Futex code is smarter than most other gup_fast O_DIRECT code and knows
about the compound internals. However now doing a put_page(head_page)
will not release the pin on the tail page taken by gup-fast, leading to
all sort of refcounting bugchecks. Getting a stable head_page is a little
tricky.
page_head = page is there because if this is not a tail page it's also the
page_head. Only in case this is a tail page, compound_head is called,
otherwise it's guaranteed unnecessary. And if it's a tail page
compound_head has to run atomically inside irq disabled section
__get_user_pages_fast before returning. Otherwise ->first_page won't be a
stable pointer.
Disableing irq before __get_user_page_fast and releasing irq after running
compound_head is needed because if __get_user_page_fast returns == 1, it
means the huge pmd is established and cannot go away from under us.
pmdp_splitting_flush_notify in __split_huge_page_splitting will have to
wait for local_irq_enable before the IPI delivery can return. This means
__split_huge_page_refcount can't be running from under us, and in turn
when we run compound_head(page) we're not reading a dangling pointer from
tailpage->first_page. Then after we get to stable head page, we are
always safe to call compound_lock and after taking the compound lock on
head page we can finally re-check if the page returned by gup-fast is
still a tail page. in which case we're set and we didn't need to split
the hugepage in order to take a futex on it.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment about why rt_mutex_next_owner() can return NULL in
wake_futex_pi() is not the normal case.
Tracing the cause of why this occurs is more likely that waiter
simply timedout. But because it originally caused contention with
the futex, the owner will go into the kernel when it unlocks
the lock. Then it will hit this code path and
rt_mutex_next_owner() will return NULL.
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The futex_q struct has grown considerably over the last couple years. I
believe it now merits a static initializer to avoid uninitialized data
errors (having spent more time than I care to admit debugging an uninitialized
q.bitset in an experimental new op code).
With the key initializer built in, several of the FUTEX_KEY_INIT calls can
be removed.
V2: use a static variable instead of an init macro.
use a C99 initializer and don't rely on variable ordering in the struct.
V3: make futex_q_init const
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
LKML-Reference: <1289252428-18383-1-git-send-email-dvhart@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In the early days we passed the mmap sem around. That became the
"int fshared" with the fast gup improvements. Then we added
"int clockrt" in places. This patch unifies these options as "flags".
[ tglx: Split out the stale fshared cleanup ]
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
LKML-Reference: <1289250609-16304-1-git-send-email-dvhart@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The fast GUP changes stopped using the fshared flag in
put_futex_keys(), but we kept the interface the same.
Cleanup all stale users.
This patch is split out from Darren Harts combo patch which also
combines various flags. This way the changes are clearly separated.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Darren Hart <dvhart@linux.intel.com>
LKML-Reference: <1289250609-16304-1-git-send-email-dvhart@linux.intel.com>
Since commit 1dcc41bb (futex: Change 3rd arg of fetch_robust_entry()
to unsigned int*) some gcc versions decided to emit the following
warning:
kernel/futex.c: In function ‘exit_robust_list’:
kernel/futex.c:2492: warning: ‘next_pi’ may be used uninitialized in this function
The commit did not introduce the warning as gcc should have warned
before that commit as well. It's just gcc being silly.
The code path really can't result in next_pi being unitialized (or
should not), but let's keep the build clean. Annotate next_pi as an
uninitialized_var.
[ tglx: Addressed the same issue in futex_compat.c and massaged the
changelog ]
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Tested-by: Matt Fleming <matt@console-pimps.org>
Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
LKML-Reference: <1288897200-13008-1-git-send-email-dvhart@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
futex_wait() is leaking key references due to futex_wait_setup()
acquiring an additional reference via the queue_lock() routine. The
nested key ref-counting has been masking bugs and complicating code
analysis. queue_lock() is only called with a previously ref-counted
key, so remove the additional ref-counting from the queue_(un)lock()
functions.
Also futex_wait_requeue_pi() drops one key reference too many in
unqueue_me_pi(). Remove the key reference handling from
unqueue_me_pi(). This was paired with a queue_lock() in
futex_lock_pi(), so the count remains unchanged.
Document remaining nested key ref-counting sites.
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Reported-and-tested-by: Matthieu Fertré<matthieu.fertre@kerlabs.com>
Reported-by: Louis Rilling<louis.rilling@kerlabs.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <4CBB17A8.70401@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Convert futex_requeue() function parameters to use @name
kernel-doc notation and add @fshared & @cmpval to prevent
kernel-doc warnings.
Add @list to struct futex_q.
Fix a few typos.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20101013110234.89b06043.randy.dunlap@oracle.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
queue_lock/unlock/me() and unqueue_me_pi() grab/release spinlocks
but are missing proper annotations. Add them.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Darren Hart <dvhltc@us.ibm.com>
LKML-Reference: <1284468228-8723-3-git-send-email-namhyung@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
@uaddr and @uaddr2 fields in restart_block.futex are user
pointers. Add __user and remove unnecessary casts.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Darren Hart <dvhltc@us.ibm.com>
LKML-Reference: <1284468228-8723-2-git-send-email-namhyung@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Sparse complains:
kernel/futex.c:2495:59: warning: incorrect type in argument 3 (different signedness)
Make 3rd argument of fetch_robust_entry() 'unsigned int'.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Darren Hart <dvhltc@us.ibm.com>
LKML-Reference: <1284468228-8723-1-git-send-email-namhyung@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
futex_find_get_task is currently used (through lookup_pi_state) from two
contexts, futex_requeue and futex_lock_pi_atomic. None of the paths
looks it needs the credentials check, though. Different (e)uids
shouldn't matter at all because the only thing that is important for
shared futex is the accessibility of the shared memory.
