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently the control channel (ctl.c) handles the one supported
notification (PLUG_EVENT) and sends back ACK accordingly. However, we
are going to add support for the internal connection manager (ICM) that
needs to handle a different notifications. So instead of dealing
everything in the control channel, we change the callback to take an
arbitrary thunderbolt packet and convert the native connection manager
to handle the event itself.
In addition we only push replies we know of to the response FIFO.
Everything else is treated as notification (or request) and is expected
to be dealt by the connection manager implementation.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We will be using this function in files introduced in subsequent
patches. While there the function is renamed to tb_cfg_make_header()
following tb_cfg_get_route().
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We are going to use it when we change the connection manager to handle
events itself. Also rename it to follow naming convention used in
functions exposed in ctl.h.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We will be forwarding notifications received from the control channel to
the connection manager implementations. This way they can decide what to
do if anything when a notification is received.
To be able to use control channel messages from other files, move them
to tb_msgs.h.
No functional changes intended.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The device DROM contains name of the vendor and device among other
things. Extract this information and expose it to the userspace via two
new attributes.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently tb_drom_parse_entry() is only able to parse drom entries of
type TB_DROM_ENTRY_PORT. Rename it to tb_drom_parse_entry_port().
Fold tb_drom_parse_port_entry() into it.
Its return value is currently ignored. Evaluate it and abort parsing on
error.
Change tb_drom_parse_entries() to accommodate for parsing of other entry
types than TB_DROM_ENTRY_PORT.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There are devices out there where CRC32 of the DROM is not correct. One
reason for this is that the ICM firmware does not validate it and it
seems that neither does the Apple driver. To be able to support such
devices we continue parsing the DROM contents regardless of whether
CRC32 failed or not. We still keep the warning there.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
All non-root switches are expected to have DROM so if the operation
fails, it might be due the user unlugging the device. There is no point
continuing adding the switch further in that case. Just bail out.
For root switches (hosts) the DROM is either retrieved from a EFI
variable, NVM or hard-coded.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Thunderbolt domain consists of switches that are connected to each
other, forming a bus. This will convert each switch into a real Linux
device structure and adds them to the domain. The advantage here is
that we get all the goodies from the driver core, like reference
counting and sysfs hierarchy for free.
Also expose device identification information to the userspace via new
sysfs attributes.
In order to support internal connection manager (ICM) we separate switch
configuration into its own function (tb_switch_configure()) which is
only called by the existing native connection manager implementation
used on Macs.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Thunderbolt fabric consists of one or more switches. This fabric is
called domain and it is controlled by an entity called connection
manager. The connection manager can be either internal (driven by a
firmware running on the host controller) or external (software driver).
This driver currently implements support for the latter.
In order to manage switches and their properties more easily we model
this domain structure as a Linux bus. Each host controller adds a domain
device to this bus, and these devices are named as domainN where N
stands for index or id of the current domain.
We then abstract connection manager specific operations into a new
structure tb_cm_ops and convert the existing tb.c to fill those
accordingly. This makes it easier to add support for the internal
connection manager in subsequent patches.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Following the usual pattern used in many places, we allow passing NULL
pointer to tb_ctl_free(). Then the user can call the function regardless
if it has allocated control channel or not making the code bit simpler.
Suggested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Organization of the capabilities in switches and ports is not so random
after all. Rework the capability handling functionality so that it
follows how capabilities are organized and provide two new functions
(tb_switch_find_vse_cap() and tb_port_find_cap()) which can be used to
extract capabilities for ports and switches. Then convert the current
users over these.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Intel Thunderbolt controllers support up to 16 MSI-X vectors. Using
MSI-X is preferred over MSI or legacy interrupt and may bring additional
performance because there is no need to check the status registers which
interrupt was triggered.
While there we convert comments in structs tb_ring and tb_nhi to follow
kernel-doc format more closely.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
DROM version 2 is compatible with the previous generation so no need to
warn about that.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
At least Falcon Ridge when in host mode does not have any kind of DROM
available and reading DROM offset returns 0 for these. Do not try to
read DROM any further in that case.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The root switch is part of the host controller and cannot be physically
removed, so there is no point of reading UID again on resume in order to
check if the root switch is still the same.
