Commit Graph

247 Commits

Author SHA1 Message Date
zhongjiang 46612b751c mm: hwpoison: fix thp split handing in soft_offline_in_use_page()
When soft_offline_in_use_page() runs on a thp tail page after pmd is
split, we trigger the following VM_BUG_ON_PAGE():

  Memory failure: 0x3755ff: non anonymous thp
  __get_any_page: 0x3755ff: unknown zero refcount page type 2fffff80000000
  Soft offlining pfn 0x34d805 at process virtual address 0x20fff000
  page:ffffea000d360140 count:0 mapcount:0 mapping:0000000000000000 index:0x1
  flags: 0x2fffff80000000()
  raw: 002fffff80000000 ffffea000d360108 ffffea000d360188 0000000000000000
  raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000
  page dumped because: VM_BUG_ON_PAGE(page_ref_count(page) == 0)
  ------------[ cut here ]------------
  kernel BUG at ./include/linux/mm.h:519!

soft_offline_in_use_page() passed refcount and page lock from tail page
to head page, which is not needed because we can pass any subpage to
split_huge_page().

Naoya had fixed a similar issue in c3901e722b ("mm: hwpoison: fix thp
split handling in memory_failure()").  But he missed fixing soft
offline.

Link: http://lkml.kernel.org/r/1551452476-24000-1-git-send-email-zhongjiang@huawei.com
Fixes: 61f5d698cc ("mm: re-enable THP")
Signed-off-by: zhongjiang <zhongjiang@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>	[4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:13 -08:00
Naoya Horiguchi 6376360ecb mm: hwpoison: use do_send_sig_info() instead of force_sig()
Currently memory_failure() is racy against process's exiting, which
results in kernel crash by null pointer dereference.

The root cause is that memory_failure() uses force_sig() to forcibly
kill asynchronous (meaning not in the current context) processes.  As
discussed in thread https://lkml.org/lkml/2010/6/8/236 years ago for OOM
fixes, this is not a right thing to do.  OOM solves this issue by using
do_send_sig_info() as done in commit d2d393099d ("signal:
oom_kill_task: use SEND_SIG_FORCED instead of force_sig()"), so this
patch is suggesting to do the same for hwpoison.  do_send_sig_info()
properly accesses to siglock with lock_task_sighand(), so is free from
the reported race.

I confirmed that the reported bug reproduces with inserting some delay
in kill_procs(), and it never reproduces with this patch.

Note that memory_failure() can send another type of signal using
force_sig_mceerr(), and the reported race shouldn't happen on it because
force_sig_mceerr() is called only for synchronous processes (i.e.
BUS_MCEERR_AR happens only when some process accesses to the corrupted
memory.)

Link: http://lkml.kernel.org/r/20190116093046.GA29835@hori1.linux.bs1.fc.nec.co.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01 15:46:23 -08:00
Mike Kravetz ddeaab32a8 hugetlbfs: revert "use i_mmap_rwsem for more pmd sharing synchronization"
This reverts b43a999005

The reverted commit caused issues with migration and poisoning of anon
huge pages.  The LTP move_pages12 test will cause an "unable to handle
kernel NULL pointer" BUG would occur with stack similar to:

  RIP: 0010:down_write+0x1b/0x40
  Call Trace:
    migrate_pages+0x81f/0xb90
    __ia32_compat_sys_migrate_pages+0x190/0x190
    do_move_pages_to_node.isra.53.part.54+0x2a/0x50
    kernel_move_pages+0x566/0x7b0
    __x64_sys_move_pages+0x24/0x30
    do_syscall_64+0x5b/0x180
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

The purpose of the reverted patch was to fix some long existing races
with huge pmd sharing.  It used i_mmap_rwsem for this purpose with the
idea that this could also be used to address truncate/page fault races
with another patch.  Further analysis has determined that i_mmap_rwsem
can not be used to address all these hugetlbfs synchronization issues.
Therefore, revert this patch while working an another approach to the
underlying issues.

Link: http://lkml.kernel.org/r/20190103235452.29335-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-08 17:15:11 -08:00
Mike Kravetz b43a999005 hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table.  Consider the following:

A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep.  Suppose the returned ptep points to a
shared pmd.

Now, another task truncates the hugetlbfs file.  As part of truncation, it
unmaps everyone who has the file mapped.  If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called.  For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd.  If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse.  This leads to bad things such as incorrect page
map/reference counts or invalid memory references.

To fix, expand the use of i_mmap_rwsem as follows:

- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
  huge_pmd_share is only called via huge_pte_alloc, so callers of
  huge_pte_alloc take i_mmap_rwsem before calling.  In addition, callers
  of huge_pte_alloc continue to hold the semaphore until finished with the
  ptep.

- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is
  called.

[mike.kravetz@oracle.com: add explicit check for mapping != null]
Link: http://lkml.kernel.org/r/20181218223557.5202-2-mike.kravetz@oracle.com
Fixes: 39dde65c99 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:51 -08:00
Matthew Wilcox 27359fd6e5 dax: Fix unlock mismatch with updated API
Internal to dax_unlock_mapping_entry(), dax_unlock_entry() is used to
store a replacement entry in the Xarray at the given xas-index with the
DAX_LOCKED bit clear. When called, dax_unlock_entry() expects the unlocked
value of the entry relative to the current Xarray state to be specified.

In most contexts dax_unlock_entry() is operating in the same scope as
the matched dax_lock_entry(). However, in the dax_unlock_mapping_entry()
case the implementation needs to recall the original entry. In the case
where the original entry is a 'pmd' entry it is possible that the pfn
performed to do the lookup is misaligned to the value retrieved in the
Xarray.

