Commit:
f9bcf1e0e0 ("sched/cputime: Fix steal time accounting")
... fixes a leak on steal time accounting but forgets to account
the ticks passed in parameters, assuming there is only one to
take into account.
Let's consider that parameter back.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Wanpeng Li <kernellwp@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: linux-tip-commits@vger.kernel.org
Link: http://lkml.kernel.org/r/20160811125822.GB4214@lerouge
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
5743021831 ("sched/cputime: Count actually elapsed irq & softirq time")
... didn't take steal time into consideration with passing the noirqtime
kernel parameter.
As Paolo pointed out before:
| Why not? If idle=poll, for example, any time the guest is suspended (and
| thus cannot poll) does count as stolen time.
This patch fixes it by reducing steal time from idle time accounting when
the noirqtime parameter is true. The average idle time drops from 56.8%
to 54.75% for nohz idle kvm guest(noirqtime, idle=poll, four vCPUs running
on one pCPU).
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1470893795-3527-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following warning can be triggered by hot-unplugging the CPU
on which an active SCHED_DEADLINE task is running on:
WARNING: CPU: 0 PID: 0 at kernel/locking/lockdep.c:3531 lock_release+0x690/0x6a0
releasing a pinned lock
Call Trace:
dump_stack+0x99/0xd0
__warn+0xd1/0xf0
? dl_task_timer+0x1a1/0x2b0
warn_slowpath_fmt+0x4f/0x60
? sched_clock+0x13/0x20
lock_release+0x690/0x6a0
? enqueue_pushable_dl_task+0x9b/0xa0
? enqueue_task_dl+0x1ca/0x480
_raw_spin_unlock+0x1f/0x40
dl_task_timer+0x1a1/0x2b0
? push_dl_task.part.31+0x190/0x190
WARNING: CPU: 0 PID: 0 at kernel/locking/lockdep.c:3649 lock_unpin_lock+0x181/0x1a0
unpinning an unpinned lock
Call Trace:
dump_stack+0x99/0xd0
__warn+0xd1/0xf0
warn_slowpath_fmt+0x4f/0x60
lock_unpin_lock+0x181/0x1a0
dl_task_timer+0x127/0x2b0
? push_dl_task.part.31+0x190/0x190
As per the comment before this code, its safe to drop the RQ lock
here, and since we (potentially) change rq, unpin and repin to avoid
the splat.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[ Rewrote changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@unitn.it>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1470274940-17976-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
6e998916df ("sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency")
fixed a problem whereby clock_nanosleep() followed by clock_gettime() could
allow a task to wake early. It addressed the problem by calling the scheduling
classes update_curr() when the cputimer starts.
Said change induced a considerable performance regression on the syscalls
times() and clock_gettimes(CLOCK_PROCESS_CPUTIME_ID). There are some
debuggers and applications that monitor their own performance that
accidentally depend on the performance of these specific calls.
This patch mitigates the performace loss by prefetching data in the CPU
cache, as stalls due to cache misses appear to be where most time is spent
in our benchmarks.
Here are the performance gain of this patch over v4.7-rc7 on a Sandy Bridge
box with 32 logical cores and 2 NUMA nodes. The test is repeated with a
variable number of threads, from 2 to 4*num_cpus; the results are in
seconds and correspond to the average of 10 runs; the percentage gain is
computed with (before-after)/before so a positive value is an improvement
(it's faster). The improvement varies between a few percents for 5-20
threads and more than 10% for 2 or >20 threads.
pound_clock_gettime:
threads 4.7-rc7 patched 4.7-rc7
[num] [secs] [secs (percent)]
2 3.48 3.06 ( 11.83%)
5 3.33 3.25 ( 2.40%)
8 3.37 3.26 ( 3.30%)
12 3.32 3.37 ( -1.60%)
21 4.01 3.90 ( 2.74%)
30 3.63 3.36 ( 7.41%)
48 3.71 3.11 ( 16.27%)
79 3.75 3.16 ( 15.74%)
110 3.81 3.25 ( 14.80%)
128 3.88 3.31 ( 14.76%)
pound_times:
threads 4.7-rc7 patched 4.7-rc7
[num] [secs] [secs (percent)]
2 3.65 3.25 ( 11.03%)
5 3.45 3.17 ( 7.92%)
8 3.52 3.22 ( 8.69%)
12 3.29 3.36 ( -2.04%)
21 4.07 3.92 ( 3.78%)
30 3.87 3.40 ( 12.17%)
48 3.79 3.16 ( 16.61%)
79 3.88 3.28 ( 15.42%)
110 3.90 3.38 ( 13.35%)
128 4.00 3.38 ( 15.45%)
pound_clock_gettime and pound_clock_gettime are two benchmarks included in
the MMTests framework. They launch a given number of threads which
repeatedly call times() or clock_gettimes(). The results above can be
reproduced with cloning MMTests from github.com and running the "poundtime"
workload:
$ git clone https://github.com/gormanm/mmtests.git
$ cd mmtests
$ cp configs/config-global-dhp__workload_poundtime config
$ ./run-mmtests.sh --run-monitor $(uname -r)
The above will run "poundtime" measuring the kernel currently running on
the machine; Once a new kernel is installed and the machine rebooted,
running again
$ cd mmtests
$ ./run-mmtests.sh --run-monitor $(uname -r)
will produce results to compare with. A comparison table will be output
with:
$ cd mmtests/work/log
$ ../../compare-kernels.sh
the table will contain a lot of entries; grepping for "Amean" (as in
"arithmetic mean") will give the tables presented above. The source code
for the two benchmarks is reported at the end of this changelog for
clairity.
The cache misses addressed by this patch were found using a combination of
`perf top`, `perf record` and `perf annotate`. The incriminated lines were
found to be
struct sched_entity *curr = cfs_rq->curr;
and
delta_exec = now - curr->exec_start;
in the function update_curr() from kernel/sched/fair.c. This patch
prefetches the data from memory just before update_curr is called in the
interested execution path.
