Commit Graph

24 Commits

Author SHA1 Message Date
Roman Gushchin d7bf2c10af bpf: allocate cgroup storage entries on attaching bpf programs
If a bpf program is using cgroup local storage, allocate
a bpf_cgroup_storage structure automatically on attaching the program
to a cgroup and save the pointer into the corresponding bpf_prog_list
entry.
Analogically, release the cgroup local storage on detaching
of the bpf program.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-03 00:47:32 +02:00
Roman Gushchin aa0ad5b039 bpf: pass a pointer to a cgroup storage using pcpu variable
This commit introduces the bpf_cgroup_storage_set() helper,
which will be used to pass a pointer to a cgroup storage
to the bpf helper.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-03 00:47:32 +02:00
Roman Gushchin de9cbbaadb bpf: introduce cgroup storage maps
This commit introduces BPF_MAP_TYPE_CGROUP_STORAGE maps:
a special type of maps which are implementing the cgroup storage.

>From the userspace point of view it's almost a generic
hash map with the (cgroup inode id, attachment type) pair
used as a key.

The only difference is that some operations are restricted:
  1) a user can't create new entries,
  2) a user can't remove existing entries.

The lookup from userspace is o(log(n)).

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-03 00:47:32 +02:00
Roman Gushchin f292b87d3a bpf: include errno.h from bpf-cgroup.h
Commit fdb5c4531c ("bpf: fix attach type BPF_LIRC_MODE2 dependency
wrt CONFIG_CGROUP_BPF") caused some build issues, detected by 0-DAY
kernel test infrastructure.

The problem is that cgroup_bpf_prog_attach/detach/query() functions
can return -EINVAL error code, which is not defined. Fix this adding
errno.h to includes.

Fixes: fdb5c4531c ("bpf: fix attach type BPF_LIRC_MODE2 dependency wrt CONFIG_CGROUP_BPF")
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Sean Young <sean@mess.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-07-09 10:33:49 +02:00
Sean Young fdb5c4531c bpf: fix attach type BPF_LIRC_MODE2 dependency wrt CONFIG_CGROUP_BPF
If the kernel is compiled with CONFIG_CGROUP_BPF not enabled, it is not
possible to attach, detach or query IR BPF programs to /dev/lircN devices,
making them impossible to use. For embedded devices, it should be possible
to use IR decoding without cgroups or CONFIG_CGROUP_BPF enabled.

This change requires some refactoring, since bpf_prog_{attach,detach,query}
functions are now always compiled, but their code paths for cgroups need
moving out. Rather than a #ifdef CONFIG_CGROUP_BPF in kernel/bpf/syscall.c,
moving them to kernel/bpf/cgroup.c and kernel/bpf/sockmap.c does not
require #ifdefs since that is already conditionally compiled.

Fixes: f4364dcfc8 ("media: rc: introduce BPF_PROG_LIRC_MODE2")
Signed-off-by: Sean Young <sean@mess.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-26 11:28:38 +02:00
Andrey Ignatov 1cedee13d2 bpf: Hooks for sys_sendmsg
In addition to already existing BPF hooks for sys_bind and sys_connect,
the patch provides new hooks for sys_sendmsg.

It leverages existing BPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR`
that provides access to socket itlself (properties like family, type,
protocol) and user-passed `struct sockaddr *` so that BPF program can
override destination IP and port for system calls such as sendto(2) or
sendmsg(2) and/or assign source IP to the socket.

The hooks are implemented as two new attach types:
`BPF_CGROUP_UDP4_SENDMSG` and `BPF_CGROUP_UDP6_SENDMSG` for UDPv4 and
UDPv6 correspondingly.

UDPv4 and UDPv6 separate attach types for same reason as sys_bind and
sys_connect hooks, i.e. to prevent reading from / writing to e.g.
user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound.

The difference with already existing hooks is sys_sendmsg are
implemented only for unconnected UDP.

For TCP it doesn't make sense to change user-provided `struct sockaddr *`
at sendto(2)/sendmsg(2) time since socket either was already connected
and has source/destination set or wasn't connected and call to
sendto(2)/sendmsg(2) would lead to ENOTCONN anyway.

Connected UDP is already handled by sys_connect hooks that can override
source/destination at connect time and use fast-path later, i.e. these
hooks don't affect UDP fast-path.