Change the api to return the unlock cookie from dax_lock_page() and pass
it to dax_unlock_page(). This fixes a bug where dax_unlock_page() was
assuming that the page was PMD-aligned if the entry was a PMD entry with
signatures like:

 WARNING: CPU: 38 PID: 1396 at fs/dax.c:340 dax_insert_entry+0x2b2/0x2d0
 RIP: 0010:dax_insert_entry+0x2b2/0x2d0
 [..]
 Call Trace:
  dax_iomap_pte_fault.isra.41+0x791/0xde0
  ext4_dax_huge_fault+0x16f/0x1f0
  ? up_read+0x1c/0xa0
  __do_fault+0x1f/0x160
  __handle_mm_fault+0x1033/0x1490
  handle_mm_fault+0x18b/0x3d0

Link: https://lkml.kernel.org/r/20181130154902.GL10377@bombadil.infradead.org
Fixes: 9f32d22130 ("dax: Convert dax_lock_mapping_entry to XArray")
Reported-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-12-04 21:32:00 -08:00
Linus Torvalds 2923b27e54 libnvdimm-for-4.19_dax-memory-failure
* memory_failure() gets confused by dev_pagemap backed mappings. The
   recovery code has specific enabling for several possible page states
   that needs new enabling to handle poison in dax mappings. Teach
   memory_failure() about ZONE_DEVICE pages.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE5DAy15EJMCV1R6v9YGjFFmlTOEoFAlt9ui8ACgkQYGjFFmlT
 OEpNRw//XGj9s7sezfJFeol4psJlRUd935yii/gmJRgi/yPf2VxxQG9qyM6SMBUc
 75jASfOL6FSsfxHz0kplyWzMDNdrTkNNAD+9rv80FmY7GqWgcas9DaJX7jZ994vI
 5SRO7pfvNZcXlo7IhqZippDw3yxkIU9Ufi0YQKaEUm7GFieptvCZ0p9x3VYfdvwM
 BExrxQe0X1XUF4xErp5P78+WUbKxP47DLcucRDig8Q7dmHELUdyNzo3E1SVoc7m+
 3CmvyTj6XuFQgOZw7ZKun1BJYfx/eD5ZlRJLZbx6wJHRtTXv/Uea8mZ8mJ31ykN9
 F7QVd0Pmlyxys8lcXfK+nvpL09QBE0/PhwWKjmZBoU8AdgP/ZvBXLDL/D6YuMTg6
 T4wwtPNJorfV4lVD06OliFkVI4qbKbmNsfRq43Ns7PCaLueu4U/eMaSwSH99UMaZ
 MGbO140XW2RZsHiU9yTRUmZq73AplePEjxtzR8oHmnjo45nPDPy8mucWPlkT9kXA
 oUFMhgiviK7dOo19H4eaPJGqLmHM93+x5tpYxGqTr0dUOXUadKWxMsTnkID+8Yi7
 /kzQWCFvySz3VhiEHGuWkW08GZT6aCcpkREDomnRh4MEnETlZI8bblcuXYOCLs6c
 nNf1SIMtLdlsl7U1fEX89PNeQQ2y237vEDhFQZftaalPeu/JJV0=
 =Ftop
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm memory-failure update from Dave Jiang:
 "As it stands, memory_failure() gets thoroughly confused by dev_pagemap
  backed mappings. The recovery code has specific enabling for several
  possible page states and needs new enabling to handle poison in dax
  mappings.

  In order to support reliable reverse mapping of user space addresses:

   1/ Add new locking in the memory_failure() rmap path to prevent races
      that would typically be handled by the page lock.

   2/ Since dev_pagemap pages are hidden from the page allocator and the
      "compound page" accounting machinery, add a mechanism to determine
      the size of the mapping that encompasses a given poisoned pfn.

   3/ Given pmem errors can be repaired, change the speculatively
      accessed poison protection, mce_unmap_kpfn(), to be reversible and
      otherwise allow ongoing access from the kernel.

  A side effect of this enabling is that MADV_HWPOISON becomes usable
  for dax mappings, however the primary motivation is to allow the
  system to survive userspace consumption of hardware-poison via dax.
  Specifically the current behavior is:

     mce: Uncorrected hardware memory error in user-access at af34214200
     {1}[Hardware Error]: It has been corrected by h/w and requires no further action
     mce: [Hardware Error]: Machine check events logged
     {1}[Hardware Error]: event severity: corrected
     Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users
     [..]
     Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed
     mce: Memory error not recovered
     <reboot>

  ...and with these changes:

     Injecting memory failure for pfn 0x20cb00 at process virtual address 0x7f763dd00000
     Memory failure: 0x20cb00: Killing dax-pmd:5421 due to hardware memory corruption
     Memory failure: 0x20cb00: recovery action for dax page: Recovered

  Given all the cross dependencies I propose taking this through
  nvdimm.git with acks from Naoya, x86/core, x86/RAS, and of course dax
  folks"

* tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm:
  libnvdimm, pmem: Restore page attributes when clearing errors
  x86/memory_failure: Introduce {set, clear}_mce_nospec()
  x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses
  mm, memory_failure: Teach memory_failure() about dev_pagemap pages
  filesystem-dax: Introduce dax_lock_mapping_entry()
  mm, memory_failure: Collect mapping size in collect_procs()
  mm, madvise_inject_error: Let memory_failure() optionally take a page reference
  mm, dev_pagemap: Do not clear ->mapping on final put
  mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages
  filesystem-dax: Set page->index
  device-dax: Set page->index
  device-dax: Enable page_mapping()
  device-dax: Convert to vmf_insert_mixed and vm_fault_t
2018-08-25 18:43:59 -07:00
Naoya Horiguchi d4ae9916ea mm: soft-offline: close the race against page allocation
A process can be killed with SIGBUS(BUS_MCEERR_AR) when it tries to
allocate a page that was just freed on the way of soft-offline.  This is
undesirable because soft-offline (which is about corrected error) is
less aggressive than hard-offline (which is about uncorrected error),
and we can make soft-offline fail and keep using the page for good
reason like "system is busy."

Two main changes of this patch are:

- setting migrate type of the target page to MIGRATE_ISOLATE. As done
  in free_unref_page_commit(), this makes kernel bypass pcplist when
  freeing the page. So we can assume that the page is in freelist just
  after put_page() returns,

- setting PG_hwpoison on free page under zone->lock which protects
  freelists, so this allows us to avoid setting PG_hwpoison on a page
  that is decided to be allocated soon.

[akpm@linux-foundation.org: tweak set_hwpoison_free_buddy_page() comment]
Link: http://lkml.kernel.org/r/1531452366-11661-3-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <zy.zhengyi@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-23 18:48:43 -07:00
Naoya Horiguchi 6bc9b56433 mm: fix race on soft-offlining free huge pages
Patch series "mm: soft-offline: fix race against page allocation".