The credentail check results in glibc assert failure or process hang (if
glibc is compiled without assert support) for shared robust pthread
mutex with priority inheritance if a process tries to lock already held
lock owned by a process with a different euid:
pthread_mutex_lock.c:312: __pthread_mutex_lock_full: Assertion `(-(e)) != 3 || !robust' failed.
The problem is that futex_lock_pi_atomic which is called when we try to
lock already held lock checks the current holder (tid is stored in the
futex value) to get the PI state. It uses lookup_pi_state which in turn
gets task struct from futex_find_get_task. ESRCH is returned either
when the task is not found or if credentials check fails.
futex_lock_pi_atomic simply returns if it gets ESRCH. glibc code,
however, doesn't expect that robust lock returns with ESRCH because it
should get either success or owner died.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The WARN_ON in lookup_pi_state which complains about a mismatch
between pi_state->owner->pid and the pid which we retrieved from the
user space futex is completely bogus.
The code just emits the warning and then continues despite the fact
that it detected an inconsistent state of the futex. A conveniant way
for user space to spam the syslog.
Replace the WARN_ON by a consistency check. If the values do not match
return -EINVAL and let user space deal with the mess it created.
This also fixes the missing task_pid_vnr() when we compare the
pi_state->owner pid with the futex value.
Reported-by: Jermome Marchand <jmarchan@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@kernel.org>
If the owner of a PI futex dies we fix up the pi_state and set
pi_state->owner to NULL. When a malicious or just sloppy programmed
user space application sets the futex value to 0 e.g. by calling
pthread_mutex_init(), then the futex can be acquired again. A new
waiter manages to enqueue itself on the pi_state w/o damage, but on
unlock the kernel dereferences pi_state->owner and oopses.
Prevent this by checking pi_state->owner in the unlock path. If
pi_state->owner is not current we know that user space manipulated the
futex value. Ignore the mess and return -EINVAL.
This catches the above case and also the case where a task hijacks the
futex by setting the tid value and then tries to unlock it.
Reported-by: Jermome Marchand <jmarchan@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@kernel.org>
This fixes a futex key reference count bug in futex_lock_pi(),
where a key's reference count is incremented twice but decremented
only once, causing the backing object to not be released.
If the futex is created in a temporary file in an ext3 file system,
this bug causes the file's inode to become an "undead" orphan,
which causes an oops from a BUG_ON() in ext3_put_super() when the
file system is unmounted. glibc's test suite is known to trigger this,
see <http://bugzilla.kernel.org/show_bug.cgi?id=14256>.
The bug is a regression from 2.6.28-git3, namely Peter Zijlstra's
38d47c1b70 "[PATCH] futex: rely on
get_user_pages() for shared futexes". That commit made get_futex_key()
also increment the reference count of the futex key, and updated its
callers to decrement the key's reference count before returning.
Unfortunately the normal exit path in futex_lock_pi() wasn't corrected:
the reference count is incremented by get_futex_key() and queue_lock(),
but the normal exit path only decrements once, via unqueue_me_pi().
The fix is to put_futex_key() after unqueue_me_pi(), since 2.6.31
this is easily done by 'goto out_put_key' rather than 'goto out'.
Signed-off-by: Mikael Pettersson <mikpe@it.uu.se>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Darren Hart <dvhltc@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@kernel.org>
Currently, futexes have two problem:
A) The current futex code doesn't handle private file mappings properly.
get_futex_key() uses PageAnon() to distinguish file and
anon, which can cause the following bad scenario:
1) thread-A call futex(private-mapping, FUTEX_WAIT), it
sleeps on file mapping object.
2) thread-B writes a variable and it makes it cow.
3) thread-B calls futex(private-mapping, FUTEX_WAKE), it
wakes up blocked thread on the anonymous page. (but it's nothing)
B) Current futex code doesn't handle zero page properly.
Read mode get_user_pages() can return zero page, but current
futex code doesn't handle it at all. Then, zero page makes
infinite loop internally.
The solution is to use write mode get_user_page() always for
page lookup. It prevents the lookup of both file page of private
mappings and zero page.
Performance concerns:
Probaly very little, because glibc always initialize variables
for futex before to call futex(). It means glibc users never see
the overhead of this patch.
Compatibility concerns:
This patch has few compatibility issues. After this patch,
FUTEX_WAIT require writable access to futex variables (read-only
mappings makes EFAULT). But practically it's not a problem,
glibc always initalizes variables for futexes explicitly - nobody
uses read-only mappings.
Reported-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Darren Hart <dvhltc@us.ibm.com>
Cc: <stable@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Ulrich Drepper <drepper@gmail.com>
LKML-Reference: <20100105162633.45A2.A69D9226@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Convert locks which cannot be sleeping locks in preempt-rt to
raw_spinlocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Convert locks which cannot be sleeping locks in preempt-rt to
raw_spinlocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
plists are used with spinlocks and raw_spinlocks. Change the plist
debugging to handle both types.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
get_user_pages() must be called with mmap_sem held.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: stable@kernel.org
Cc: Andrew Morton <akpm@linuxfoundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20091208121942.GA21298@basil.fritz.box>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The requeue_pi path doesn't use unqueue_me() (and the racy lock_ptr ==
NULL test) nor does it use the wake_list of futex_wake() which where
the reason for commit 41890f2 (futex: Handle spurious wake up)
See debugging discussing on LKML Message-ID: <4AD4080C.20703@us.ibm.com>
The changes in this fix to the wait_requeue_pi path were considered to
be a likely unecessary, but harmless safety net. But it turns out that
due to the fact that for unknown $@#!*( reasons EWOULDBLOCK is defined
as EAGAIN we built an endless loop in the code path which returns
correctly EWOULDBLOCK.