Rewriting source IP is implemented differently than that in sys_connect
hooks. When sys_sendmsg is used with unconnected UDP it doesn't work to
just bind socket to desired local IP address since source IP can be set
on per-packet basis by using ancillary data (cmsg(3)). So no matter if
socket is bound or not, source IP has to be rewritten on every call to
sys_sendmsg.

To do so two new fields are added to UAPI `struct bpf_sock_addr`;
* `msg_src_ip4` to set source IPv4 for UDPv4;
* `msg_src_ip6` to set source IPv6 for UDPv6.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-28 17:41:02 +02:00
Andrey Ignatov 13193b0f39 bpf: Define cgroup_bpf_enabled for CONFIG_CGROUP_BPF=n
Static key is used to enable/disable cgroup-bpf related code paths at
run time.

Though it's not defined when cgroup-bpf is disabled at compile time,
i.e. CONFIG_CGROUP_BPF=n, and if some code wants to use it, it has to do
this:

	#ifdef CONFIG_CGROUP_BPF
		if (cgroup_bpf_enabled) {
			/* ... some work ... */
		}
	#endif

This code can be simplified by setting cgroup_bpf_enabled to 0 for
CONFIG_CGROUP_BPF=n case:

	if (cgroup_bpf_enabled) {
		/* ... some work ... */
	}

And it aligns well with existing BPF_CGROUP_RUN_PROG_* macros that
defined for both states of CONFIG_CGROUP_BPF.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-28 17:41:01 +02:00
Andrey Ignatov aac3fc320d bpf: Post-hooks for sys_bind
"Post-hooks" are hooks that are called right before returning from
sys_bind. At this time IP and port are already allocated and no further
changes to `struct sock` can happen before returning from sys_bind but
BPF program has a chance to inspect the socket and change sys_bind
result.

Specifically it can e.g. inspect what port was allocated and if it
doesn't satisfy some policy, BPF program can force sys_bind to fail and
return EPERM to user.

Another example of usage is recording the IP:port pair to some map to
use it in later calls to sys_connect. E.g. if some TCP server inside
cgroup was bound to some IP:port_n, it can be recorded to a map. And
later when some TCP client inside same cgroup is trying to connect to
127.0.0.1:port_n, BPF hook for sys_connect can override the destination
and connect application to IP:port_n instead of 127.0.0.1:port_n. That
helps forcing all applications inside a cgroup to use desired IP and not
break those applications if they e.g. use localhost to communicate
between each other.

== Implementation details ==

Post-hooks are implemented as two new attach types
`BPF_CGROUP_INET4_POST_BIND` and `BPF_CGROUP_INET6_POST_BIND` for
existing prog type `BPF_PROG_TYPE_CGROUP_SOCK`.

Separate attach types for IPv4 and IPv6 are introduced to avoid access
to IPv6 field in `struct sock` from `inet_bind()` and to IPv4 field from
`inet6_bind()` since those fields might not make sense in such cases.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 02:16:26 +02:00
Andrey Ignatov d74bad4e74 bpf: Hooks for sys_connect
== The problem ==

See description of the problem in the initial patch of this patch set.

== The solution ==

The patch provides much more reliable in-kernel solution for the 2nd
part of the problem: making outgoing connecttion from desired IP.

It adds new attach types `BPF_CGROUP_INET4_CONNECT` and
`BPF_CGROUP_INET6_CONNECT` for program type
`BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both
source and destination of a connection at connect(2) time.

Local end of connection can be bound to desired IP using newly
introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though,
and doesn't support binding to port, i.e. leverages
`IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this:
* looking for a free port is expensive and can affect performance
  significantly;
* there is no use-case for port.

As for remote end (`struct sockaddr *` passed by user), both parts of it
can be overridden, remote IP and remote port. It's useful if an
application inside cgroup wants to connect to another application inside
same cgroup or to itself, but knows nothing about IP assigned to the
cgroup.

Support is added for IPv4 and IPv6, for TCP and UDP.

IPv4 and IPv6 have separate attach types for same reason as sys_bind
hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields
when user passes sockaddr_in since it'd be out-of-bound.