Xishi recently reported the issue about race on reusing the target pages
of soft offlining.  Discussion and analysis showed that we need make
sure that setting PG_hwpoison should be done in the right place under
zone->lock for soft offline.  1/2 handles free hugepage's case, and 2/2
hanldes free buddy page's case.

This patch (of 2):

There's a race condition between soft offline and hugetlb_fault which
causes unexpected process killing and/or hugetlb allocation failure.

The process killing is caused by the following flow:

  CPU 0               CPU 1              CPU 2

  soft offline
    get_any_page
    // find the hugetlb is free
                      mmap a hugetlb file
                      page fault
                        ...
                          hugetlb_fault
                            hugetlb_no_page
                              alloc_huge_page
                              // succeed
      soft_offline_free_page
      // set hwpoison flag
                                         mmap the hugetlb file
                                         page fault
                                           ...
                                             hugetlb_fault
                                               hugetlb_no_page
                                                 find_lock_page
                                                   return VM_FAULT_HWPOISON
                                           mm_fault_error
                                             do_sigbus
                                             // kill the process

The hugetlb allocation failure comes from the following flow:

  CPU 0                          CPU 1

                                 mmap a hugetlb file
                                 // reserve all free page but don't fault-in
  soft offline
    get_any_page
    // find the hugetlb is free
      soft_offline_free_page
      // set hwpoison flag
        dissolve_free_huge_page
        // fail because all free hugepages are reserved
                                 page fault
                                   ...
                                     hugetlb_fault
                                       hugetlb_no_page
                                         alloc_huge_page
                                           ...
                                             dequeue_huge_page_node_exact
                                             // ignore hwpoisoned hugepage
                                             // and finally fail due to no-mem

The root cause of this is that current soft-offline code is written based
on an assumption that PageHWPoison flag should be set at first to avoid
accessing the corrupted data.  This makes sense for memory_failure() or
hard offline, but does not for soft offline because soft offline is about
corrected (not uncorrected) error and is safe from data lost.  This patch
changes soft offline semantics where it sets PageHWPoison flag only after
containment of the error page completes successfully.

Link: http://lkml.kernel.org/r/1531452366-11661-2-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Suggested-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <zy.zhengyi@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-23 18:48:43 -07:00
Jiang Biao 1c4c3b99c0 mm: fix page_freeze_refs and page_unfreeze_refs in comments
page_freeze_refs/page_unfreeze_refs have already been relplaced by
page_ref_freeze/page_ref_unfreeze , but they are not modified in the
comments.

Link: http://lkml.kernel.org/r/1532590226-106038-1-git-send-email-jiang.biao2@zte.com.cn
Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Dan Williams 6100e34b25 mm, memory_failure: Teach memory_failure() about dev_pagemap pages
mce: Uncorrected hardware memory error in user-access at af34214200
    {1}[Hardware Error]: It has been corrected by h/w and requires no further action
    mce: [Hardware Error]: Machine check events logged
    {1}[Hardware Error]: event severity: corrected
    Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users
    [..]
    Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed
    mce: Memory error not recovered

In contrast to typical memory, dev_pagemap pages may be dax mapped. With
dax there is no possibility to map in another page dynamically since dax
establishes 1:1 physical address to file offset associations. Also
dev_pagemap pages associated with NVDIMM / persistent memory devices can
internal remap/repair addresses with poison. While memory_failure()
assumes that it can discard typical poisoned pages and keep them
unmapped indefinitely, dev_pagemap pages may be returned to service
after the error is cleared.

Teach memory_failure() to detect and handle MEMORY_DEVICE_HOST
dev_pagemap pages that have poison consumed by userspace. Mark the
memory as UC instead of unmapping it completely to allow ongoing access
via the device driver (nd_pmem). Later, nd_pmem will grow support for
marking the page back to WB when the error is cleared.

Cc: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
2018-07-23 10:38:06 -07:00
Dan Williams ae1139ece1 mm, memory_failure: Collect mapping size in collect_procs()
In preparation for supporting memory_failure() for dax mappings, teach
collect_procs() to also determine the mapping size. Unlike typical
mappings the dax mapping size is determined by walking page-table
entries rather than using the compound-page accounting for THP pages.

Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
2018-07-23 10:38:05 -07:00
Dan Williams 86a66810ba mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages
Given that dax / device-mapped pages are never subject to page
allocations remove them from consideration by the soft-offline
mechanism.

Reported-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
2018-07-20 11:21:53 -07:00
Michal Hocko 666feb21a0 mm, migrate: remove reason argument from new_page_t
No allocation callback is using this argument anymore.  new_page_node
used to use this parameter to convey node_id resp.  migration error up
to move_pages code (do_move_page_to_node_array).  The error status never
made it into the final status field and we have a better way to
communicate node id to the status field now.  All other allocation
callbacks simply ignored the argument so we can drop it finally.

[mhocko@suse.com: fix migration callback]
  Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz
[akpm@linux-foundation.org: fix alloc_misplaced_dst_page()]
[mhocko@kernel.org: fix build]
  Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Naoya Horiguchi 31286a8484 mm: hwpoison: disable memory error handling on 1GB hugepage
Recently the following BUG was reported:

    Injecting memory failure for pfn 0x3c0000 at process virtual address 0x7fe300000000
    Memory failure: 0x3c0000: recovery action for huge page: Recovered
    BUG: unable to handle kernel paging request at ffff8dfcc0003000
    IP: gup_pgd_range+0x1f0/0xc20
    PGD 17ae72067 P4D 17ae72067 PUD 0
    Oops: 0000 [#1] SMP PTI
    ...
    CPU: 3 PID: 5467 Comm: hugetlb_1gb Not tainted 4.15.0-rc8-mm1-abc+ #3
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.3-1.fc25 04/01/2014

You can easily reproduce this by calling madvise(MADV_HWPOISON) twice on
a 1GB hugepage.  This happens because get_user_pages_fast() is not aware
of a migration entry on pud that was created in the 1st madvise() event.

I think that conversion to pud-aligned migration entry is working, but
other MM code walking over page table isn't prepared for it.  We need
some time and effort to make all this work properly, so this patch
avoids the reported bug by just disabling error handling for 1GB
hugepage.