Spurious wakeups in wait_requeue_pi code path are unlikely so we do
the easy solution and return EWOULDBLOCK^WEAGAIN to user space and let
it deal with the spurious wakeup.
Cc: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: John Stultz <johnstul@linux.vnet.ibm.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
LKML-Reference: <4AE23C74.1090502@us.ibm.com>
Cc: stable@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When requeuing tasks from one futex to another, the reference held
by the requeued task to the original futex location needs to be
dropped eventually.
Dropping the reference may ultimately lead to a call to
"iput_final" and subsequently call into filesystem- specific code -
which may be non-atomic.
It is therefore safer to defer this drop operation until after the
futex_hash_bucket spinlock has been dropped.
Originally-From: Helge Bahmann <hcb@chaoticmind.net>
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: <stable@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@linux.vnet.ibm.com>
Cc: Sven-Thorsten Dietrich <sdietrich@novell.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <4AD7A298.5040802@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If userspace tries to perform a requeue_pi on a non-requeue_pi waiter,
it will find the futex_q->requeue_pi_key to be NULL and OOPS.
Check for NULL in match_futex() instead of doing explicit NULL pointer
checks on all call sites. While match_futex(NULL, NULL) returning
false is a little odd, it's still correct as we expect valid key
references.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Dinakar Guniguntala <dino@in.ibm.com>
CC: John Stultz <johnstul@us.ibm.com>
Cc: stable@kernel.org
LKML-Reference: <4AD60687.10306@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The futex code does not handle spurious wake up in futex_wait and
futex_wait_requeue_pi.
The code assumes that any wake up which was not caused by futex_wake /
requeue or by a timeout was caused by a signal wake up and returns one
of the syscall restart error codes.
In case of a spurious wake up the signal delivery code which deals
with the restart error codes is not invoked and we return that error
code to user space. That causes applications which actually check the
return codes to fail. Blaise reported that on preempt-rt a python test
program run into a exception trap. -rt exposed that due to a built in
spurious wake up accelerator :)
Solve this by checking signal_pending(current) in the wake up path and
handle the spurious wake up case w/o returning to user space.
Reported-by: Blaise Gassend <blaise@willowgarage.com>
Debugged-by: Darren Hart <dvhltc@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@kernel.org
LKML-Reference: <new-submission>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
futex: fix requeue_pi key imbalance
futex: Fix typo in FUTEX_WAIT/WAKE_BITSET_PRIVATE definitions
rcu: Place root rcu_node structure in separate lockdep class
rcu: Make hot-unplugged CPU relinquish its own RCU callbacks
rcu: Move rcu_barrier() to rcutree
futex: Move exit_pi_state() call to release_mm()
futex: Nullify robust lists after cleanup
futex: Fix locking imbalance
panic: Fix panic message visibility by calling bust_spinlocks(0) before dying
rcu: Replace the rcu_barrier enum with pointer to call_rcu*() function
rcu: Clean up code based on review feedback from Josh Triplett, part 4
rcu: Clean up code based on review feedback from Josh Triplett, part 3
rcu: Fix rcu_lock_map build failure on CONFIG_PROVE_LOCKING=y
rcu: Clean up code to address Ingo's checkpatch feedback
rcu: Clean up code based on review feedback from Josh Triplett, part 2
rcu: Clean up code based on review feedback from Josh Triplett
If futex_wait_requeue_pi() wakes prior to requeue, we drop the
reference to the source futex_key twice, once in
handle_early_requeue_pi_wakeup() and once on our way out.
Remove the drop from the handle_early_requeue_pi_wakeup() and keep
the get/drops together in futex_wait_requeue_pi().
Reported-by: Helge Bahmann <hcb@chaoticmind.net>
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Helge Bahmann <hcb@chaoticmind.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: stable-2.6.31 <stable@kernel.org>
LKML-Reference: <4ACCE21E.5030805@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Rich reported a lock imbalance in the futex code:
http://bugzilla.kernel.org/show_bug.cgi?id=14288
It's caused by the displacement of the retry_private label in
futex_wake_op(). The code unlocks the hash bucket locks in the
error handling path and retries without locking them again which
makes the next unlock fail.
Move retry_private so we lock the hash bucket locks when we retry.
Reported-by: Rich Ercolany <rercola@acm.jhu.edu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Darren Hart <dvhltc@us.ibm.com>
Cc: stable-2.6.31 <stable@kernel.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The memory barrier semantics of futex_wait_queue_me() are
non-obvious. Add some commentary to try and clarify it.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090924185447.694.38948.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
PI futexes do not use the same plist_node_empty() test for wakeup.
It was possible for the waiter (in futex_wait_requeue_pi()) to set
TASK_INTERRUPTIBLE after the waker assigned the rtmutex to the
waiter. The waiter would then note the plist was not empty and call
schedule(). The task would not be found by any subsequeuent futex
wakeups, resulting in a userspace hang.
By moving the setting of TASK_INTERRUPTIBLE to before the call to
queue_me(), the race with the waker is eliminated. Since we no
longer call get_user() from within queue_me(), there is no need to
delay the setting of TASK_INTERRUPTIBLE until after the call to
queue_me().
The FUTEX_LOCK_PI operation is not affected as futex_lock_pi()
relies entirely on the rtmutex code to handle schedule() and
wakeup. The requeue PI code is affected because the waiter starts
as a non-PI waiter and is woken on a PI futex.
Remove the crusty old comment about holding spinlocks() across
get_user() as we no longer do that. Correct the locking statement
with a description of why the test is performed.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090922053038.8717.97838.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use kernel-doc format to describe struct futex_q.