A comparison of the total number of cycles before and after the patch
follows; the data is obtained using `perf stat -r 10 -ddd <program>`
running over the same sequence of number of threads used above (a positive
gain is an improvement):
threads cycles before cycles after gain
2 19,699,563,964 +-1.19% 17,358,917,517 +-1.85% 11.88%
5 47,401,089,566 +-2.96% 45,103,730,829 +-0.97% 4.85%
8 80,923,501,004 +-3.01% 71,419,385,977 +-0.77% 11.74%
12 112,326,485,473 +-0.47% 110,371,524,403 +-0.47% 1.74%
21 193,455,574,299 +-0.72% 180,120,667,904 +-0.36% 6.89%
30 315,073,519,013 +-1.64% 271,222,225,950 +-1.29% 13.92%
48 321,969,515,332 +-1.48% 273,353,977,321 +-1.16% 15.10%
79 337,866,003,422 +-0.97% 289,462,481,538 +-1.05% 14.33%
110 338,712,691,920 +-0.78% 290,574,233,170 +-0.77% 14.21%
128 348,384,794,006 +-0.50% 292,691,648,206 +-0.66% 15.99%
A comparison of cache miss vs total cache loads ratios, before and after
the patch (again from the `perf stat -r 10 -ddd <program>` tables):
threads L1 misses/total*100 L1 misses/total*100 gain
before after
2 7.43 +-4.90% 7.36 +-4.70% 0.94%
5 13.09 +-4.74% 13.52 +-3.73% -3.28%
8 13.79 +-5.61% 12.90 +-3.27% 6.45%
12 11.57 +-2.44% 8.71 +-1.40% 24.72%
21 12.39 +-3.92% 9.97 +-1.84% 19.53%
30 13.91 +-2.53% 11.73 +-2.28% 15.67%
48 13.71 +-1.59% 12.32 +-1.97% 10.14%
79 14.44 +-0.66% 13.40 +-1.06% 7.20%
110 15.86 +-0.50% 14.46 +-0.59% 8.83%
128 16.51 +-0.32% 15.06 +-0.78% 8.78%
As a final note, the following shows the evolution of performance figures
in the "poundtime" benchmark and pinpoints commit 6e998916df
("sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency") as a
major source of degradation, mostly unaddressed to this day (figures
expressed in seconds).
pound_clock_gettime:
threads parent of 6e998916df 4.7-rc7
6e998916df itself
2 2.23 3.68 ( -64.56%) 3.48 (-55.48%)
5 2.83 3.78 ( -33.42%) 3.33 (-17.43%)
8 2.84 4.31 ( -52.12%) 3.37 (-18.76%)
12 3.09 3.61 ( -16.74%) 3.32 ( -7.17%)
21 3.14 4.63 ( -47.36%) 4.01 (-27.71%)
30 3.28 5.75 ( -75.37%) 3.63 (-10.80%)
48 3.02 6.05 (-100.56%) 3.71 (-22.99%)
79 2.88 6.30 (-118.90%) 3.75 (-30.26%)
110 2.95 6.46 (-119.00%) 3.81 (-29.24%)
128 3.05 6.42 (-110.08%) 3.88 (-27.04%)
pound_times:
threads parent of 6e998916df 4.7-rc7
6e998916df itself
2 2.27 3.73 ( -64.71%) 3.65 (-61.14%)
5 2.78 3.77 ( -35.56%) 3.45 (-23.98%)
8 2.79 4.41 ( -57.71%) 3.52 (-26.05%)
12 3.02 3.56 ( -17.94%) 3.29 ( -9.08%)
21 3.10 4.61 ( -48.74%) 4.07 (-31.34%)
30 3.33 5.75 ( -72.53%) 3.87 (-16.01%)
48 2.96 6.06 (-105.04%) 3.79 (-28.10%)
79 2.88 6.24 (-116.83%) 3.88 (-34.81%)
110 2.98 6.37 (-114.08%) 3.90 (-31.12%)
128 3.10 6.35 (-104.61%) 4.00 (-28.87%)
The source code of the two benchmarks follows. To compile the two:
NR_THREADS=42
for FILE in pound_times pound_clock_gettime; do
gcc -lrt -O2 -lpthread -DNUM_THREADS=$NR_THREADS $FILE.c -o $FILE
done
==== BEGIN pound_times.c ====
struct tms start;
void *pound (void *threadid)
{
struct tms end;
int oldutime = 0;
int utime;
int i;
for (i = 0; i < 5000000 / NUM_THREADS; i++) {
times(&end);
utime = ((int)end.tms_utime - (int)start.tms_utime);
if (oldutime > utime) {
printf("utime decreased, was %d, now %d!\n", oldutime, utime);
}
oldutime = utime;
}
pthread_exit(NULL);
}
int main()
{
pthread_t th[NUM_THREADS];
long i;
times(&start);
for (i = 0; i < NUM_THREADS; i++) {
pthread_create (&th[i], NULL, pound, (void *)i);
}
pthread_exit(NULL);
return 0;
}
==== END pound_times.c ====
==== BEGIN pound_clock_gettime.c ====
void *pound (void *threadid)
{
struct timespec ts;
int rc, i;
unsigned long prev = 0, this = 0;
for (i = 0; i < 5000000 / NUM_THREADS; i++) {
rc = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
if (rc < 0)
perror("clock_gettime");
this = (ts.tv_sec * 1000000000) + ts.tv_nsec;
if (0 && this < prev)
printf("%lu ns timewarp at iteration %d\n", prev - this, i);
prev = this;
}
pthread_exit(NULL);
}
int main()
{
pthread_t th[NUM_THREADS];
long rc, i;
pid_t pgid;
for (i = 0; i < NUM_THREADS; i++) {
rc = pthread_create(&th[i], NULL, pound, (void *)i);
if (rc < 0)
perror("pthread_create");
}
pthread_exit(NULL);
return 0;
}
==== END pound_clock_gettime.c ====
Suggested-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1470385316-15027-2-git-send-email-ggherdovich@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We should update cfs_rq->throttled_clock_task, not
pcfs_rq->throttle_clock_task.
The effects of this bug was probably occasionally erratic
group scheduling, particularly in cgroups-intense workloads.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
[ Added changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 55e16d30bd ("sched/fair: Rework throttle_count sync")
Link: http://lkml.kernel.org/r/1468050862-18864-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current code in cpudeadline.c has a bug in re-heapifying when adding a
new element at the end of the heap, because a deadline value of 0 is
temporarily set in the new elem, then cpudl_change_key() is called
with the actual elem deadline as param.
However, the function compares the new deadline to set with the one
previously in the elem, which is 0. So, if current absolute deadlines
grew so much to have negative values as s64, the comparison in
cpudl_change_key() makes the wrong decision. Instead, as from
dl_time_before(), the kernel should handle correctly abs deadlines
wrap-arounds.
This patch fixes the problem with a minimally invasive change that
forces cpudl_change_key() to heapify up in this case.