[n-horiguchi@ah.jp.nec.com: v2]
  Link: http://lkml.kernel.org/r/1517284444-18149-1-git-send-email-n-horiguchi@ah.jp.nec.com
Link: http://lkml.kernel.org/r/1517207283-15769-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Tony Luck fd0e786d9d x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pages
In the following commit:

  ce0fa3e56a ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages")

... we added code to memory_failure() to unmap the page from the
kernel 1:1 virtual address space to avoid speculative access to the
page logging additional errors.

But memory_failure() may not always succeed in taking the page offline,
especially if the page belongs to the kernel.  This can happen if
there are too many corrected errors on a page and either mcelog(8)
or drivers/ras/cec.c asks to take a page offline.

Since we remove the 1:1 mapping early in memory_failure(), we can
end up with the page unmapped, but still in use. On the next access
the kernel crashes :-(

There are also various debug paths that call memory_failure() to simulate
occurrence of an error. Since there is no actual error in memory, we
don't need to map out the page for those cases.

Revert most of the previous attempt and keep the solution local to
arch/x86/kernel/cpu/mcheck/mce.c. Unmap the page only when:

	1) there is a real error
	2) memory_failure() succeeds.

All of this only applies to 64-bit systems. 32-bit kernel doesn't map
all of memory into kernel space. It isn't worth adding the code to unmap
the piece that is mapped because nobody would run a 32-bit kernel on a
machine that has recoverable machine checks.

Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert (Persistent Memory) <elliott@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org #v4.14
Fixes: ce0fa3e56a ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13 16:25:06 +01:00
Eric W. Biederman c0f45555b8 signal/memory-failure: Use force_sig_mceerr and send_sig_mceerr
Delegate filling out struct siginfo to functions in kernel/signal.c
to simplify the code.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-01-23 12:17:48 -06:00
Eric W. Biederman 83b57531c5 mm/memory_failure: Remove unused trapno from memory_failure
Today 4 architectures set ARCH_SUPPORTS_MEMORY_FAILURE (arm64, parisc,
powerpc, and x86), while 4 other architectures set __ARCH_SI_TRAPNO
(alpha, metag, sparc, and tile).  These two sets of architectures do
not interesect so remove the trapno paramater to remove confusion.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-01-23 12:17:42 -06:00
Laszlo Toth b6b18aa87b mm, soft_offline: improve hugepage soft offlining error log
On a failed attempt, we get the following entry: soft offline: 0x3c0000:
migration failed 1, type 17ffffc0008008 (uptodate|head)

Make this more specific to be straightforward and to follow other error
log formats in soft_offline_huge_page().

Link: http://lkml.kernel.org/r/20171016171757.GA3018@ubuntu-desk-vm
Signed-off-by: Laszlo Toth <laszlth@gmail.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:05 -08:00
Tony Luck ce0fa3e56a x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
Speculative processor accesses may reference any memory that has a
valid page table entry.  While a speculative access won't generate
a machine check, it will log the error in a machine check bank. That
could cause escalation of a subsequent error since the overflow bit
will be then set in the machine check bank status register.

Code has to be double-plus-tricky to avoid mentioning the 1:1 virtual
address of the page we want to map out otherwise we may trigger the
very problem we are trying to avoid.  We use a non-canonical address
that passes through the usual Linux table walking code to get to the
same "pte".

Thanks to Dave Hansen for reviewing several iterations of this.

Also see:

  http://marc.info/?l=linux-mm&m=149860136413338&w=2

Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Elliott, Robert (Persistent Memory) <elliott@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170816171803.28342-1-tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-17 10:30:49 +02:00
Michal Hocko ef77ba5ce6 mm, hugetlb, soft_offline: use new_page_nodemask for soft offline migration
new_page is yet another duplication of the migration callback which has
to handle hugetlb migration specially.  We can safely use the generic
new_page_nodemask for the same purpose.

Please note that gigantic hugetlb pages do not need any special handling
because alloc_huge_page_nodemask will make sure to check pages in all
per node pools.  The reason this was done previously was that
alloc_huge_page_node treated NO_NUMA_NODE and a specific node
differently and so alloc_huge_page_node(nid) would check on this
specific node.

Link: http://lkml.kernel.org/r/20170622193034.28972-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
Naoya Horiguchi 0348d2ebec mm: hwpoison: introduce idenfity_page_state
Factoring duplicate code into a function.

Link: http://lkml.kernel.org/r/1496305019-5493-10-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Naoya Horiguchi ddd40d8a2c mm: hugetlb: delete dequeue_hwpoisoned_huge_page()
dequeue_hwpoisoned_huge_page() is no longer used, so let's remove it.

Link: http://lkml.kernel.org/r/1496305019-5493-9-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Naoya Horiguchi 78bb920344 mm: hwpoison: dissolve in-use hugepage in unrecoverable memory error
Currently me_huge_page() relies on dequeue_hwpoisoned_huge_page() to
keep the error hugepage away from the system, which is OK but not good
enough because the hugepage still has a refcount and unpoison doesn't
work on the error hugepage (PageHWPoison flags are cleared but pages are
still leaked.) And there's "wasting health subpages" issue too.  This
patch reworks on me_huge_page() to solve these issues.

For hugetlb file, recently we have truncating code so let's use it in
hugetlbfs specific ->error_remove_page().

For anonymous hugepage, it's helpful to dissolve the error page after
freeing it into free hugepage list.  Migration entry and PageHWPoison in
the head page prevent the access to it.

TODO: dissolve_free_huge_page() can fail but we don't considered it yet.
It's not critical (and at least no worse that now) because in such case
the error hugepage just stays in free hugepage list without being
dissolved.  By virtue of PageHWPoison in head page, it's never allocated
to processes.

[akpm@linux-foundation.org: fix unused var warnings]
Fixes: 23a003bfd2 ("mm/madvise: pass return code of memory_failure() to userspace")
Link: http://lkml.kernel.org/r/20170417055948.GM31394@yexl-desktop
Link: http://lkml.kernel.org/r/1496305019-5493-8-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Naoya Horiguchi 761ad8d7c7 mm: hwpoison: introduce memory_failure_hugetlb()
memory_failure() is a big function and hard to maintain.  Handling
hugetlb- and non-hugetlb- case in a single function is not good, so this
patch separates PageHuge() branch into a new function, which saves many
PageHuge() check.