Correct the wakeup definition to eliminate the statement about
waking the waiter between the plist_del() and the q->lock_ptr = 0.
Note in the comment that PI futexes have a different definition of
the woken state.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090922053029.8717.62798.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Make the existing function kernel-doc consistent throughout
futex.c, following Documentation/kernel-doc-nano-howto.txt as
closely as possible.
When unsure, at least be consistent within futex.c.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090922053022.8717.13339.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The queue_me/unqueue_me commentary is oddly placed and out of date.
Clean it up and correct the inaccurate bits.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090922053015.8717.71713.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Correct various typos and formatting inconsistencies in the
commentary of futex_wait_requeue_pi().
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090922052958.8717.21932.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is currently no check to ensure that userspace uses the same
futex requeue target (uaddr2) in futex_requeue() that the waiter used
in futex_wait_requeue_pi(). A mismatch here could very unexpected
results as the waiter assumes it either wakes on uaddr1 or uaddr2. We
could detect this on wakeup in the waiter, but the cleanup is more
intense after the improper requeue has occured.
This patch stores the waiter's expected requeue target in a new
requeue_pi_key pointer in the futex_q which futex_requeue() checks
prior to attempting to do a proxy lock acquistion or a requeue when
requeue_pi=1. If they don't match, return -EINVAL from futex_requeue,
aborting the requeue of any remaining waiters.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090814003650.14634.63916.stgit@Aeon>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If futex_requeue(requeue_pi=1) finds a futex_q that was created by a call
other the futex_wait_requeue_pi(), the q.rt_waiter may be null. If so,
this will result in an oops from the following call graph:
futex_requeue()
rt_mutex_start_proxy_lock()
task_blocks_on_rt_mutex()
waiter->task dereference
OOPS
We currently WARN_ON() if this is detected, clearly this is inadequate.
If we detect a mispairing in futex_requeue(), bail out, seding -EINVAL to
user-space.
V2: Fix parenthesis warnings.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: John Kacur <jkacur@redhat.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@linux.vnet.ibm.com>
LKML-Reference: <4A7CA8C0.7010809@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
futex_requeue() can acquire the lock on behalf of a waiter
early on or during the requeue loop if it is uncontended or in
the event of a lock steal or owner died. On wakeup, the waiter
(in futex_wait_requeue_pi()) cleans up the pi_state owner using
the lock_ptr to protect against concurrent access to the
pi_state. The pi_state is hung off futex_q's on the requeue
target futex hash bucket so the lock_ptr needs to be updated
accordingly.
The problem manifested by triggering the WARN_ON in
lookup_pi_state() about the pid != pi_state->owner->pid. With
this patch, the pi_state is properly guarded against concurrent
access via the requeue target hb lock.
The astute reviewer may notice that there is a window of time
between when futex_requeue() unlocks the hb locks and when
futex_wait_requeue_pi() will acquire hb2->lock. During this
time the pi_state and uval are not in sync with the underlying
rtmutex owner (but the uval does indicate there are waiters, so
no atomic changes will occur in userspace). However, this is
not a problem. Should a contending thread enter
lookup_pi_state() and acquire hb2->lock before the ownership is
fixed up, it will find the pi_state hung off a waiter's
(possibly the pending owner's) futex_q and block on the
rtmutex. Once futex_wait_requeue_pi() fixes up the owner, it
will also move the pi_state from the old owner's
task->pi_state_list to its own.
v3: Fix plist lock name for application to mainline (rather
than -rt) Compile tested against tip/v2.6.31-rc5.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: John Stultz <johnstul@linux.vnet.ibm.com>
LKML-Reference: <4A7F4EFF.6090903@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The state machine described in the comments wasn't updated with
a follow-on fix. Address that and cleanup the corresponding
commentary in the function.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <4A737C2A.9090001@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
get_futex_key() can infinitely loop if it is called on a
virtual address that is within a huge page but not aligned to
the beginning of that page. The call to get_user_pages_fast
will return the struct page for a sub-page within the huge page
and the check for page->mapping will always fail.
The fix is to call compound_head on the page before checking
that it's mapped.
Signed-off-by: Sonny Rao <sonnyrao@us.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Cc: anton@samba.org
Cc: rajamony@us.ibm.com
Cc: speight@us.ibm.com
Cc: mstephen@us.ibm.com
Cc: grimm@us.ibm.com
Cc: mikey@ozlabs.au.ibm.com
LKML-Reference: <20090710231313.GA23572@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Yanmin noticed that fault_in_user_writeable() requests 4 pages instead
of one.
That's the result of blindly trusting Linus' proposal :) I even looked
up the prototype to verify the correctness: the argument in question
is confusingly enough named "len" while in reality it means number of
pages.
Pointed-out-by: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit 64d1304a64 (futex: setup writeable mapping for futex ops which
modify user space data) did address only half of the problem of write
access faults.
The patch was made on two wrong assumptions:
1) access_ok(VERIFY_WRITE,...) would actually check write access.
On x86 it does _NOT_. It's a pure address range check.
2) a RW mapped region can not go away under us.
That's wrong as well. Nobody can prevent another thread to call
mprotect(PROT_READ) on that region where the futex resides. If that
call hits between the get_user_pages_fast() verification and the
actual write access in the atomic region we are toast again.
The solution is to not rely on access_ok and get_user() for any write
access related fault on private and shared futexes. Instead we need to
fault it in with verification of write access.
There is no generic non destructive write mechanism which would fault
the user page in trough a #PF, but as we already know that we will
fault we can as well call get_user_pages() directly and avoid the #PF
overhead.
If get_user_pages() returns -EFAULT we know that we can not fix it
anymore and need to bail out to user space.