Signed-off-by: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Luca Abeni <luca.abeni@unitn.it>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468921493-10054-2-git-send-email-tommaso.cucinotta@sssup.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXmLlrAAoJEFxbo/MsZsTRvRQH/1wOMF8BmlbZfR7H3qwDfjst
ApNifCiZE08xDtWBlwUaBFAQxyflQS9BBiNZDVK0sysIdXeOdpWV7V0ZjRoLL+xr
czsaaGXDcmXxJxApoMDVuT7FeP6rEk6LVAYRoHpVjJjMZGW3BbX1vZaMW4DXl2WM
9YNaF2Lj+rpc1f8iG31nUxwkpmcXFog6ct4tu7HiyCFT3hDkHt/a4ghuBdQItCkd
vqBa1pTpcGtQBhSmWzlylN/PV2+NKcRd+kGiwd09/O/rNzogTMCTTWeHKAtMpPYb
Cu6oSqJtlK5o0vtr0qyLSWEGIoyjE2gE92s0wN3iCzFY1PldqdsxUO622nIj+6o=
=G6q3
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Features and fixes for 4.8-rc0:
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places"
* tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (47 commits)
xen: add static initialization of steal_clock op to xen_time_ops
xen/pvhvm: run xen_vcpu_setup() for the boot CPU
xen/evtchn: use xen_vcpu_id mapping
xen/events: fifo: use xen_vcpu_id mapping
xen/events: use xen_vcpu_id mapping in events_base
x86/xen: use xen_vcpu_id mapping when pointing vcpu_info to shared_info
x86/xen: use xen_vcpu_id mapping for HYPERVISOR_vcpu_op
xen: introduce xen_vcpu_id mapping
x86/acpi: store ACPI ids from MADT for future usage
x86/xen: update cpuid.h from Xen-4.7
xen/evtchn: add IOCTL_EVTCHN_RESTRICT
xen-blkback: really don't leak mode property
xen-blkback: constify instance of "struct attribute_group"
xen-blkfront: prefer xenbus_scanf() over xenbus_gather()
xen-blkback: prefer xenbus_scanf() over xenbus_gather()
xen: support runqueue steal time on xen
arm/xen: add support for vm_assist hypercall
xen: update xen headers
xen-pciback: drop superfluous variables
xen-pciback: short-circuit read path used for merging write values
...
- Rework the cpufreq governor interface to make it more straightforward
and modify the conservative governor to avoid using transition
notifications (Rafael Wysocki).
- Rework the handling of frequency tables by the cpufreq core to make
it more efficient (Viresh Kumar).
- Modify the schedutil governor to reduce the number of wakeups it
causes to occur in cases when the CPU frequency doesn't need to be
changed (Steve Muckle, Viresh Kumar).
- Fix some minor issues and clean up code in the cpufreq core and
governors (Rafael Wysocki, Viresh Kumar).
- Add Intel Broxton support to the intel_pstate driver (Srinivas
Pandruvada).
- Fix problems related to the config TDP feature and to the validity
of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
Srinivas Pandruvada).
- Make intel_pstate update the cpu_frequency tracepoint even if
the frequency doesn't change to avoid confusing powertop (Rafael
Wysocki).
- Clean up the usage of __init/__initdata in intel_pstate, mark some
of its internal variables as __read_mostly and drop an unused
structure element from it (Jisheng Zhang, Carsten Emde).
- Clean up the usage of some duplicate MSR symbols in intel_pstate
and turbostat (Srinivas Pandruvada).
- Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
Adiga, Viresh Kumar, Ben Dooks).
- Fix a regression (introduced during the 4.5 cycle) in the
pcc-cpufreq driver by reverting the problematic commit (Andreas
Herrmann).
- Add support for Intel Denverton to intel_idle, clean up Broxton
support in it and make it explicitly non-modular (Jacob Pan,
Jan Beulich, Paul Gortmaker).
- Add support for Denverton and Ivy Bridge server to the Intel RAPL
power capping driver and make it more careful about the handing
of MSRs that may not be present (Jacob Pan, Xiaolong Wang).
- Fix resume from hibernation on x86-64 by making the CPU offline
during resume avoid using MONITOR/MWAIT in the "play dead" loop
which may lead to an inadvertent "revival" of a "dead" CPU and
a page fault leading to a kernel crash from it (Rafael Wysocki).
- Make memory management during resume from hibernation more
straightforward (Rafael Wysocki).
- Add debug features that should help to detect problems related
to hibernation and resume from it (Rafael Wysocki, Chen Yu).
- Clean up hibernation core somewhat (Rafael Wysocki).
- Prevent KASAN from instrumenting the hibernation core which leads
to large numbers of false-positives from it (James Morse).
- Prevent PM (hibernate and suspend) notifiers from being called
during the cleanup phase if they have not been called during the
corresponding preparation phase which is possible if one of the
other notifiers returns an error at that time (Lianwei Wang).
- Improve suspend-related debug printout in the tasks freezer and
clean up suspend-related console handling (Roger Lu, Borislav
Petkov).
- Update the AnalyzeSuspend script in the kernel sources to
version 4.2 (Todd Brandt).
- Modify the generic power domains framework to make it handle
system suspend/resume better (Ulf Hansson).
- Make the runtime PM framework avoid resuming devices synchronously
when user space changes the runtime PM settings for them and
improve its error reporting (Rafael Wysocki, Linus Walleij).
- Fix error paths in devfreq drivers (exynos, exynos-ppmu, exynos-bus)
and in the core, make some devfreq code explicitly non-modular and
change some of it into tristate (Bartlomiej Zolnierkiewicz,
Peter Chen, Paul Gortmaker).
- Add DT support to the generic PM clocks management code and make
it export some more symbols (Jon Hunter, Paul Gortmaker).
- Make the PCI PM core code slightly more robust against possible
driver errors (Andy Shevchenko).