== Implementation notes ==

The patch introduces new field in `struct proto`: `pre_connect` that is
a pointer to a function with same signature as `connect` but is called
before it. The reason is in some cases BPF hooks should be called way
before control is passed to `sk->sk_prot->connect`. Specifically
`inet_dgram_connect` autobinds socket before calling
`sk->sk_prot->connect` and there is no way to call `bpf_bind()` from
hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since
it'd cause double-bind. On the other hand `proto.pre_connect` provides a
flexible way to add BPF hooks for connect only for necessary `proto` and
call them at desired time before `connect`. Since `bpf_bind()` is
allowed to bind only to IP and autobind in `inet_dgram_connect` binds
only port there is no chance of double-bind.

bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite
of value of `bind_address_no_port` socket field.

bpf_bind() sets `with_lock` to `false` when calling to __inet_bind()
and __inet6_bind() since all call-sites, where bpf_bind() is called,
already hold socket lock.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 02:15:54 +02:00
Andrey Ignatov 4fbac77d2d bpf: Hooks for sys_bind
== The problem ==

There is a use-case when all processes inside a cgroup should use one
single IP address on a host that has multiple IP configured.  Those
processes should use the IP for both ingress and egress, for TCP and UDP
traffic. So TCP/UDP servers should be bound to that IP to accept
incoming connections on it, and TCP/UDP clients should make outgoing
connections from that IP. It should not require changing application
code since it's often not possible.

Currently it's solved by intercepting glibc wrappers around syscalls
such as `bind(2)` and `connect(2)`. It's done by a shared library that
is preloaded for every process in a cgroup so that whenever TCP/UDP
server calls `bind(2)`, the library replaces IP in sockaddr before
passing arguments to syscall. When application calls `connect(2)` the
library transparently binds the local end of connection to that IP
(`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty).

Shared library approach is fragile though, e.g.:
* some applications clear env vars (incl. `LD_PRELOAD`);
* `/etc/ld.so.preload` doesn't help since some applications are linked
  with option `-z nodefaultlib`;
* other applications don't use glibc and there is nothing to intercept.

== The solution ==

The patch provides much more reliable in-kernel solution for the 1st
part of the problem: binding TCP/UDP servers on desired IP. It does not
depend on application environment and implementation details (whether
glibc is used or not).

It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and
attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND`
(similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`).

The new program type is intended to be used with sockets (`struct sock`)
in a cgroup and provided by user `struct sockaddr`. Pointers to both of
them are parts of the context passed to programs of newly added types.

The new attach types provides hooks in `bind(2)` system call for both
IPv4 and IPv6 so that one can write a program to override IP addresses
and ports user program tries to bind to and apply such a program for
whole cgroup.

== Implementation notes ==

[1]
Separate attach types for `AF_INET` and `AF_INET6` are added
intentionally to prevent reading/writing to offsets that don't make
sense for corresponding socket family. E.g. if user passes `sockaddr_in`
it doesn't make sense to read from / write to `user_ip6[]` context
fields.

[2]
The write access to `struct bpf_sock_addr_kern` is implemented using
special field as an additional "register".

There are just two registers in `sock_addr_convert_ctx_access`: `src`
with value to write and `dst` with pointer to context that can't be
changed not to break later instructions. But the fields, allowed to
write to, are not available directly and to access them address of
corresponding pointer has to be loaded first. To get additional register
the 1st not used by `src` and `dst` one is taken, its content is saved
to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load
address of pointer field, and finally the register's content is restored
from the temporary field after writing `src` value.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 02:15:18 +02:00
Yafang Shao ee07862f7b bpf: NULL pointer check is not needed in BPF_CGROUP_RUN_PROG_INET_SOCK
sk is already allocated in inet_create/inet6_create, hence when
BPF_CGROUP_RUN_PROG_INET_SOCK is executed sk will never be NULL.

The logic is as bellow,
	sk = sk_alloc();
	if (!sk)
		goto out;
	BPF_CGROUP_RUN_PROG_INET_SOCK(sk);

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-02-23 16:23:11 +01:00
Roman Gushchin ebc614f687 bpf, cgroup: implement eBPF-based device controller for cgroup v2
Cgroup v2 lacks the device controller, provided by cgroup v1.
This patch adds a new eBPF program type, which in combination
of previously added ability to attach multiple eBPF programs
to a cgroup, will provide a similar functionality, but with some
additional flexibility.

This patch introduces a BPF_PROG_TYPE_CGROUP_DEVICE program type.
A program takes major and minor device numbers, device type
(block/character) and access type (mknod/read/write) as parameters
and returns an integer which defines if the operation should be
allowed or terminated with -EPERM.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-05 23:26:51 +09:00
David S. Miller 2a171788ba Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Files removed in 'net-next' had their license header updated
in 'net'.  We take the remove from 'net-next'.