Suggested-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
These functions should not (and do not) modify the argument in any way
so make it const.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This adds a driver for mmio-based syscon multiplexers controlled by
bitfields in a syscon register range.
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This adds device tree binding documentation for mmio-based syscon
multiplexers controlled by a bitfields in a syscon register range.
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Analog Devices ADG792A/G is a triple 4:1 mux.
Reviewed-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Analog Devices ADG792A/G is a triple 4:1 mux.
Acked-by: Jonathan Cameron <jic23@kernel.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This is a general purpose i2c mux that uses a multiplexer controlled by
the multiplexer subsystem to do the muxing.
The user can select if the mux is to be mux-locked and parent-locked
as described in Documentation/i2c/i2c-topology.
Acked-by: Jonathan Cameron <jic23@kernel.org>
Acked-by: Wolfram Sang <wsa@the-dreams.de>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Describe how a general purpose multiplexer controller is used to mux an
i2c bus.
Acked-by: Jonathan Cameron <jic23@kernel.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When a multiplexer changes how an iio device behaves (for example
by feeding different signals to an ADC), this driver can be used
to create one virtual iio channel for each multiplexer state.
Depends on the generic multiplexer subsystem.
Cache any ext_info values from the parent iio channel, creating a private
copy of the ext_info attributes for each multiplexer state/channel.
Reviewed-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Describe how a multiplexer can be used to select which signal is fed to
an io-channel.
Acked-by: Jonathan Cameron <jic23@kernel.org>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Extend the inkern api with functions for reading and writing ext_info
of iio channels.
Acked-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The driver builds a single multiplexer controller using a number
of gpio pins. For N pins, there will be 2^N possible multiplexer
states. The GPIO pins can be connected (by the hardware) to several
multiplexers, which in that case will be operated in parallel.
Reviewed-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add a new minimalistic subsystem that handles multiplexer controllers.
When multiplexers are used in various places in the kernel, and the
same multiplexer controller can be used for several independent things,
there should be one place to implement support for said multiplexer
controller.
A single multiplexer controller can also be used to control several
parallel multiplexers, that are in turn used by different subsystems
in the kernel, leading to a need to coordinate multiplexer accesses.
The multiplexer subsystem handles this coordination.
Thanks go out to Lars-Peter Clausen, Jonathan Cameron, Rob Herring,
Wolfram Sang, Paul Gortmaker, Dan Carpenter, Colin Ian King, Greg
Kroah-Hartman and last but certainly not least to Philipp Zabel for
helpful comments, reviews, patches and general encouragement!
Reviewed-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de>
Tested-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Allow specifying that a single multiplexer controller can be used to
control several parallel multiplexers, thus enabling sharing of the
multiplexer controller by different consumers.
Add a binding for a first mux controller in the form of a GPIO based mux
controller.
Acked-by: Jonathan Cameron <jic23@kernel.org>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Everything else is indented with two spaces, so fix the odd one out.
Acked-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Peter Rosin <peda@axentia.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This driver enables the LPC snoop hardware on the ASPEED BMC
which generates an interrupt upon every write to an I/O port
by the host.
This is typically used to monitor BIOS boot progress by listening
to well-known debug port 80h.
The functionality in this commit just saves all snooped values
to a circular 2K buffer in the kernel, subsequent commits can
act on the values to do things with them.
Signed-off-by: Robert Lippert <rlippert@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
clk_prepare_enable() can fail here and we must check its return value.
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently the SPMI interrupt will not wake the device. Enable this
interrupt as a wakeup source.
Signed-off-by: Nicholas Troast <ntroast@codeaurora.org>
Signed-off-by: Kiran Gunda <kgunda@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
PMIC bus arbiter v3 supports 512 SPMI peripherals. Add the v3 operators to
support this new arbiter version.
Signed-off-by: Abhijeet Dharmapurikar <adharmap@codeaurora.org>
Signed-off-by: Kiran Gunda <kgunda@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The driver currently invokes the apid handler (periph_handler())
once it sees that the summary status bit for that apid is set.
However the hardware is designed to set that bit even if the apid
interrupts are disabled. The driver should check whether the apid
is indeed enabled before calling the apid handler.