- Make it possible to change DESTDIR and PREFIX in turbostat
(Andy Shevchenko).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJXl7/dAAoJEILEb/54YlRx+VgQAIQJOWvxKew3Yl02c/sdj9OT
5VNnFrzGzdcAPofvvG9qGq8B0Es1vYehJpwwOB21ri8EvYv0riIiU1yrqslObojQ
oaZOkSBpbIoKjGR4CpYA/A+feE+8EqIBdPGd+lx5a6oRdUi7tRVHBG9lyLO3FB/i
jan1q8dMpZsmu+Y+rVVHGnCVuIlIEqr2ZnZfCwDAulO2Arp/QFAh4kH08ELATvrl
bkPa25vq7/VMP/vCDzrfZKD5mUuKogIRu/J5wx4py1nE+FB35cKKyqBOgklLwAeY
UI8vjDhr/myNUs54AZlktOkq47TCYvjvhX9kmOxBjuWqFbRusU012IRek1fYPRIV
ZqbkqNX7UEVQwunAEg9AyFwyzEtOht93dQDT5RLEd4QzKuM76gmHpLeTGGMzE+nu
FnmF9JGl4DVwqpZl9yU2+hR2Mt3bP8OF8qYmNiGUB3KO4emPslhSd+6y8liA5Bx2
SJf0Gb//vaHCh3/uMnwAonYPqRkZvBLOMwuL1VUjNQfRMnQtDdgHMYB1aT/EglPA
8ww6j4J8rVRLAxvYQ3UEmNA/vBNclKXblRR18+JddEZP9/oX0ATfwnCCUpr839uk
xxyQhrm4/AI60+PHWCX4GG80YrKdOGTkF7LXCQZanVWjjuyF17rufegZ2YWLT07v
JU1Cmumfdy2jJluT8xsR
=uVGz
-----END PGP SIGNATURE-----
Merge tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"Again, the majority of changes go into the cpufreq subsystem, but
there are no big features this time. The cpufreq changes that stand
out somewhat are the governor interface rework and improvements
related to the handling of frequency tables. Apart from those, there
are fixes and new device/CPU IDs in drivers, cleanups and an
improvement of the new schedutil governor.
Next, there are some changes in the hibernation core, including a fix
for a nasty problem related to the MONITOR/MWAIT usage by CPU offline
during resume from hibernation, a few core improvements related to
memory management during resume, a couple of additional debug features
and cleanups.
Finally, we have some fixes and cleanups in the devfreq subsystem,
generic power domains framework improvements related to system
suspend/resume, support for some new chips in intel_idle and in the
power capping RAPL driver, a new version of the AnalyzeSuspend utility
and some assorted fixes and cleanups.
Specifics:
- Rework the cpufreq governor interface to make it more
straightforward and modify the conservative governor to avoid using
transition notifications (Rafael Wysocki).
- Rework the handling of frequency tables by the cpufreq core to make
it more efficient (Viresh Kumar).
- Modify the schedutil governor to reduce the number of wakeups it
causes to occur in cases when the CPU frequency doesn't need to be
changed (Steve Muckle, Viresh Kumar).
- Fix some minor issues and clean up code in the cpufreq core and
governors (Rafael Wysocki, Viresh Kumar).
- Add Intel Broxton support to the intel_pstate driver (Srinivas
Pandruvada).
- Fix problems related to the config TDP feature and to the validity
of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka,
Srinivas Pandruvada).
- Make intel_pstate update the cpu_frequency tracepoint even if the
frequency doesn't change to avoid confusing powertop (Rafael
Wysocki).
- Clean up the usage of __init/__initdata in intel_pstate, mark some
of its internal variables as __read_mostly and drop an unused
structure element from it (Jisheng Zhang, Carsten Emde).
- Clean up the usage of some duplicate MSR symbols in intel_pstate
and turbostat (Srinivas Pandruvada).
- Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay
Adiga, Viresh Kumar, Ben Dooks).
- Fix a regression (introduced during the 4.5 cycle) in the
pcc-cpufreq driver by reverting the problematic commit (Andreas
Herrmann).
- Add support for Intel Denverton to intel_idle, clean up Broxton
support in it and make it explicitly non-modular (Jacob Pan, Jan
Beulich, Paul Gortmaker).
- Add support for Denverton and Ivy Bridge server to the Intel RAPL
power capping driver and make it more careful about the handing of
MSRs that may not be present (Jacob Pan, Xiaolong Wang).
- Fix resume from hibernation on x86-64 by making the CPU offline
during resume avoid using MONITOR/MWAIT in the "play dead" loop
which may lead to an inadvertent "revival" of a "dead" CPU and a
page fault leading to a kernel crash from it (Rafael Wysocki).
- Make memory management during resume from hibernation more
straightforward (Rafael Wysocki).
- Add debug features that should help to detect problems related to
hibernation and resume from it (Rafael Wysocki, Chen Yu).
- Clean up hibernation core somewhat (Rafael Wysocki).
- Prevent KASAN from instrumenting the hibernation core which leads
to large numbers of false-positives from it (James Morse).
- Prevent PM (hibernate and suspend) notifiers from being called
during the cleanup phase if they have not been called during the
corresponding preparation phase which is possible if one of the
other notifiers returns an error at that time (Lianwei Wang).
- Improve suspend-related debug printout in the tasks freezer and
clean up suspend-related console handling (Roger Lu, Borislav
Petkov).
- Update the AnalyzeSuspend script in the kernel sources to version
4.2 (Todd Brandt).
- Modify the generic power domains framework to make it handle system
suspend/resume better (Ulf Hansson).
- Make the runtime PM framework avoid resuming devices synchronously
when user space changes the runtime PM settings for them and
improve its error reporting (Rafael Wysocki, Linus Walleij).
- Fix error paths in devfreq drivers (exynos, exynos-ppmu,
exynos-bus) and in the core, make some devfreq code explicitly
non-modular and change some of it into tristate (Bartlomiej
Zolnierkiewicz, Peter Chen, Paul Gortmaker).
- Add DT support to the generic PM clocks management code and make it
export some more symbols (Jon Hunter, Paul Gortmaker).
- Make the PCI PM core code slightly more robust against possible
driver errors (Andy Shevchenko).
- Make it possible to change DESTDIR and PREFIX in turbostat (Andy
Shevchenko)"
* tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (89 commits)
Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency"
PM / hibernate: Introduce test_resume mode for hibernation
cpufreq: export cpufreq_driver_resolve_freq()
cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index()
PCI / PM: check all fields in pci_set_platform_pm()
cpufreq: acpi-cpufreq: use cached frequency mapping when possible
cpufreq: schedutil: map raw required frequency to driver frequency
cpufreq: add cpufreq_driver_resolve_freq()
cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT
intel_pstate: Update cpu_frequency tracepoint every time
cpufreq: intel_pstate: clean remnant struct element
PM / tools: scripts: AnalyzeSuspend v4.2
x86 / hibernate: Use hlt_play_dead() when resuming from hibernation
cpufreq: powernv: Replacing pstate_id with frequency table index
intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate()
PM / hibernate: Image data protection during restoration
PM / hibernate: Add missing braces in __register_nosave_region()
PM / hibernate: Clean up comments in snapshot.c
PM / hibernate: Clean up function headers in snapshot.c
PM / hibernate: Add missing braces in hibernate_setup()
...