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-04 09:26:51 +09:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Alexei Starovoitov 468e2f64d2 bpf: introduce BPF_PROG_QUERY command
introduce BPF_PROG_QUERY command to retrieve a set of either
attached programs to given cgroup or a set of effective programs
that will execute for events within a cgroup

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-04 16:05:05 -07:00
Alexei Starovoitov 324bda9e6c bpf: multi program support for cgroup+bpf
introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple
bpf programs to a cgroup.

The difference between three possible flags for BPF_PROG_ATTACH command:
- NONE(default): No further bpf programs allowed in the subtree.
- BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
  the program in this cgroup yields to sub-cgroup program.
- BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
  that cgroup program gets run in addition to the program in this cgroup.

NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't
change their behavior. It only clarifies the semantics in relation
to new flag.

Only one program is allowed to be attached to a cgroup with
NONE or BPF_F_ALLOW_OVERRIDE flag.
Multiple programs are allowed to be attached to a cgroup with
BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
(those that were attached first, run first)
The programs of sub-cgroup are executed first, then programs of
this cgroup and then programs of parent cgroup.
All eligible programs are executed regardless of return code from
earlier programs.

To allow efficient execution of multiple programs attached to a cgroup
and to avoid penalizing cgroups without any programs attached
introduce 'struct bpf_prog_array' which is RCU protected array
of pointers to bpf programs.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-04 16:05:05 -07:00
WANG Cong df39a9f106 bpf: check NULL for sk_to_full_sk() return value
When req->rsk_listener is NULL, sk_to_full_sk() returns
NULL too, so we have to check its return value against
NULL here.

Fixes: 40304b2a15 ("bpf: BPF support for sock_ops")
Reported-by: David Ahern <dsahern@gmail.com>
Tested-by: David Ahern <dsahern@gmail.com>
Cc: Lawrence Brakmo <brakmo@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-17 13:37:56 -07:00
Lawrence Brakmo 40304b2a15 bpf: BPF support for sock_ops
Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding
struct that allows BPF programs of this type to access some of the
socket's fields (such as IP addresses, ports, etc.). It uses the
existing bpf cgroups infrastructure so the programs can be attached per
cgroup with full inheritance support. The program will be called at
appropriate times to set relevant connections parameters such as buffer
sizes, SYN and SYN-ACK RTOs, etc., based on connection information such
as IP addresses, port numbers, etc.

Alghough there are already 3 mechanisms to set parameters (sysctls,
route metrics and setsockopts), this new mechanism provides some
distinct advantages. Unlike sysctls, it can set parameters per
connection. In contrast to route metrics, it can also use port numbers
and information provided by a user level program. In addition, it could
set parameters probabilistically for evaluation purposes (i.e. do
something different on 10% of the flows and compare results with the
other 90% of the flows). Also, in cases where IPv6 addresses contain
geographic information, the rules to make changes based on the distance
(or RTT) between the hosts are much easier than route metric rules and
can be global. Finally, unlike setsockopt, it oes not require
application changes and it can be updated easily at any time.

Although the bpf cgroup framework already contains a sock related
program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type
(BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called
only once during the connections's lifetime. In contrast, the new
program type will be called multiple times from different places in the
network stack code.  For example, before sending SYN and SYN-ACKs to set
an appropriate timeout, when the connection is established to set
congestion control, etc. As a result it has "op" field to specify the
type of operation requested.

The purpose of this new program type is to simplify setting connection
parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is
easy to use facebook's internal IPv6 addresses to determine if both hosts
of a connection are in the same datacenter. Therefore, it is easy to
write a BPF program to choose a small SYN RTO value when both hosts are
in the same datacenter.

This patch only contains the framework to support the new BPF program
type, following patches add the functionality to set various connection
parameters.

This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS
and a new bpf syscall command to load a new program of this type:
BPF_PROG_LOAD_SOCKET_OPS.