Remove a bunch of confusing comments on this issue as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
If the waiter has been requeued to the outer PI futex and is
interrupted by a signal and the thread handles the signal then
ERESTART_RESTARTBLOCK is changed to EINTR and the restart block is
discarded. That way we return an unexcpected EINTR to user space
instead of ending up in futex_lock_pi_restart.
But we do not need to restart the syscall because we know that the
condition has changed since we have been requeued. If we would simply
restart the syscall then we would drop out via the comparison of the
user space value with EWOULDBLOCK.
The user space side needs to handle EWOULDBLOCK anyway as the
enqueueing on the inner futex can race with a requeue/wake. So we can
simply return EWOULDBLOCK to user space which also signals that we did
not take the outer futex and let user space handle it in the same way
it has to handle the requeue/wake race.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The futex_wait_requeue_pi op should restart unconditionally like
futex_lock_pi. The user of that function e.g. pthread_cond_wait can
not be interrupted so we do not care about the SA_RESTART flag of the
signal. Clean up the FIXMEs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Merge reason: this branch was on an pre -rc1 base, merge it up to -rc6+
to get the latest upstream fixes.
Conflicts:
kernel/futex.c
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The futex code installs a read only mapping via get_user_pages_fast()
even if the futex op function has to modify user space data. The
eventual fault was fixed up by futex_handle_fault() which walked the
VMA with mmap_sem held.
After the cleanup patches which removed the mmap_sem dependency of the
futex code commit 4dc5b7a36a49eff97050894cf1b3a9a02523717 (futex:
clean up fault logic) removed the private VMA walk logic from the
futex code. This change results in a stale RO mapping which is not
fixed up.
Instead of reintroducing the previous fault logic we set up the
mapping in get_user_pages_fast() read/write for all operations which
modify user space data. Also handle private futexes in the same way
and make the current unconditional access_ok(VERIFY_WRITE) depend on
the futex op.
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
CC: stable@kernel.org
The waitqueue which is used in struct futex_q is a leftover from the
futexfd implementation. There is no need to use a waitqueue at all, as
the waiting task is the only user of it. The waitqueue just adds
additional locking and a loop in the wake up path which both can be
avoided.
We have already a task reference in struct futex_q which is used for
PI futexes. Use it for normal futexes as well and just wake up the
task directly.
The logic of signalling the futex wakeup via setting q->lock_ptr to
NULL is kept with the difference that we set it NULL before doing the
wakeup. This opens an exit race window vs. a non futex wake up of the
to be woken up task, which we prevent with get_task_struct /
put_task_struct on the waiter.
[ Impact: simplification ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The new requeue PI futex op codes were modeled after the existing
FUTEX_REQUEUE and FUTEX_CMP_REQUEUE calls. I was unaware at the time
that FUTEX_REQUEUE was only around for compatibility reasons and
shouldn't be used in new code. Ulrich Drepper elaborates on this in his
Futexes are Tricky paper: http://people.redhat.com/drepper/futex.pdf.
The deprecated call doesn't catch changes to the futex corresponding to
the destination futex which can lead to deadlock.
Therefor, I feel it best to remove FUTEX_REQUEUE_PI and leave only
FUTEX_CMP_REQUEUE_PI as there are not yet any existing users of the API.
This patch does change the OP code value of FUTEX_CMP_REQUEUE_PI to 12
from 13. Since my test case is the only known user of this API, I felt
this was the right thing to do, rather than leave a hole in the
enumeration.
I chose to continue using the _CMP_ modifier in the OP code to make it
explicit to the user that the test is being done.
Builds, boots, and ran several hundred iterations requeue_pi.c.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
LKML-Reference: <49ED580E.1050502@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the get_futex_key() call were to fail, the existing code would
try and put_futex_key() prior to returning. This patch makes sure
we only put_futex_key() if get_futex_key() succeeded.
Reported-by: Clark Williams <williams@redhat.com>
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
LKML-Reference: <20090410165005.14342.16973.stgit@Aeon>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Thomas's testing caught a problem when the requeue target futex is
unowned and multiple tasks are requeued to it. This patch ensures
the FUTEX_WAITERS bit gets set if futex_requeue() will requeue one
or more tasks in addition to the one acquiring the lock.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
PI Futexes and their underlying rt_mutex cannot be left ownerless if
there are pending waiters as this will break the PI boosting logic, so
the standard requeue commands aren't sufficient. The new commands
properly manage pi futex ownership by ensuring a futex with waiters
has an owner at all times. This will allow glibc to properly handle
pi mutexes with pthread_condvars.
The approach taken here is to create two new futex op codes:
FUTEX_WAIT_REQUEUE_PI:
Tasks will use this op code to wait on a futex (such as a non-pi waitqueue)
and wake after they have been requeued to a pi futex. Prior to returning to
userspace, they will acquire this pi futex (and the underlying rt_mutex).
futex_wait_requeue_pi() is the result of a high speed collision between
futex_wait() and futex_lock_pi() (with the first part of futex_lock_pi() being
done by futex_proxy_trylock_atomic() on behalf of the top_waiter).
FUTEX_REQUEUE_PI (and FUTEX_CMP_REQUEUE_PI):
This call must be used to wake tasks waiting with FUTEX_WAIT_REQUEUE_PI,
regardless of how many tasks the caller intends to wake or requeue.
pthread_cond_broadcast() should call this with nr_wake=1 and
nr_requeue=INT_MAX. pthread_cond_signal() should call this with nr_wake=1 and
nr_requeue=0. The reason being we need both callers to get the benefit of the
futex_proxy_trylock_atomic() routine. futex_requeue() also enqueues the
top_waiter on the rt_mutex via rt_mutex_start_proxy_lock().