Pull NOHZ updates from Ingo Molnar:
- fix system/idle cputime leaked on cputime accounting (all nohz
configs) (Rik van Riel)
- remove the messy, ad-hoc irqtime account on nohz-full and make it
compatible with CONFIG_IRQ_TIME_ACCOUNTING=y instead (Rik van Riel)
- cleanups (Frederic Weisbecker)
- remove unecessary irq disablement in the irqtime code (Rik van Riel)
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/cputime: Drop local_irq_save/restore from irqtime_account_irq()
sched/cputime: Reorganize vtime native irqtime accounting headers
sched/cputime: Clean up the old vtime gen irqtime accounting completely
sched/cputime: Replace VTIME_GEN irq time code with IRQ_TIME_ACCOUNTING code
sched/cputime: Count actually elapsed irq & softirq time
Pull scheduler updates from Ingo Molnar:
- introduce and use task_rcu_dereference()/try_get_task_struct() to fix
and generalize task_struct handling (Oleg Nesterov)
- do various per entity load tracking (PELT) fixes and optimizations
(Peter Zijlstra)
- cputime virt-steal time accounting enhancements/fixes (Wanpeng Li)
- introduce consolidated cputime output file cpuacct.usage_all and
related refactorings (Zhao Lei)
- ... plus misc fixes and enhancements
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Panic on scheduling while atomic bugs if kernel.panic_on_warn is set
sched/cpuacct: Introduce cpuacct.usage_all to show all CPU stats together
sched/cpuacct: Use loop to consolidate code in cpuacct_stats_show()
sched/cpuacct: Merge cpuacct_usage_index and cpuacct_stat_index enums
sched/fair: Rework throttle_count sync
sched/core: Fix sched_getaffinity() return value kerneldoc comment
sched/fair: Reorder cgroup creation code
sched/fair: Apply more PELT fixes
sched/fair: Fix PELT integrity for new tasks
sched/cgroup: Fix cpu_cgroup_fork() handling
sched/fair: Fix PELT integrity for new groups
sched/fair: Fix and optimize the fork() path
sched/cputime: Add steal time support to full dynticks CPU time accounting
sched/cputime: Fix prev steal time accouting during CPU hotplug
KVM: Fix steal clock warp during guest CPU hotplug
sched/debug: Always show 'nr_migrations'
sched/fair: Use task_rcu_dereference()
sched/api: Introduce task_rcu_dereference() and try_get_task_struct()
sched/idle: Optimize the generic idle loop
sched/fair: Fix the wrong throttled clock time for cfs_rq_clock_task()
Pull locking updates from Ingo Molnar:
"The locking tree was busier in this cycle than the usual pattern - a
couple of major projects happened to coincide.
The main changes are:
- implement the atomic_fetch_{add,sub,and,or,xor}() API natively
across all SMP architectures (Peter Zijlstra)
- add atomic_fetch_{inc/dec}() as well, using the generic primitives
(Davidlohr Bueso)
- optimize various aspects of rwsems (Jason Low, Davidlohr Bueso,
Waiman Long)
- optimize smp_cond_load_acquire() on arm64 and implement LSE based
atomic{,64}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
on arm64 (Will Deacon)
- introduce smp_acquire__after_ctrl_dep() and fix various barrier
mis-uses and bugs (Peter Zijlstra)
- after discovering ancient spin_unlock_wait() barrier bugs in its
implementation and usage, strengthen its semantics and update/fix
usage sites (Peter Zijlstra)
- optimize mutex_trylock() fastpath (Peter Zijlstra)
- ... misc fixes and cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
locking/atomic: Introduce inc/dec variants for the atomic_fetch_$op() API
locking/barriers, arch/arm64: Implement LDXR+WFE based smp_cond_load_acquire()
locking/static_keys: Fix non static symbol Sparse warning
locking/qspinlock: Use __this_cpu_dec() instead of full-blown this_cpu_dec()
locking/atomic, arch/tile: Fix tilepro build
locking/atomic, arch/m68k: Remove comment
locking/atomic, arch/arc: Fix build
locking/Documentation: Clarify limited control-dependency scope
locking/atomic, arch/rwsem: Employ atomic_long_fetch_add()
locking/atomic, arch/qrwlock: Employ atomic_fetch_add_acquire()
locking/atomic, arch/mips: Convert to _relaxed atomics
locking/atomic, arch/alpha: Convert to _relaxed atomics
locking/atomic: Remove the deprecated atomic_{set,clear}_mask() functions
locking/atomic: Remove linux/atomic.h:atomic_fetch_or()
locking/atomic: Implement atomic{,64,_long}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
locking/atomic: Fix atomic64_relaxed() bits
locking/atomic, arch/xtensa: Implement atomic_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/x86: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/tile: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
locking/atomic, arch/sparc: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
...
* pm-cpufreq: (41 commits)
Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency"
cpufreq: export cpufreq_driver_resolve_freq()
cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index()
cpufreq: acpi-cpufreq: use cached frequency mapping when possible
cpufreq: schedutil: map raw required frequency to driver frequency
cpufreq: add cpufreq_driver_resolve_freq()
cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT
intel_pstate: Update cpu_frequency tracepoint every time
cpufreq: intel_pstate: clean remnant struct element
cpufreq: powernv: Replacing pstate_id with frequency table index
intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate()
cpufreq: Reuse new freq-table helpers
cpufreq: Handle sorted frequency tables more efficiently
cpufreq: Drop redundant check from cpufreq_update_current_freq()
intel_pstate: Declare pid_params/pstate_funcs/hwp_active __read_mostly
intel_pstate: add __init/__initdata marker to some functions/variables
intel_pstate: Fix incorrect placement of __initdata
cpufreq: mvebu: fix integer to pointer cast
cpufreq: intel_pstate: Broxton support
cpufreq: conservative: Do not use transition notifications
...
The slow-path frequency transition path is relatively expensive as it
requires waking up a thread to do work. Should support be added for
remote CPU cpufreq updates that is also expensive since it requires an
IPI. These activities should be avoided if they are not necessary.
To that end, calculate the actual driver-supported frequency required by
the new utilization value in schedutil by using the recently added
cpufreq_driver_resolve_freq API. If it is the same as the previously
requested driver frequency then there is no need to continue with the
update assuming the cpu frequency limits have not changed. This will
have additional benefits should the semantics of the rate limit be
changed to apply solely to frequency transitions rather than to
frequency calculations in schedutil.
The last raw required frequency is cached. This allows the driver
frequency lookup to be skipped in the event that the new raw required
frequency matches the last one, assuming a frequency update has not been
forced due to limits changing (indicated by a next_freq value of
UINT_MAX, see sugov_should_update_freq).