Link: http://lkml.kernel.org/r/1496305019-5493-7-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Naoya Horiguchi d4a3a60b37 mm: soft-offline: dissolve free hugepage if soft-offlined
Now we have code to rescue most of healthy pages from a hwpoisoned
hugepage.  So let's apply it to soft_offline_free_page too.

Link: http://lkml.kernel.org/r/1496305019-5493-6-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Anshuman Khandual c3114a84f7 mm: hugetlb: soft-offline: dissolve source hugepage after successful migration
Currently hugepage migrated by soft-offline (i.e.  due to correctable
memory errors) is contained as a hugepage, which means many non-error
pages in it are unreusable, i.e.  wasted.

This patch solves this issue by dissolving source hugepages into buddy.
As done in previous patch, PageHWPoison is set only on a head page of
the error hugepage.  Then in dissoliving we move the PageHWPoison flag
to the raw error page so that all healthy subpages return back to buddy.

[arnd@arndb.de: fix warnings: replace some macros with inline functions]
  Link: http://lkml.kernel.org/r/20170609102544.2947326-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/1496305019-5493-5-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Naoya Horiguchi b37ff71cc6 mm: hwpoison: change PageHWPoison behavior on hugetlb pages
We'd like to narrow down the error region in memory error on hugetlb
pages.  However, currently we set PageHWPoison flags on all subpages in
the error hugepage and add # of subpages to num_hwpoison_pages, which
doesn't fit our purpose.

So this patch changes the behavior and we only set PageHWPoison on the
head page then increase num_hwpoison_pages only by 1.  This is a
preparation for narrow-down part which comes in later patches.

Link: http://lkml.kernel.org/r/1496305019-5493-4-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Naoya Horiguchi 243abd5b78 mm: hugetlb: prevent reuse of hwpoisoned free hugepages
Patch series "mm: hwpoison: fixlet for hugetlb migration".

This patchset updates the hwpoison/hugetlb code to address 2 reported
issues.

One is madvise(MADV_HWPOISON) failure reported by Intel's lkp robot (see
http://lkml.kernel.org/r/20170417055948.GM31394@yexl-desktop.) First
half was already fixed in mainline, and another half about hugetlb cases
are solved in this series.

Another issue is "narrow-down error affected region into a single 4kB
page instead of a whole hugetlb page" issue, which was tried by Anshuman
(http://lkml.kernel.org/r/20170420110627.12307-1-khandual@linux.vnet.ibm.com)
and I updated it to apply it more widely.

This patch (of 9):

We no longer use MIGRATE_ISOLATE to prevent reuse of hwpoison hugepages
as we did before.  So current dequeue_huge_page_node() doesn't work as
intended because it still uses is_migrate_isolate_page() for this check.
This patch fixes it with PageHWPoison flag.

Link: http://lkml.kernel.org/r/1496305019-5493-2-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Linus Torvalds 088737f44b Writeback error handling fixes (pile #2)
-----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJZXhmCAAoJEAAOaEEZVoIVpRkP/1qlYn3pq6d5Kuz84pejOmlL
 5jbkS/cOmeTxeUU4+B1xG8Lx7bAk8PfSXQOADbSJGiZd0ug95tJxplFYIGJzR/tG
 aNMHeu/BVKKhUKORGuKR9rJKtwC839L/qao+yPBo5U3mU4L73rFWX8fxFuhSJ8HR
 hvkgBu3Hx6GY59CzxJ8iJzj+B+uPSFrNweAk0+0UeWkBgTzEdiGqaXBX4cHIkq/5
 hMoCG+xnmwHKbCBsQ5js+YJT+HedZ4lvfjOqGxgElUyjJ7Bkt/IFYOp8TUiu193T
 tA4UinDjN8A7FImmIBIftrECmrAC9HIGhGZroYkMKbb8ReDR2ikE5FhKEpuAGU3a
 BXBgX2mPQuArvZWM7qeJCkxV9QJ0u/8Ykbyzo30iPrICyrzbEvIubeB/mDA034+Z
 Z0/z8C3v7826F3zP/NyaQEojUgRq30McMOIS8GMnx15HJwRsRKlzjfy9Wm4tWhl0
 t3nH1jMqAZ7068s6rfh/oCwdgGOwr5o4hW/bnlITzxbjWQUOnZIe7KBxIezZJ2rv
 OcIwd5qE8PNtpagGj5oUbnjGOTkERAgsMfvPk5tjUNt28/qUlVs2V0aeo47dlcsh
 oYr8WMOIzw98Rl7Bo70mplLrqLD6nGl0LfXOyUlT4STgLWW4ksmLVuJjWIUxcO/0
 yKWjj9wfYRQ0vSUqhsI5
 =3Z93
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux

Pull Writeback error handling updates from Jeff Layton:
 "This pile represents the bulk of the writeback error handling fixes
  that I have for this cycle. Some of the earlier patches in this pile
  may look trivial but they are prerequisites for later patches in the
  series.

  The aim of this set is to improve how we track and report writeback
  errors to userland. Most applications that care about data integrity
  will periodically call fsync/fdatasync/msync to ensure that their
  writes have made it to the backing store.

  For a very long time, we have tracked writeback errors using two flags
  in the address_space: AS_EIO and AS_ENOSPC. Those flags are set when a
  writeback error occurs (via mapping_set_error) and are cleared as a
  side-effect of filemap_check_errors (as you noted yesterday). This
  model really sucks for userland.

  Only the first task to call fsync (or msync or fdatasync) will see the
  error. Any subsequent task calling fsync on a file will get back 0
  (unless another writeback error occurs in the interim). If I have
  several tasks writing to a file and calling fsync to ensure that their
  writes got stored, then I need to have them coordinate with one
  another. That's difficult enough, but in a world of containerized
  setups that coordination may even not be possible.

  But wait...it gets worse!

  The calls to filemap_check_errors can be buried pretty far down in the
  call stack, and there are internal callers of filemap_write_and_wait
  and the like that also end up clearing those errors. Many of those
  callers ignore the error return from that function or return it to
  userland at nonsensical times (e.g. truncate() or stat()). If I get
  back -EIO on a truncate, there is no reason to think that it was
  because some previous writeback failed, and a subsequent fsync() will
  (incorrectly) return 0.

