handle_reply() may be called twice on the same request: on ack and then
on commit. This occurs on btrfs-formatted OSDs or if cephfs sync write
path is triggered - CEPH_OSD_FLAG_ACK | CEPH_OSD_FLAG_ONDISK.
handle_reply() handles this with the help of done_request().
Fixes: 5aea3dcd50 ("libceph: a major OSD client update")
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
For the benefit of every single caller, take osdc instead of map.
Also, now that osdc->osdmap can't ever be NULL, drop the check.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
When adding the gpiochip, the GPIO HW drivers' callback get_direction()
could get called in atomic context. Some of the GPIO HW drivers may
sleep when accessing the register.
Move the lock before initializing the descriptors.
Reported-by: Laxman Dewangan <ldewangan@nvidia.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
In fdeb8e1547
("gpio: reflect base and ngpio into gpio_device")
assumed that GPIO descriptors are either valid or error
pointers, but gpiod_get_[index_]optional() actually return
NULL descriptors and then all subsequent calls should just
bail out.
Cc: stable@vger.kernel.org
Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Andrew Lunn <andrew@lunn.ch>
Fixes: fdeb8e1547 ("gpio: reflect base and ngpio into gpio_device")
Reported-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
If we're using the compatible ioctl() we need to handle the
argument pointer in a special way or there will be trouble.
Fixes: 3c702e9987 ("gpio: add a userspace chardev ABI for GPIOs")
Reported-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Reviewed-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
This function cannot actually be called with npage = 0, so in practice
this doesn't return an uninitialized value.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Both the INTx and MSI/X disable paths do an eventfd_ctx_put() for the
trigger eventfd before calling vfio_virqfd_disable() any potential
mask and unmask eventfds. This opens a use-after-free race where an
inopportune irqfd can reference the freed signalling eventfd. Reorder
to avoid this possibility.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Downgrade pr_info to pr_debug for the "_PPC limits will be enforced"
message.
In server systems with many cores this message is annoying.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
While iterating and copying extents from the source device, the device
replace code keeps adjusting a left cursor that is used to make sure that
once we finish processing a device extent, any future writes to extents
from the corresponding block group will get into both the source and
target devices. This left cursor is also used for resuming the device
replace operation at mount time.
However using this left cursor to decide whether writes go into both
devices or only the source device is not enough to guarantee we don't
miss copying extents into the target device. There are two cases where
the current approach fails. The first one is related to when there are
holes in the device and they get allocated for new block groups while
the device replace operation is iterating the device extents (more on
this explained below). The second one is that when that loop over the
device extents finishes, we start dellaloc, wait for all ordered extents
and then commit the current transaction, we might have got new block
groups allocated that are now using a device extent that has an offset
greater then or equals to the value of the left cursor, in which case
writes to extents belonging to these new block groups will get issued
only to the source device.
For the first case where the current approach of using a left cursor
fails, consider the source device currently has the following layout:
[ extent bg A ] [ hole, unallocated space ] [extent bg B ]
3Gb 4Gb 5Gb
While we are iterating the device extents from the source device using
the commit root of the device tree, the following happens:
CPU 1 CPU 2
<we are at transaction N>
scrub_enumerate_chunks()
--> searches the device tree for
extents belonging to the source
device using the device tree's
commit root
--> 1st iteration finds extent belonging to
block group A
--> sets block group A to RO mode
(btrfs_inc_block_group_ro)
--> sets cursor left to found_key.offset
which is 3Gb
--> scrub_chunk() starts
copies all allocated extents from
block group's A stripe at source
device into target device
btrfs_alloc_chunk()
--> allocates device extent
in the range [4Gb, 5Gb[
from the source device for
a new block group C
extent allocated from block
group C for a direct IO,
buffered write or btree node/leaf
extent is written to, perhaps
in response to a writepages()
call from the VM or directly
through direct IO
the write is made only against
the source device and not against
the target device because the
extent's offset is in the interval
[4Gb, 5Gb[ which is larger then
the value of cursor_left (3Gb)
--> scrub_chunks() finishes
--> updates left cursor from 3Gb to
4Gb
--> btrfs_dec_block_group_ro() sets
block group A back to RW mode
<we are still at transaction N>
--> 2nd iteration finds extent belonging to
block group B - it did not find the new
extent in the range [4Gb, 5Gb[ for block
group C because we are using the device
tree's commit root or even because the
block group's items are not all yet
inserted in the respective btrees, that is,
the block group is still attached to some
transaction handle's new_bgs list and
btrfs_create_pending_block_groups() was
not called yet against that transaction
handle, so the device extent items were
not yet inserted into the devices tree
<we are still at transaction N>
--> so we end not copying anything from the newly
allocated device extent from the source device
to the target device
So fix this by making __btrfs_map_block() always redirect writes to the
target device as well, independently of the left cursor's value. With
this change the left cursor is now used only for the purpose of tracking
progress and allow a mount operation to resume a device replace.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
After it finishes processing a device extent, the device replace code sets
back the block group to RW mode and then after that it sets the left cursor
to match the logical end address of the block group, so that future writes
into extents belonging to the block group go both the source (old) and
target (new) devices. However from the moment we turn the block group
back to RW mode we have a short time window, that lasts until we update
the left cursor's value, where extents can be allocated from the block
group and written to, in which case they will not be copied/written to
the target (new) device. Fix this by updating the left cursor's value
before turning the block group back to RW mode.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
We were assigning new values to fields of the device replace object
without holding the respective lock after processing each device extent.