Signed-off-by: Steve Muckle <smuckle@linaro.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Paolo pointed out that irqs are already blocked when irqtime_account_irq()
is called. That means there is no reason to call local_irq_save/restore()
again.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1468421405-20056-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vtime generic irqtime accounting has been removed but there are a few
remnants to clean up:
* The vtime_accounting_cpu_enabled() check in irq entry was only used
by CONFIG_VIRT_CPU_ACCOUNTING_GEN. We can safely remove it.
* Without the vtime_accounting_cpu_enabled(), we no longer need to
have a vtime_common_account_irq_enter() indirect function.
* Move vtime_account_irq_enter() implementation under
CONFIG_VIRT_CPU_ACCOUNTING_NATIVE which is the last user.
* The vtime_account_user() call was only used on irq entry for
CONFIG_VIRT_CPU_ACCOUNTING_GEN. We can remove that too.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1468421405-20056-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CONFIG_VIRT_CPU_ACCOUNTING_GEN irq time tracking code does not
appear to currently work right.
On CPUs without nohz_full=, only tick based irq time sampling is
done, which breaks down when dealing with a nohz_idle CPU.
On firewalls and similar systems, no ticks may happen on a CPU for a
while, and the irq time spent may never get accounted properly. This
can cause issues with capacity planning and power saving, which use
the CPU statistics as inputs in decision making.
Remove the VTIME_GEN vtime irq time code, and replace it with the
IRQ_TIME_ACCOUNTING code, when selected as a config option by the user.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1468421405-20056-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, if there was any irq or softirq time during 'ticks'
jiffies, the entire period will be accounted as irq or softirq
time.
This is inaccurate if only a subset of the time was actually spent
handling irqs, and could conceivably mis-count all of the ticks during
a period as irq time, when there was some irq and some softirq time.
This can actually happen when irqtime_account_process_tick is called
from account_idle_ticks, which can pass a larger number of ticks down
all at once.
Fix this by changing irqtime_account_hi_update(), irqtime_account_si_update(),
and steal_account_process_ticks() to work with cputime_t time units, and
return the amount of time spent in each mode.
Rename steal_account_process_ticks() to steal_account_process_time(), to
reflect that time is now accounted in cputime_t, instead of ticks.
Additionally, have irqtime_account_process_tick() take into account how
much time was spent in each of steal, irq, and softirq time.
The latter could help improve the accuracy of cputime
accounting when returning from idle on a NO_HZ_IDLE CPU.
Properly accounting how much time was spent in hardirq and
softirq time will also allow the NO_HZ_FULL code to re-use
these same functions for hardirq and softirq accounting.
Signed-off-by: Rik van Riel <riel@redhat.com>
[ Make nsecs_to_cputime64() actually return cputime64_t. ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1468421405-20056-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The move of calc_load_migrate() from CPU_DEAD to CPU_DYING did not take into
account that the function is now called from a thread running on the outgoing
CPU. As a result a cpu unplug leakes a load of 1 into the global load
accounting mechanism.
Fix it by adjusting for the currently running thread which calls
calc_load_migrate().
Reported-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: rt@linutronix.de
Cc: shreyas@linux.vnet.ibm.com
Fixes: e9cd8fa4fcfd: ("sched/migration: Move calc_load_migrate() into CPU_DYING")
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1607121744350.4083@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, a schedule while atomic error prints the stack trace to the
kernel log and the system continue running.
Although it is possible to collect the kernel log messages and analyze
it, often more information are needed. Furthermore, keep the system
running is not always the best choice. For example, when the preempt
count underflows the system will not stop to complain about scheduling
while atomic, so the kernel log can wrap around overwriting the first
stack trace, tuning the analysis even more challenging.
This patch uses the kernel.panic_on_warn sysctl to help out on these
more complex situations.
When kernel.panic_on_warn is set to 1, the kernel will panic() in the
schedule while atomic detection.
The default value of the sysctl is 0, maintaining the current behavior.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e8f7b80f353aa22c63bd8557208163989af8493d.1464983675.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In current code, we can get cpuacct data from several files,
but each file has various limitations.
For example:
- We can get CPU usage in user and kernel mode via cpuacct.stat,
but we can't get detailed data about each CPU.
- We can get each CPU's kernel mode usage in cpuacct.usage_percpu_sys,
but we can't get user mode usage data at the same time.
This patch introduces cpuacct.usage_all, to show all detailed CPU
accounting data together:
# cat cpuacct.usage_all
cpu user system
0 3809760299 5807968992
1 3250329855 454612211
..
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/7744460969edd7caaf0e903592ee52353ed9bdd6.1466415271.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In cpuacct_stats_show() we currently we have copies of similar code,
for each cpustat(system/user) variant.
Use a loop instead to consolidate the code. This will also work better
if we extend the CPUACCT_STAT_NSTATS type.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/b0597d4224655e9f333f1a6224ed9654c7d7d36a.1466415271.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These two types have similar function, no need to separate them.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/436748885270d64363c7dc67167507d486c2057a.1466415271.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The pv_time_ops structure contains a function pointer for the
"steal_clock" functionality used only by KVM and Xen on ARM. Xen on x86
uses its own mechanism to account for the "stolen" time a thread wasn't
able to run due to hypervisor scheduling.
Add support in Xen arch independent time handling for this feature by
moving it out of the arm arch into drivers/xen and remove the x86 Xen
hack.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Since we already take rq->lock when creating a cgroup, use it to also
sync the throttle_count and avoid the extra state and enqueue path
branch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: linux-kernel@vger.kernel.org
[ Fixed build warning. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Previous version was probably written referencing the man page for
glibc's wrapper, but the wrapper's behavior differs from that of the
syscall itself in this case.
Signed-off-by: Zev Weiss <zev@bewilderbeest.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1466975603-25408-1-git-send-email-zev@bewilderbeest.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A future patch needs rq->lock held _after_ we link the task_group into
the hierarchy. In order to avoid taking every rq->lock twice, reorder
things a little and create online_fair_sched_group() to be called
after we link the task_group.
All this code is still ran from css_alloc() so css_online() isn't in
fact used for this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
One additional 'rule' for using update_cfs_rq_load_avg() is that one
should call update_tg_load_avg() if it returns true.
Add a bunch of comments to hopefully clarify some of the rules:
o You need to update cfs_rq _before_ any entity attach/detach,
this is important, because while for mathmatical consisency this
isn't strictly needed, it is required for the physical
interpretation of the model, you attach/detach _now_.
o When you modify the cfs_rq avg, you have to then call
update_tg_load_avg() in order to propagate changes upwards.
o (Fair) entities are always attached, switched_{to,from}_fair()
deal with !fair. This directly follows from the definition of the
cfs_rq averages, namely that they are a direct sum of all
(runnable or blocked) entities on that rq.