  This pile aims to do three things:

   1) ensure that when a writeback error occurs that that error will be
      reported to userland on a subsequent fsync/fdatasync/msync call,
      regardless of what internal callers are doing

   2) report writeback errors on all file descriptions that were open at
      the time that the error occurred. This is a user-visible change,
      but I think most applications are written to assume this behavior
      anyway. Those that aren't are unlikely to be hurt by it.

   3) document what filesystems should do when there is a writeback
      error. Today, there is very little consistency between them, and a
      lot of cargo-cult copying. We need to make it very clear what
      filesystems should do in this situation.

  To achieve this, the set adds a new data type (errseq_t) and then
  builds new writeback error tracking infrastructure around that. Once
  all of that is in place, we change the filesystems to use the new
  infrastructure for reporting wb errors to userland.

  Note that this is just the initial foray into cleaning up this mess.
  There is a lot of work remaining here:

   1) convert the rest of the filesystems in a similar fashion. Once the
      initial set is in, then I think most other fs' will be fairly
      simple to convert. Hopefully most of those can in via individual
      filesystem trees.

   2) convert internal waiters on writeback to use errseq_t for
      detecting errors instead of relying on the AS_* flags. I have some
      draft patches for this for ext4, but they are not quite ready for
      prime time yet.

  This was a discussion topic this year at LSF/MM too. If you're
  interested in the gory details, LWN has some good articles about this:

      https://lwn.net/Articles/718734/
      https://lwn.net/Articles/724307/"

* tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux:
  btrfs: minimal conversion to errseq_t writeback error reporting on fsync
  xfs: minimal conversion to errseq_t writeback error reporting
  ext4: use errseq_t based error handling for reporting data writeback errors
  fs: convert __generic_file_fsync to use errseq_t based reporting
  block: convert to errseq_t based writeback error tracking
  dax: set errors in mapping when writeback fails
  Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors
  mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error
  fs: new infrastructure for writeback error handling and reporting
  lib: add errseq_t type and infrastructure for handling it
  mm: don't TestClearPageError in __filemap_fdatawait_range
  mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails
  jbd2: don't clear and reset errors after waiting on writeback
  buffer: set errors in mapping at the time that the error occurs
  fs: check for writeback errors after syncing out buffers in generic_file_fsync
  buffer: use mapping_set_error instead of setting the flag
  mm: fix mapping_set_error call in me_pagecache_dirty
2017-07-07 19:38:17 -07:00
Anshuman Khandual 94310cbcaa mm/madvise: enable (soft|hard) offline of HugeTLB pages at PGD level
Though migrating gigantic HugeTLB pages does not sound much like real
world use case, they can be affected by memory errors.  Hence migration
at the PGD level HugeTLB pages should be supported just to enable soft
and hard offline use cases.

While allocating the new gigantic HugeTLB page, it should not matter
whether new page comes from the same node or not.  There would be very
few gigantic pages on the system afterall, we should not be bothered
about node locality when trying to save a big page from crashing.

This change renames dequeu_huge_page_node() function as dequeue_huge
_page_node_exact() preserving it's original functionality.  Now the new
dequeue_huge_page_node() function scans through all available online nodes
to allocate a huge page for the NUMA_NO_NODE case and just falls back
calling dequeu_huge_page_node_exact() for all other cases.

[arnd@arndb.de: make hstate_is_gigantic() inline]
  Link: http://lkml.kernel.org/r/20170522124748.3911296-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170516100509.20122-1-khandual@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:33 -07:00
Jeff Layton af21bfaf70 mm: fix mapping_set_error call in me_pagecache_dirty
The error code should be negative.  Since this ends up in the default case
anyway, this is harmless, but it's less confusing to negate it.  Also,
later patches will require a negative error code here.

Link: http://lkml.kernel.org/r/20170525103355.6760-1-jlayton@redhat.com
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2017-07-06 07:02:19 -04:00
James Morse 7258ae5c5a mm/memory-failure.c: use compound_head() flags for huge pages
memory_failure() chooses a recovery action function based on the page
flags.  For huge pages it uses the tail page flags which don't have
anything interesting set, resulting in:

> Memory failure: 0x9be3b4: Unknown page state
> Memory failure: 0x9be3b4: recovery action for unknown page: Failed

Instead, save a copy of the head page's flags if this is a huge page,
this means if there are no relevant flags for this tail page, we use the
head pages flags instead.  This results in the me_huge_page() recovery
action being called:

> Memory failure: 0x9b7969: recovery action for huge page: Delayed

For hugepages that have not yet been allocated, this allows the hugepage
to be dequeued.

Fixes: 524fca1e73 ("HWPOISON: fix misjudgement of page_action() for errors on mlocked pages")
Link: http://lkml.kernel.org/r/20170524130204.21845-1-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-17 06:37:05 +09:00
Punit Agrawal 30809f559a mm/migrate: fix refcount handling when !hugepage_migration_supported()
On failing to migrate a page, soft_offline_huge_page() performs the
necessary update to the hugepage ref-count.

But when !hugepage_migration_supported() , unmap_and_move_hugepage()
also decrements the page ref-count for the hugepage.  The combined
behaviour leaves the ref-count in an inconsistent state.

This leads to soft lockups when running the overcommitted hugepage test
from mce-tests suite.

  Soft offlining pfn 0x83ed600 at process virtual address 0x400000000000
  soft offline: 0x83ed600: migration failed 1, type 1fffc00000008008 (uptodate|head)
  INFO: rcu_preempt detected stalls on CPUs/tasks:
   Tasks blocked on level-0 rcu_node (CPUs 0-7): P2715
    (detected by 7, t=5254 jiffies, g=963, c=962, q=321)
    thugetlb_overco R  running task        0  2715   2685 0x00000008
    Call trace:
      dump_backtrace+0x0/0x268
      show_stack+0x24/0x30
      sched_show_task+0x134/0x180
      rcu_print_detail_task_stall_rnp+0x54/0x7c
      rcu_check_callbacks+0xa74/0xb08
      update_process_times+0x34/0x60
      tick_sched_handle.isra.7+0x38/0x70
      tick_sched_timer+0x4c/0x98
      __hrtimer_run_queues+0xc0/0x300
      hrtimer_interrupt+0xac/0x228
      arch_timer_handler_phys+0x3c/0x50
      handle_percpu_devid_irq+0x8c/0x290
      generic_handle_irq+0x34/0x50
      __handle_domain_irq+0x68/0xc0
      gic_handle_irq+0x5c/0xb0

Address this by changing the putback_active_hugepage() in
soft_offline_huge_page() to putback_movable_pages().