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor the code to validate the expected futex value in order to
reuse it with the requeue_pi code.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
futex_requeue() is getting a bit long-winded, and will be getting more
so after the requeue_pi patch. Factor out the actual requeueing into a
nicely contained inline function to reduce function length and improve
legibility.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently restart is only used if there is a timeout. The requeue_pi
functionality requires restarting to futex_lock_pi() on signal after
wakeup in futex_wait_requeue_pi() regardless of if there was a timeout
or not. Using 0 for the timeout value is confusing as that could
indicate an expired timer. The flag makes this explicit. While the
check is not technically needed in futex_wait_restart(), doing so
makes the code consistent with and will avoid confusion should the
need arise to restart wait without a timeout.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor the post lock acquisition logic from futex_lock_pi(). This
code will be reused in futex_wait_requeue_pi().
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor the atomic portion of futex_lock_pi() into futex_lock_pi_atomic().
This logic will be needed by requeue_pi, so modularize it to reduce
code duplication. The only significant change is passing of the task
to try and take the lock for. This simplifies the -EDEADLK test as if
the lock is owned by task t, it's a deadlock, regardless of if we are
doing requeue pi or not. This patch updates the corresponding comment
accordingly.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Improve legibility by wrapping finding the top waiter in a function.
This will be used by the follow-on patches for enabling requeue pi.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor futex_wait() in preparation for futex_wait_requeue_pi(). In
order to reuse a good chunk of the futex_wait() code for the upcoming
futex_wait_requeue_pi() function, this patch breaks out the
queue-to-wakeup section of futex_wait() into futex_wait_queue_me().
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We've tripped over the futex_requeue drop_count refering to key2
instead of key1. The code is actually correct, but is non-intuitive.
This patch adds an explicit comment explaining the requeue.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix double unlock crash
Thomas Gleixner noticed that the simplified double_unlock_hb()
became ... too unsophisticated: in the hb1 == hb2 case it will
do a double unlock.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Darren Hart <dvhltc@us.ibm.com>
LKML-Reference: <20090312221118.11146.68610.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: simplify code
I mistakenly included the pointer value ordering in the
double_unlock_hb() in my previous patch. It's only necessary
in the double_lock_hb() function. This patch removes it.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312221118.11146.68610.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
Older versions of the futex code held the mmap_sem which had to
be dropped in order to call get_user(), so a two-pronged fault
handling mechanism was employed to handle faults of the atomic
operations. The mmap_sem is no longer held, so get_user()
should be adequate. This patch greatly simplifies the logic and
improves legibility.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075612.9856.48612.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: rt-mutex failure case fix
futex_lock_pi can potentially return -EFAULT with the rt_mutex
held. This seems like the wrong thing to do as userspace should
assume -EFAULT means the lock was not taken. Even if it could
figure this out, we'd be leaving the pi_state->owner in an
inconsistent state. This patch unlocks the rt_mutex prior to
returning -EFAULT to userspace.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075606.9856.88729.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
RT tasks should set their timer slack to 0 on their own. This
patch removes the 'if (rt_task()) slack = 0;' block in
futex_wait.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Arjan van de Ven <arjan@linux.intel.com>
LKML-Reference: <20090312075559.9856.28822.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
The futex code uses double_lock_hb() which locks the hb->lock's
in pointer value order. There is no parallel unlock routine,
and the code unlocks them in name order, ignoring pointer value.
This patch adds double_unlock_hb() to refactor the duplicated
code segments.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075552.9856.48021.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix races
futex_requeue and futex_lock_pi still had some bad
(get|put)_futex_key() usage. This patch adds the missing
put_futex_keys() and corrects a goto in futex_lock_pi() to avoid
a double get.
Build and boot tested on a 4 way Intel x86_64 workstation.
Passes basic pthread_mutex and PI tests out of
ltp/testcases/realtime.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075545.9856.75152.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
The futex_hash_bucket can be a bit confusing when first looking
at the code as it is a shared queue (and futex_q isn't a queue
at all, but rather an element on the queue).
The mmap_sem is no longer held outside of the
futex_handle_fault() routine, yet numerous comments refer to it.
The fshared argument is no an integer. I left some of these
comments along as they are simply removed in future patches.
Some of the commentary refering to futexes by virtual page
mappings was not very clear, and completely accurate (as for
shared futexes both the page and the offset are used to
determine the key). For the purposes of the function
description, just referring to "the futex" seems sufficient.
With hashed futexes we now access the page after the hash-bucket
is locked, and not only after it is enqueued.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20090312075537.9856.29954.stgit@Aeon>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Catalin noticed that (38d47c1b7075: futex: rely on get_user_pages() for
shared futexes) caused an mm_struct leak.
Some tracing with the function graph tracer quickly pointed out that
futex_wait() has exit paths with unbalanced reference counts.
This regression was discovered by kmemleak.
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: "Pallipadi, Venkatesh" <venkatesh.pallipadi@intel.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: add debug check
Following up on my previous key reference accounting patches, this patch
will catch puts on keys that haven't been "got". This won't catch nested
get/put mismatches though.