It is the second rule that this patch enforces, but it adds comments
pertaining to all of them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vincent and Yuyang found another few scenarios in which entity
tracking goes wobbly.
The scenarios are basically due to the fact that new tasks are not
immediately attached and thereby differ from the normal situation -- a
task is always attached to a cfs_rq load average (such that it
includes its blocked contribution) and are explicitly
detached/attached on migration to another cfs_rq.
Scenario 1: switch to fair class
p->sched_class = fair_class;
if (queued)
enqueue_task(p);
...
enqueue_entity()
enqueue_entity_load_avg()
migrated = !sa->last_update_time (true)
if (migrated)
attach_entity_load_avg()
check_class_changed()
switched_from() (!fair)
switched_to() (fair)
switched_to_fair()
attach_entity_load_avg()
If @p is a new task that hasn't been fair before, it will have
!last_update_time and, per the above, end up in
attach_entity_load_avg() _twice_.
Scenario 2: change between cgroups
sched_move_group(p)
if (queued)
dequeue_task()
task_move_group_fair()
detach_task_cfs_rq()
detach_entity_load_avg()
set_task_rq()
attach_task_cfs_rq()
attach_entity_load_avg()
if (queued)
enqueue_task();
...
enqueue_entity()
enqueue_entity_load_avg()
migrated = !sa->last_update_time (true)
if (migrated)
attach_entity_load_avg()
Similar as with scenario 1, if @p is a new task, it will have
!load_update_time and we'll end up in attach_entity_load_avg()
_twice_.
Furthermore, notice how we do a detach_entity_load_avg() on something
that wasn't attached to begin with.
As stated above; the problem is that the new task isn't yet attached
to the load tracking and thereby violates the invariant assumption.
This patch remedies this by ensuring a new task is indeed properly
attached to the load tracking on creation, through
post_init_entity_util_avg().
Of course, this isn't entirely as straightforward as one might think,
since the task is hashed before we call wake_up_new_task() and thus
can be poked at. We avoid this by adding TASK_NEW and teaching
cpu_cgroup_can_attach() to refuse such tasks.
Reported-by: Yuyang Du <yuyang.du@intel.com>
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A new fair task is detached and attached from/to task_group with:
cgroup_post_fork()
ss->fork(child) := cpu_cgroup_fork()
sched_move_task()
task_move_group_fair()
Which is wrong, because at this point in fork() the task isn't fully
initialized and it cannot 'move' to another group, because its not
attached to any group as yet.
In fact, cpu_cgroup_fork() needs a small part of sched_move_task() so we
can just call this small part directly instead sched_move_task(). And
the task doesn't really migrate because it is not yet attached so we
need the following sequence:
do_fork()
sched_fork()
__set_task_cpu()
cgroup_post_fork()
set_task_rq() # set task group and runqueue
wake_up_new_task()
select_task_rq() can select a new cpu
__set_task_cpu
post_init_entity_util_avg
attach_task_cfs_rq()
activate_task
enqueue_task
This patch makes that happen.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
[ Added TASK_SET_GROUP to set depth properly. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vincent reported that when a new task is moved into a new cgroup it
gets attached twice to the load tracking:
sched_move_task()
task_move_group_fair()
detach_task_cfs_rq()
set_task_rq()
attach_task_cfs_rq()
attach_entity_load_avg()
se->avg.last_load_update = cfs_rq->avg.last_load_update // == 0
enqueue_entity()
enqueue_entity_load_avg()
update_cfs_rq_load_avg()
now = clock()
__update_load_avg(&cfs_rq->avg)
cfs_rq->avg.last_load_update = now
// ages load/util for: now - 0, load/util -> 0
if (migrated)
attach_entity_load_avg()
se->avg.last_load_update = cfs_rq->avg.last_load_update; // now != 0
The problem is that we don't update cfs_rq load_avg before all
entity attach/detach operations. Only enqueue_task() and migrate_task()
do this.
By fixing this, the above will not happen, because the
sched_move_task() attach will have updated cfs_rq's last_load_update
time before attach, and in turn the attach will have set the entity's
last_load_update stamp.
Note that there is a further problem with sched_move_task() calling
detach on a task that hasn't yet been attached; this will be taken
care of in a subsequent patch.
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The task_fork_fair() callback already calls __set_task_cpu() and takes
rq->lock.
If we move the sched_class::task_fork callback in sched_fork() under
the existing p->pi_lock, right after its set_task_cpu() call, we can
avoid doing two such calls and omit the IRQ disabling on the rq->lock.
Change to __set_task_cpu() to skip the migration bits, this is a new
task, not a migration. Similarly, make wake_up_new_task() use
__set_task_cpu() for the same reason, the task hasn't actually
migrated as it hasn't ever ran.
This cures the problem of calling migrate_task_rq_fair(), which does
remove_entity_from_load_avg() on tasks that have never been added to
the load avg to begin with.
This bug would result in transiently messed up load_avg values, averaged
out after a few dozen milliseconds. This is probably the reason why
this bug was not found for such a long time.
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
fde7d22e01 ("sched/fair: Fix overly small weight for interactive group entities")
did something non-obvious but also did it buggy yet latent.
The problem was exposed for real by a later commit in the v4.7 merge window:
2159197d66 ("sched/core: Enable increased load resolution on 64-bit kernels")
... after which tg->load_avg and cfs_rq->load.weight had different
units (10 bit fixed point and 20 bit fixed point resp.).
Add a comment to explain the use of cfs_rq->load.weight over the
'natural' cfs_rq->avg.load_avg and add scale_load_down() to correct
for the difference in unit.
Since this is (now, as per a previous commit) the only user of
calc_tg_weight(), collapse it.
The effects of this bug should be randomly inconsistent SMP-balancing
of cgroups workloads.
Reported-by: Jirka Hladky <jhladky@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2159197d66 ("sched/core: Enable increased load resolution on 64-bit kernels")
Fixes: fde7d22e01 ("sched/fair: Fix overly small weight for interactive group entities")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Starting with the following commit:
fde7d22e01 ("sched/fair: Fix overly small weight for interactive group entities")
calc_tg_weight() doesn't compute the right value as expected by effective_load().
The difference is in the 'correction' term. In order to ensure \Sum
rw_j >= rw_i we cannot use tg->load_avg directly, since that might be
lagging a correction on the current cfs_rq->avg.load_avg value.
Therefore we use tg->load_avg - cfs_rq->tg_load_avg_contrib +
cfs_rq->avg.load_avg.
Now, per the referenced commit, calc_tg_weight() doesn't use
cfs_rq->avg.load_avg, as is later used in @w, but uses
cfs_rq->load.weight instead.