This only triggers on systems that enable memory failure handling
(ARCH_SUPPORTS_MEMORY_FAILURE) but not hugepage migration
(!ARCH_ENABLE_HUGEPAGE_MIGRATION).

I imagine this wasn't triggered as there aren't many systems running
this configuration.

[akpm@linux-foundation.org: remove dead comment, per Naoya]
Link: http://lkml.kernel.org/r/20170525135146.32011-1-punit.agrawal@arm.com
Reported-by: Manoj Iyer <manoj.iyer@canonical.com>
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>	[3.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:38 -07:00
Michal Hocko 18365225f0 hwpoison, memcg: forcibly uncharge LRU pages
Laurent Dufour has noticed that hwpoinsoned pages are kept charged.  In
his particular case he has hit a bad_page("page still charged to
cgroup") when onlining a hwpoison page.  While this looks like something
that shouldn't happen in the first place because onlining hwpages and
returning them to the page allocator makes only little sense it shows a
real problem.

hwpoison pages do not get freed usually so we do not uncharge them (at
least not since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge
API")).  Each charge pins memcg (since e8ea14cc6e ("mm: memcontrol:
take a css reference for each charged page")) as well and so the
mem_cgroup and the associated state will never go away.  Fix this leak
by forcibly uncharging a LRU hwpoisoned page in delete_from_lru_cache().
We also have to tweak uncharge_list because it cannot rely on zero ref
count for these pages.

[akpm@linux-foundation.org: coding-style fixes]
Fixes: 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API")
Link: http://lkml.kernel.org/r/20170502185507.GB19165@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Tested-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:15 -07:00
Naoya Horiguchi 286c469a98 mm: hwpoison: call shake_page() after try_to_unmap() for mlocked page
Memory error handler calls try_to_unmap() for error pages in various
states.  If the error page is a mlocked page, error handling could fail
with "still referenced by 1 users" message.  This is because the page is
linked to and stays in lru cache after the following call chain.

  try_to_unmap_one
    page_remove_rmap
      clear_page_mlock
        putback_lru_page
          lru_cache_add

memory_failure() calls shake_page() to hanlde the similar issue, but
current code doesn't cover because shake_page() is called only before
try_to_unmap().  So this patches adds shake_page().

Fixes: 23a003bfd2 ("mm/madvise: pass return code of memory_failure() to userspace")
Link: http://lkml.kernel.org/r/20170417055948.GM31394@yexl-desktop
Link: http://lkml.kernel.org/r/1493197841-23986-3-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Xiaolong Ye <xiaolong.ye@intel.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:12 -07:00
Naoya Horiguchi 8bcb74de76 mm: hwpoison: call shake_page() unconditionally
shake_page() is called before going into core error handling code in
order to ensure that the error page is flushed from lru_cache lists
where pages stay during transferring among LRU lists.

But currently it's not fully functional because when the page is linked
to lru_cache by calling activate_page(), its PageLRU flag is set and
shake_page() is skipped.  The result is to fail error handling with
"still referenced by 1 users" message.

When the page is linked to lru_cache by isolate_lru_page(), its PageLRU
is clear, so that's fine.

This patch makes shake_page() unconditionally called to avoild the
failure.

Fixes: 23a003bfd2 ("mm/madvise: pass return code of memory_failure() to userspace")
Link: http://lkml.kernel.org/r/20170417055948.GM31394@yexl-desktop
Link: http://lkml.kernel.org/r/1493197841-23986-2-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Xiaolong Ye <xiaolong.ye@intel.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:12 -07:00
Anshuman Khandual 82a2481e8e mm/memory-failure.c: add page flag description in error paths
It helps to provide page flag description along with the raw value in
error paths during soft offline process.  From sample experiments

Before the patch:

  soft offline: 0x6100: migration failed 1, type 3ffff800008018
  soft offline: 0x7400: migration failed 1, type 3ffff800008018

After the patch:

  soft offline: 0x5900: migration failed 1, type 3ffff800008018 (uptodate|dirty|head)
  soft offline: 0x6c00: migration failed 1, type 3ffff800008018 (uptodate|dirty|head)

Link: http://lkml.kernel.org/r/20170409023829.10788-1-khandual@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Minchan Kim 666e5a406c mm: make ttu's return boolean
try_to_unmap() returns SWAP_SUCCESS or SWAP_FAIL so it's suitable for
boolean return.  This patch changes it.

Link: http://lkml.kernel.org/r/1489555493-14659-8-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:10 -07:00
Shaohua Li a128ca71fb mm: delete unnecessary TTU_* flags
Patch series "mm: fix some MADV_FREE issues", v5.

We are trying to use MADV_FREE in jemalloc.  Several issues are found.
Without solving the issues, jemalloc can't use the MADV_FREE feature.

 - Doesn't support system without swap enabled. Because if swap is off,
   we can't or can't efficiently age anonymous pages. And since
   MADV_FREE pages are mixed with other anonymous pages, we can't
   reclaim MADV_FREE pages. In current implementation, MADV_FREE will
   fallback to MADV_DONTNEED without swap enabled. But in our
   environment, a lot of machines don't enable swap. This will prevent
   our setup using MADV_FREE.

 - Increases memory pressure. page reclaim bias file pages reclaim
   against anonymous pages. This doesn't make sense for MADV_FREE pages,
   because those pages could be freed easily and refilled with very
   slight penality. Even page reclaim doesn't bias file pages, there is
   still an issue, because MADV_FREE pages and other anonymous pages are
   mixed together. To reclaim a MADV_FREE page, we probably must scan a
   lot of other anonymous pages, which is inefficient. In our test, we
   usually see oom with MADV_FREE enabled and nothing without it.