Build and boot tested, with minimal desktop activity and a run of the
open_posix_testsuite in LTP for testing. No warnings logged.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (63 commits)
stacktrace: provide save_stack_trace_tsk() weak alias
rcu: provide RCU options on non-preempt architectures too
printk: fix discarding message when recursion_bug
futex: clean up futex_(un)lock_pi fault handling
"Tree RCU": scalable classic RCU implementation
futex: rename field in futex_q to clarify single waiter semantics
x86/swiotlb: add default swiotlb_arch_range_needs_mapping
x86/swiotlb: add default phys<->bus conversion
x86: unify pci iommu setup and allow swiotlb to compile for 32 bit
x86: add swiotlb allocation functions
swiotlb: consolidate swiotlb info message printing
swiotlb: support bouncing of HighMem pages
swiotlb: factor out copy to/from device
swiotlb: add arch hook to force mapping
swiotlb: allow architectures to override phys<->bus<->phys conversions
swiotlb: add comment where we handle the overflow of a dma mask on 32 bit
rcu: fix rcutorture behavior during reboot
resources: skip sanity check of busy resources
swiotlb: move some definitions to header
swiotlb: allow architectures to override swiotlb pool allocation
...
Fix up trivial conflicts in
arch/x86/kernel/Makefile
arch/x86/mm/init_32.c
include/linux/hardirq.h
as per Ingo's suggestions.
Impact: cleanup
This patch makes the calls to futex_get_key_refs() and futex_drop_key_refs()
explicitly symmetric by only "putting" keys we successfully "got". Also
cleanup a couple return points that didn't "put" after a successful "get".
Build and boot tested on an x86_64 system.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
Some apparently left over cruft code was complicating the fault logic:
Testing if uval != -EFAULT doesn't have any meaning, get_user() sets ret
to either 0 or -EFAULT, there's no need to compare uval, especially not
against EFAULT which it will never be. This patch removes the superfluous
test and clarifies the comment blocks.
Build and boot tested on an 8way x86_64 system.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: simplify code
I've tripped over the naming of this field a couple times.
The futex_q uses a "waiters" list to represent a single blocked task and
then calles wake_up_all().
This can lead to confusion in trying to understand the intent of the code,
which is to have a single futex_q for every task waiting on a futex.
This patch corrects the problem, using a single pointer to the waiting
task, and an appropriate call to wake_up, rather than wake_up_all.
Compile and boot tested on an 8way x86_64 machine.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
FUTEX_WAIT_BITSET could be used instead of FUTEX_WAIT by setting the
bit set to FUTEX_BITSET_MATCH_ANY, but FUTEX_WAIT uses CLOCK_REALTIME
while FUTEX_WAIT_BITSET uses CLOCK_MONOTONIC.
Add a flag to select CLOCK_REALTIME for FUTEX_WAIT_BITSET so glibc can
replace the FUTEX_WAIT logic which needs to do gettimeofday() calls
before and after the syscall to convert the absolute timeout to a
relative timeout for FUTEX_WAIT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ulrich Drepper <drepper@redhat.com>
Use RCU to access another task's creds and to release a task's own creds.
This means that it will be possible for the credentials of a task to be
replaced without another task (a) requiring a full lock to read them, and (b)
seeing deallocated memory.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Separate the task security context from task_struct. At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.
Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.
With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.
Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-audit@redhat.com
Cc: containers@lists.linux-foundation.org
Cc: linux-mm@kvack.org
Signed-off-by: James Morris <jmorris@namei.org>
With the get_user_pages_fast() patches we made get_futex_key() obtain a
reference on the returned key, but failed to do so for private futexes.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fshared doesn't need to be a rw_sem pointer anymore, so clean that up.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change the get_user_pages() call with fast_gup() which doesn't require holding
the mmap_sem thereby removing the mmap_sem from all fast paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
now that we rely on get_user_pages() for the shared key handling
move all the mmap_sem stuff closely around the slow paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On the way of getting rid of the mmap_sem requirement for shared futexes,
start by relying on get_user_pages().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch makes the futex() system call use the per process
slack value; with this users are able to externally control existing
applications to reduce the wakeup rate.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
In order to be able to do range hrtimers we need to use accessor functions
to the "expire" member of the hrtimer struct.
This patch converts kernel/* to these accessors.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
This patch addresses a very sporadic pi-futex related failure in
highly threaded java apps on large SMP systems.
David Holmes reported that the pi_state consistency check in
lookup_pi_state triggered with his test application. This means that
the kernel internal pi_state and the user space futex variable are out
of sync. First we assumed that this is a user space data corruption,
but deeper investigation revieled that the problem happend because the
pi-futex code is not handling a fault in the futex_lock_pi path when
the user space variable needs to be fixed up.
The fault happens when a fork mapped the anon memory which contains
the futex readonly for COW or the page got swapped out exactly between
the unlock of the futex and the return of either the new futex owner
or the task which was the expected owner but failed to acquire the
kernel internal rtmutex. The current futex_lock_pi() code drops out
with an inconsistent in case it faults and returns -EFAULT to user
space. User space has no way to fixup that state.
When we wrote this code we thought that we could not drop the hash
bucket lock at this point to handle the fault.
After analysing the code again it turned out to be wrong because there
are only two tasks involved which might modify the pi_state and the
user space variable:
- the task which acquired the rtmutex
- the pending owner of the pi_state which did not get the rtmutex
Both tasks drop into the fixup_pi_state() function before returning to
user space. The first task which acquired the hash bucket lock faults
in the fixup of the user space variable, drops the spinlock and calls
futex_handle_fault() to fault in the page. Now the second task could
acquire the hash bucket lock and tries to fixup the user space
variable as well. It either faults as well or it succeeds because the
first task already faulted the page in.
One caveat is to avoid a double fixup. After returning from the fault
handling we reacquire the hash bucket lock and check whether the
pi_state owner has been modified already.
Reported-by: David Holmes <david.holmes@sun.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Holmes <david.holmes@sun.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
kernel/futex.c | 93 ++++++++++++++++++++++++++++++++++++++++++++-------------
1 file changed, 73 insertions(+), 20 deletions(-)
Since FUTEX_FD was scheduled for removal in June 2007 lets remove it.