So stop using calc_tg_weight() and do it explicitly.
The effects of this bug are wake_affine() making randomly
poor choices in cgroup-intense workloads.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # v4.3+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: fde7d22e01 ("sched/fair: Fix overly small weight for interactive group entities")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
During CPU hotplug, CPU_ONLINE callbacks are run while the CPU is
online but not active. A CPU_ONLINE callback may create or bind a
kthread so that its cpus_allowed mask only allows the CPU which is
being brought online. The kthread may start executing before the CPU
is made active and can end up in select_fallback_rq().
In such cases, the expected behavior is selecting the CPU which is
coming online; however, because select_fallback_rq() only chooses from
active CPUs, it determines that the task doesn't have any viable CPU
in its allowed mask and ends up overriding it to cpu_possible_mask.
CPU_ONLINE callbacks should be able to put kthreads on the CPU which
is coming online. Update select_fallback_rq() so that it follows
cpu_online() rather than cpu_active() for kthreads.
Reported-by: Gautham R Shenoy <ego@linux.vnet.ibm.com>
Tested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team@fb.com
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/20160616193504.GB3262@mtj.duckdns.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hierarchy could be already throttled at this point. Throttled next
buddy could trigger a NULL pointer dereference in pick_next_task_fair().
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/146608183552.21905.15924473394414832071.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cgroup created inside throttled group must inherit current throttle_count.
Broken throttle_count allows to nominate throttled entries as a next buddy,
later this leads to null pointer dereference in pick_next_task_fair().
This patch initialize cfs_rq->throttle_count at first enqueue: laziness
allows to skip locking all rq at group creation. Lazy approach also allows
to skip full sub-tree scan at throttling hierarchy (not in this patch).
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Link: http://lkml.kernel.org/r/146608182119.21870.8439834428248129633.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As per commit:
b7fa30c9cc ("sched/fair: Fix post_init_entity_util_avg() serialization")
> the code generated from update_cfs_rq_load_avg():
>
> if (atomic_long_read(&cfs_rq->removed_load_avg)) {
> s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
> sa->load_avg = max_t(long, sa->load_avg - r, 0);
> sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
> removed_load = 1;
> }
>
> turns into:
>
> ffffffff81087064: 49 8b 85 98 00 00 00 mov 0x98(%r13),%rax
> ffffffff8108706b: 48 85 c0 test %rax,%rax
> ffffffff8108706e: 74 40 je ffffffff810870b0 <update_blocked_averages+0xc0>
> ffffffff81087070: 4c 89 f8 mov %r15,%rax
> ffffffff81087073: 49 87 85 98 00 00 00 xchg %rax,0x98(%r13)
> ffffffff8108707a: 49 29 45 70 sub %rax,0x70(%r13)
> ffffffff8108707e: 4c 89 f9 mov %r15,%rcx
> ffffffff81087081: bb 01 00 00 00 mov $0x1,%ebx
> ffffffff81087086: 49 83 7d 70 00 cmpq $0x0,0x70(%r13)
> ffffffff8108708b: 49 0f 49 4d 70 cmovns 0x70(%r13),%rcx
>
> Which you'll note ends up with sa->load_avg -= r in memory at
> ffffffff8108707a.
So I _should_ have looked at other unserialized users of ->load_avg,
but alas. Luckily nikbor reported a similar /0 from task_h_load() which
instantly triggered recollection of this here problem.
Aside from the intermediate value hitting memory and causing problems,
there's another problem: the underflow detection relies on the signed
bit. This reduces the effective width of the variables, IOW its
effectively the same as having these variables be of signed type.
This patch changes to a different means of unsigned underflow
detection to not rely on the signed bit. This allows the variables to
use the 'full' unsigned range. And it does so with explicit LOAD -
STORE to ensure any intermediate value will never be visible in
memory, allowing these unserialized loads.
Note: GCC generates crap code for this, might warrant a look later.
Note2: I say 'full' above, if we end up at U*_MAX we'll still explode;
maybe we should do clamping on add too.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Cc: bsegall@google.com
Cc: kernel@kyup.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: steve.muckle@linaro.org
Fixes: 9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
Link: http://lkml.kernel.org/r/20160617091948.GJ30927@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lengthy output of sysrq-w may take a lot of time on slow serial console.
Currently we reset NMI-watchdog on the current CPU to avoid spurious
lockup messages. Sometimes this doesn't work since softlockup watchdog
might trigger on another CPU which is waiting for an IPI to proceed.
We reset softlockup watchdogs on all CPUs, but we do this only after
listing all tasks, and this may be too late on a busy system.
So, reset watchdogs CPUs earlier, in for_each_process_thread() loop.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1465474805-14641-1-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This new form allows using hardware assisted waiting.
Some hardware (ARM64 and x86) allow monitoring an address for changes,
so by providing a pointer we can use this to replace the cpu_relax()
with hardware optimized methods in the future.
Requested-by: Will Deacon <will.deacon@arm.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds guest steal-time support to full dynticks CPU
time accounting. After the following commit:
ff9a9b4c43 ("sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity")
... time sampling became jiffy based, even if we do the sampling from the
context tracking code, so steal_account_process_tick() can be reused
to account how many 'ticks' are stolen-time, after the last accumulation.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1465813966-3116-4-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
e9532e69b8 ("sched/cputime: Fix steal time accounting vs. CPU hotplug")
... set rq->prev_* to 0 after a CPU hotplug comes back, in order to
fix the case where (after CPU hotplug) steal time is smaller than
rq->prev_steal_time.
However, this should never happen. Steal time was only smaller because of the
KVM-specific bug fixed by the previous patch. Worse, the previous patch
triggers a bug on CPU hot-unplug/plug operation: because
rq->prev_steal_time is cleared, all of the CPU's past steal time will be
accounted again on hot-plug.
Since the root cause has been fixed, we can just revert commit e9532e69b8.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 'commit e9532e69b8 ("sched/cputime: Fix steal time accounting vs. CPU hotplug")'
Link: http://lkml.kernel.org/r/1465813966-3116-3-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge filesystem stacking fixes from Jann Horn.
* emailed patches from Jann Horn <jannh@google.com>:
sched: panic on corrupted stack end
ecryptfs: forbid opening files without mmap handler
proc: prevent stacking filesystems on top
Until now, hitting this BUG_ON caused a recursive oops (because oops
handling involves do_exit(), which calls into the scheduler, which in
turn raises an oops), which caused stuff below the stack to be
overwritten until a panic happened (e.g. via an oops in interrupt
context, caused by the overwritten CPU index in the thread_info).
Just panic directly.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>