 - Accounting. There are two accounting problems. We don't have a global
   accounting. If the system is abnormal, we don't know if it's a
   problem from MADV_FREE side. The other problem is RSS accounting.
   MADV_FREE pages are accounted as normal anon pages and reclaimed
   lazily, so application's RSS becomes bigger. This confuses our
   workloads. We have monitoring daemon running and if it finds
   applications' RSS becomes abnormal, the daemon will kill the
   applications even kernel can reclaim the memory easily.

To address the first the two issues, we can either put MADV_FREE pages
into a separate LRU list (Minchan's previous patches and V1 patches), or
put them into LRU_INACTIVE_FILE list (suggested by Johannes).  The
patchset use the second idea.  The reason is LRU_INACTIVE_FILE list is
tiny nowadays and should be full of used once file pages.  So we can
still efficiently reclaim MADV_FREE pages there without interference
with other anon and active file pages.  Putting the pages into inactive
file list also has an advantage which allows page reclaim to prioritize
MADV_FREE pages and used once file pages.  MADV_FREE pages are put into
the lru list and clear SwapBacked flag, so PageAnon(page) &&
!PageSwapBacked(page) will indicate a MADV_FREE pages.  These pages will
directly freed without pageout if they are clean, otherwise normal swap
will reclaim them.

For the third issue, the previous post adds global accounting and a
separate RSS count for MADV_FREE pages.  The problem is we never get
accurate accounting for MADV_FREE pages.  The pages are mapped to
userspace, can be dirtied without notice from kernel side.  To get
accurate accounting, we could write protect the page, but then there is
extra page fault overhead, which people don't want to pay.  Jemalloc
guys have concerns about the inaccurate accounting, so this post drops
the accounting patches temporarily.  The info exported to
/proc/pid/smaps for MADV_FREE pages are kept, which is the only place we
can get accurate accounting right now.

This patch (of 6):

Johannes pointed out TTU_LZFREE is unnecessary.  It's true because we
always have the flag set if we want to do an unmap.  For cases we don't
do an unmap, the TTU_LZFREE part of code should never run.

Also the TTU_UNMAP is unnecessary.  If no other flags set (for example,
TTU_MIGRATION), an unmap is implied.

The patch includes Johannes's cleanup and dead TTU_ACTION macro removal
code

Link: http://lkml.kernel.org/r/4be3ea1bc56b26fd98a54d0a6f70bec63f6d8980.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00
Ingo Molnar 299300258d sched/headers: Prepare for new header dependencies before moving code to <linux/sched/task.h>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:35 +01:00
Ingo Molnar 3f07c01441 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/signal.h>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:29 +01:00
Yisheng Xie 85fbe5d1b5 HWPOISON: soft offlining for non-lru movable page
Extend soft offlining framework to support non-lru page, which already
support migration after commit bda807d444 ("mm: migrate: support
non-lru movable page migration")

When memory corrected errors occur on a non-lru movable page, we can
choose to stop using it by migrating data onto another page and disable
the original (maybe half-broken) one.

Link: http://lkml.kernel.org/r/1485867981-16037-4-git-send-email-ysxie@foxmail.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Suggested-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:55 -08:00
Nicholas Piggin 6326fec112 mm: Use owner_priv bit for PageSwapCache, valid when PageSwapBacked
A page is not added to the swap cache without being swap backed,
so PageSwapBacked mappings can use PG_owner_priv_1 for PageSwapCache.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Bob Peterson <rpeterso@redhat.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andrew Lutomirski <luto@kernel.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-25 11:54:48 -08:00
Naoya Horiguchi c3901e722b mm: hwpoison: fix thp split handling in memory_failure()
When memory_failure() runs on a thp tail page after pmd is split, we
trigger the following VM_BUG_ON_PAGE():

   page:ffffd7cd819b0040 count:0 mapcount:0 mapping:         (null) index:0x1
   flags: 0x1fffc000400000(hwpoison)
   page dumped because: VM_BUG_ON_PAGE(!page_count(p))
   ------------[ cut here ]------------
   kernel BUG at /src/linux-dev/mm/memory-failure.c:1132!

memory_failure() passed refcount and page lock from tail page to head
page, which is not needed because we can pass any subpage to
split_huge_page().

Fixes: 61f5d698cc ("mm: re-enable THP")
Link: http://lkml.kernel.org/r/1477961577-7183-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>	[4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-11 08:12:37 -08:00
Naoya Horiguchi 7c7fd82556 mm: hwpoison: remove incorrect comments
dequeue_hwpoisoned_huge_page() can be called without page lock hold, so
let's remove incorrect comment.

The reason why the page lock is not really needed is that
dequeue_hwpoisoned_huge_page() checks page_huge_active() inside
hugetlb_lock, which allows us to avoid trying to dequeue a hugepage that
are just allocated but not linked to active list yet, even without
taking page lock.

Link: http://lkml.kernel.org/r/20160720092901.GA15995@www9186uo.sakura.ne.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Zhan Chen <zhanc1@andrew.cmu.edu>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman 599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Chen Yucong 495367c051 mm/memory-failure.c: replace "MCE" with "Memory failure"
HWPoison was specific to some particular x86 platforms.  And it is often
seen as high level machine check handler.  And therefore, 'MCE' is used
for the format prefix of printk().  However, 'PowerNV' has also used
HWPoison for handling memory errors[1], so 'MCE' is no longer suitable
to memory_failure.c.

Additionally, 'MCE' and 'Memory failure' have different context.  The
former belongs to exception context and the latter belongs to process
context.  Furthermore, HWPoison can also be used for off-lining those
sub-health pages that do not trigger any machine check exception.

This patch aims to replace 'MCE' with a more appropriate prefix.

[1] commit 75eb3d9b60 ("powerpc/powernv: Get FSP memory errors
and plumb into memory poison infrastructure.")

Signed-off-by: Chen Yucong <slaoub@gmail.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Konstantin Khlebnikov c2e7e00b71 mm/memory-failure: fix race with compound page split/merge
get_hwpoison_page() must recheck relation between head and tail pages.

n-horiguchi said: without this recheck, the race causes kernel to pin an
irrelevant page, and finally makes kernel crash for refcount mismatch.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Kirill A. Shutemov 09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Joe Perches 1170532bb4 mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent.

Miscellanea:

 - Realign arguments
 - Add missing newline to format
 - kmemleak-test.c has a "kmemleak: " prefix added to the
   "Kmemleak testing" logging message via pr_fmt

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00