Two new corresponding structs (one for the kernel one for the user/BPF
program):

/* kernel version */
struct bpf_sock_ops_kern {
        struct sock *sk;
        __u32  op;
        union {
                __u32 reply;
                __u32 replylong[4];
        };
};

/* user version
 * Some fields are in network byte order reflecting the sock struct
 * Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to
 * convert them to host byte order.
 */
struct bpf_sock_ops {
        __u32 op;
        union {
                __u32 reply;
                __u32 replylong[4];
        };
        __u32 family;
        __u32 remote_ip4;     /* In network byte order */
        __u32 local_ip4;      /* In network byte order */
        __u32 remote_ip6[4];  /* In network byte order */
        __u32 local_ip6[4];   /* In network byte order */
        __u32 remote_port;    /* In network byte order */
        __u32 local_port;     /* In host byte horder */
};

Currently there are two types of ops. The first type expects the BPF
program to return a value which is then used by the caller (or a
negative value to indicate the operation is not supported). The second
type expects state changes to be done by the BPF program, for example
through a setsockopt BPF helper function, and they ignore the return
value.

The reply fields of the bpf_sockt_ops struct are there in case a bpf
program needs to return a value larger than an integer.

Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 16:15:13 -07:00
Alexei Starovoitov 7f67763337 bpf: introduce BPF_F_ALLOW_OVERRIDE flag
If BPF_F_ALLOW_OVERRIDE flag is used in BPF_PROG_ATTACH command
to the given cgroup the descendent cgroup will be able to override
effective bpf program that was inherited from this cgroup.
By default it's not passed, therefore override is disallowed.

Examples:
1.
prog X attached to /A with default
prog Y fails to attach to /A/B and /A/B/C
Everything under /A runs prog X

2.
prog X attached to /A with allow_override.
prog Y fails to attach to /A/B with default (non-override)
prog M attached to /A/B with allow_override.
Everything under /A/B runs prog M only.

3.
prog X attached to /A with allow_override.
prog Y fails to attach to /A with default.
The user has to detach first to switch the mode.

In the future this behavior may be extended with a chain of
non-overridable programs.

Also fix the bug where detach from cgroup where nothing is attached
was not throwing error. Return ENOENT in such case.

Add several testcases and adjust libbpf.

Fixes: 3007098494 ("cgroup: add support for eBPF programs")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-12 21:52:19 -05:00
Daniel Mack dcdc43d664 bpf: cgroup: annotate pointers in struct cgroup_bpf with __rcu
The member 'effective' in 'struct cgroup_bpf' is protected by RCU.
Annotate it accordingly to squelch a sparse warning.

Signed-off-by: Daniel Mack <daniel@zonque.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-17 11:14:25 -05:00
David Ahern 6102365876 bpf: Add new cgroup attach type to enable sock modifications
Add new cgroup based program type, BPF_PROG_TYPE_CGROUP_SOCK. Similar to
BPF_PROG_TYPE_CGROUP_SKB programs can be attached to a cgroup and run
any time a process in the cgroup opens an AF_INET or AF_INET6 socket.
Currently only sk_bound_dev_if is exported to userspace for modification
by a bpf program.

This allows a cgroup to be configured such that AF_INET{6} sockets opened
by processes are automatically bound to a specific device. In turn, this
enables the running of programs that do not support SO_BINDTODEVICE in a
specific VRF context / L3 domain.

Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-02 13:46:08 -05:00
David Ahern b2cd12574a bpf: Refactor cgroups code in prep for new type
Code move and rename only; no functional change intended.

Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-02 13:44:56 -05:00
Alexei Starovoitov b634d30a79 cgroup, bpf: remove unnecessary #include
this #include is unnecessary and brings whole set of
other headers into cgroup-defs.h. Remove it.

Fixes: 3007098494 ("cgroup: add support for eBPF programs")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Rami Rosen <roszenrami@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Mack <daniel@zonque.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-30 13:58:25 -05:00
Daniel Mack 3007098494 cgroup: add support for eBPF programs
This patch adds two sets of eBPF program pointers to struct cgroup.
One for such that are directly pinned to a cgroup, and one for such
that are effective for it.

To illustrate the logic behind that, assume the following example
cgroup hierarchy.

  A - B - C
        \ D - E

If only B has a program attached, it will be effective for B, C, D
and E. If D then attaches a program itself, that will be effective for
both D and E, and the program in B will only affect B and C. Only one
program of a given type is effective for a cgroup.

Attaching and detaching programs will be done through the bpf(2)
syscall. For now, ingress and egress inet socket filtering are the
only supported use-cases.

Signed-off-by: Daniel Mack <daniel@zonque.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-25 16:25:52 -05:00