Google Code search found no users for it and NGPT was abandoned in 2003
according to IBM. futex.h is left untouched to make sure the id does
not get reassigned. Since queue_me() has no users left it is commented
out to avoid a warning, i didnt remove it completely since it is part of
the internal api (matching unqueue_me())
Signed-off-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (removed rest)
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hrtimers have now dynamic users in the network code. Put them under
debugobjects surveillance as well.
Add calls to the generic object debugging infrastructure and provide fixup
functions which allow to keep the system alive when recoverable problems have
been detected by the object debugging core code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The futex init function is called init(). This is a pain in the neck
when debugging when you code dies in ... init :-)
This renames it to futex_init().
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not all architectures implement futex_atomic_cmpxchg_inatomic(). The default
implementation returns -ENOSYS, which is currently not handled inside of the
futex guts.
Futex PI calls and robust list exits with a held futex result in an endless
loop in the futex code on architectures which have no support.
Fixing up every place where futex_atomic_cmpxchg_inatomic() is called would
add a fair amount of extra if/else constructs to the already complex code. It
is also not possible to disable the robust feature before user space tries to
register robust lists.
Compile time disabling is not a good idea either, as there are already
architectures with runtime detection of futex_atomic_cmpxchg_inatomic support.
Detect the functionality at runtime instead by calling
cmpxchg_futex_value_locked() with a NULL pointer from the futex initialization
code. This is guaranteed to fail, but the call of
futex_atomic_cmpxchg_inatomic() happens with pagefaults disabled.
On architectures, which use the asm-generic implementation or have a runtime
CPU feature detection, a -ENOSYS return value disables the PI/robust features.
On architectures with a working implementation the call returns -EFAULT and
the PI/robust features are enabled.
The relevant syscalls return -ENOSYS and the robust list exit code is blocked,
when the detection fails.
Fixes http://lkml.org/lkml/2008/2/11/149
Originally reported by: Lennart Buytenhek
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Lennert Buytenhek <buytenh@wantstofly.org>
Cc: Riku Voipio <riku.voipio@movial.fi>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the futex init code fails to initialize the futex pseudo file system it
returns early without initializing the hash queues. Should the boot succeed
then a futex syscall which tries to enqueue a waiter on the hashqueue will
crash due to the unitilialized plist heads.
Initialize the hash queues before the filesystem.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Lennert Buytenhek <buytenh@wantstofly.org>
Cc: Riku Voipio <riku.voipio@movial.fi>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Various user space callers ask for relative timeouts. While we fixed
that overflow issue in hrtimer_start(), the sites which convert
relative user space values to absolute timeouts themself were uncovered.
Instead of putting overflow checks into each place add a function
which does the sanity checking and convert all affected callers to use
it.
Thanks to Frans Pop, who reported the problem and tested the fixes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Tested-by: Frans Pop <elendil@planet.nl>
To allow the implementation of optimized rw-locks in user space, glibc
needs a possibility to select waiters for wakeup depending on a bitset
mask.
This requires two new futex OPs: FUTEX_WAIT_BITS and FUTEX_WAKE_BITS
These OPs are basically the same as FUTEX_WAIT and FUTEX_WAKE plus an
additional argument - a bitset. Further the FUTEX_WAIT_BITS OP is
expecting an absolute timeout value instead of the relative one, which
is used for the FUTEX_WAIT OP.
FUTEX_WAIT_BITS calls into the kernel with a bitset. The bitset is
stored in the futex_q structure, which is used to enqueue the waiter
into the hashed futex waitqueue.
FUTEX_WAKE_BITS also calls into the kernel with a bitset. The wakeup
function logically ANDs the bitset with the bitset stored in each
waiters futex_q structure. If the result is zero (i.e. none of the set
bits in the bitsets is matching), then the waiter is not woken up. If
the result is not zero (i.e. one of the set bits in the bitsets is
matching), then the waiter is woken.
The bitset provided by the caller must be non zero. In case the
provided bitset is zero the kernel returns EINVAL.
Internaly the new OPs are only extensions to the existing FUTEX_WAIT
and FUTEX_WAKE functions. The existing OPs hand a bitset with all bits
set into the futex_wait() and futex_wake() functions.
Signed-off-by: Thomas Gleixner <tgxl@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The WARN_ON() in the fixup return path of futex_lock_pi() can
trigger with false positives.
The following scenario happens:
t1 holds the futex and t2 and t3 are blocked on the kernel side rt_mutex.
t1 releases the futex (and the rt_mutex) and assigned t2 to be the next
owner of the futex.
t2 is interrupted and returns w/o acquiring the rt_mutex, before t1 can
release the rtmutex.
t1 releases the rtmutex and t3 becomes the pending owner of the rtmutex.
t2 notices that it is the designated owner (user space variable) and
fails to acquire the rt_mutex via trylock, because it is not allowed to
steal the rt_mutex from t3. Now it looks at the rt_mutex pending owner (t3)
and assigns the futex and the pi_state to it.
During the fixup t4 steals the rtmutex from t3.
t2 returns from the fixup and the owner of the rt_mutex has changed from
t3 to t4.
There is no need to do another round of fixups from t2. The important
part (t2 is not returning as the user space visible owner) is
done. The further fixups are done, before either t3 or t4 return to
user space.
For the user space it is not relevant which task (t3 or t4) is the real
owner, as long as those are both in the kernel, which is guaranteed by
the serialization of the hash bucket lock. Both tasks (which ever returns
first to userspace - t4 because it locked the rt_mutex or t3 due to a signal)
are going through the lock_futex_pi() return path where the ownership is
fixed before the return to user space.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>