Signed-off-by: Abhijeet Dharmapurikar <adharmap@codeaurora.org>
Signed-off-by: Kiran Gunda <kgunda@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The current code uses handle_level_irq flow handler even if the
trigger type of the interrupt is edge. This can lead to missing
of an edge transition that happens when the interrupt is being
handled. The level flow handler masks the interrupt while it is
being handled, so if an edge transition happens at that time,
that edge is lost.
Use an edge flow handler for edge type interrupts which ensures
that the interrupt stays enabled while being handled - at least
until it triggers at which point the flow handler sets the
IRQF_PENDING flag and only then masks the interrupt. That
IRQF_PENDING state indicates an edge transition happened while
the interrupt was being handled and the handler is called again.
Signed-off-by: Abhijeet Dharmapurikar <adharmap@codeaurora.org>
Signed-off-by: Kiran Gunda <kgunda@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
PMIC interrupts each have an internal latched status bit which is
not visible from any register. This status bit is set as soon as
the conditions specified in the interrupt type and polarity
registers are met even if the interrupt is not enabled. When it
is set, nothing else changes within the PMIC and no interrupt
notification packets are sent. If the internal latched status
bit is set when an interrupt is enabled, then the value is
immediately propagated into the interrupt latched status register
and an interrupt notification packet is sent out from the PMIC
over SPMI.
This PMIC hardware behavior can lead to a situation where the
handler for a level triggered interrupt is called immediately
after enable_irq() is called even though the interrupt physically
triggered while it was disabled within the genirq framework.
This situation takes place if the the interrupt fires twice after
calling disable_irq(). The first time it fires, the level flow
handler will mask and disregard it. Unfortunately, the second
time it fires, the internal latched status bit is set within the
PMIC and no further notification is received. When enable_irq()
is called later, the interrupt is unmasked (enabled in the PMIC)
which results in the PMIC immediately sending an interrupt
notification packet out over SPMI. This breaks the semantics
of level triggered interrupts within the genirq framework since
they should be completely ignored while disabled.
The PMIC internal latched status behavior also affects how
interrupts are treated during suspend. While entering suspend,
all interrupts not specified as wakeup mode are masked. Upon
resume, these interrupts are unmasked. Thus if any of the
non-wakeup PMIC interrupts fired while the system was suspended,
then the PMIC will send interrupt notification packets out via
SPMI as soon as they are unmasked during resume. This behavior
violates genirq semantics as well since non-wakeup interrupts
should be completely ignored during suspend.
Modify the qpnpint_irq_unmask() function so that the interrupt
latched status clear register is written immediately before the
interrupt enable register. This clears the internal latched
status bit of the interrupt so that it cannot trigger spuriously
immediately upon being enabled.
Also, while resuming an irq, an unmask could be called even if it
was not previously masked. So, before writing these registers,
check if the interrupt is already enabled within the PMIC. If it
is, then no further register writes are required. This
condition check ensures that a valid latched status register bit
is not cleared until it is properly handled.
Signed-off-by: Abhijeet Dharmapurikar <adharmap@codeaurora.org>
Signed-off-by: Kiran Gunda <kgunda@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
irq_enable is called when the device resumes. Note that the
irq_enable is called regardless of whether the interrupt was
marked enabled/disabled in the descriptor or whether it was
masked/unmasked at the controller while resuming.
The current driver unconditionally clears the interrupt in its
irq_enable callback. This is dangerous as any interrupts that
happen right before the resume could be missed.
Remove the irq_enable callback and use mask/unmask instead.
Also remove struct pmic_arb_irq_spec as it serves no real purpose.
It is used only in the translate function and the code is much
cleaner without it.
Signed-off-by: Abhijeet Dharmapurikar <adharmap@codeaurora.org>
Signed-off-by: Kiran Gunda <kgunda@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We see a unmapped irqs trigger right around bootup. This could
likely be because the bootloader exited leaving the interrupts
in an unknown or unhandled state. Ack and mask the interrupt
if one is found. A request_irq later will unmask it and also
setup proper mapping structures.
Also the current driver ensures that no read/write transaction
is in progress while it makes changes to the interrupt regions.
This is not necessary because read/writes over spmi and arbiter
interrupt control are independent operations. Hence, remove the
synchronized accesses to interrupt region.
Signed-off-by: Abhijeet Dharmapurikar <adharmap@codeaurora.org>
Signed-off-by: Kiran Gunda <kgunda@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>