This is important for the left cursor field which can be accessed by a
concurrent task running __btrfs_map_block (which, correctly, takes the
device replace lock).
So change these fields while holding the device replace lock.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
When we do a device replace, for each device extent we find from the
source device, we set the corresponding block group to readonly mode to
prevent writes into it from happening while we are copying the device
extent from the source to the target device. However just before we set
the block group to readonly mode some concurrent task might have already
allocated an extent from it or decided it could perform a nocow write
into one of its extents, which can make the device replace process to
miss copying an extent since it uses the extent tree's commit root to
search for extents and only once it finishes searching for all extents
belonging to the block group it does set the left cursor to the logical
end address of the block group - this is a problem if the respective
ordered extents finish while we are searching for extents using the
extent tree's commit root and no transaction commit happens while we
are iterating the tree, since it's the delayed references created by the
ordered extents (when they complete) that insert the extent items into
the extent tree (using the non-commit root of course).
Example:
CPU 1 CPU 2
btrfs_dev_replace_start()
btrfs_scrub_dev()
scrub_enumerate_chunks()
--> finds device extent belonging
to block group X
<transaction N starts>
starts buffered write
against some inode
writepages is run against
that inode forcing dellaloc
to run
btrfs_writepages()
extent_writepages()
extent_write_cache_pages()
__extent_writepage()
writepage_delalloc()
run_delalloc_range()
cow_file_range()
btrfs_reserve_extent()
--> allocates an extent
from block group X
(which is not yet
in RO mode)
btrfs_add_ordered_extent()
--> creates ordered extent Y
flush_epd_write_bio()
--> bio against the extent from
block group X is submitted
btrfs_inc_block_group_ro(bg X)
--> sets block group X to readonly
scrub_chunk(bg X)
scrub_stripe(device extent from srcdev)
--> keeps searching for extent items
belonging to the block group using
the extent tree's commit root
--> it never blocks due to
fs_info->scrub_pause_req as no
one tries to commit transaction N
--> copies all extents found from the
source device into the target device
--> finishes search loop
bio completes
ordered extent Y completes
and creates delayed data
reference which will add an
extent item to the extent
tree when run (typically
at transaction commit time)
--> so the task doing the
scrub/device replace
at CPU 1 misses this
and does not copy this
extent into the new/target
device
btrfs_dec_block_group_ro(bg X)
--> turns block group X back to RW mode
dev_replace->cursor_left is set to the
logical end offset of block group X
So fix this by waiting for all cow and nocow writes after setting a block
group to readonly mode.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
When it's finishing, the device replace code iterates all extent maps
representing block group and for each one that has a stripe that refers
to the source device, it replaces its device with the target device.
However when it replaces the source device with the target device it,
the target device still has an ID of 0ULL (BTRFS_DEV_REPLACE_DEVID),
only after its ID is changed to match the one from the source device.
This leads to races with the chunk removal code that can temporarly see
a device with an ID of 0ULL and then attempt to use that ID to remove
items from the device tree and fail, causing a transaction abort:
[ 9238.594364] BTRFS info (device sdf): dev_replace from /dev/sdf (devid 3) to /dev/sde finished
[ 9238.594377] ------------[ cut here ]------------
[ 9238.594402] WARNING: CPU: 14 PID: 21566 at fs/btrfs/volumes.c:2771 btrfs_remove_chunk+0x2e5/0x793 [btrfs]
[ 9238.594403] BTRFS: Transaction aborted (error 1)
[ 9238.594416] Modules linked in: btrfs crc32c_generic acpi_cpufreq xor tpm_tis tpm raid6_pq ppdev parport_pc processor psmouse parport i2c_piix4 evdev sg i2c_core se
rio_raw pcspkr button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio e1000 scsi_mod fl
oppy [last unloaded: btrfs]
[ 9238.594418] CPU: 14 PID: 21566 Comm: btrfs-cleaner Not tainted 4.6.0-rc7-btrfs-next-29+ #1
[ 9238.594419] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 9238.594421] 0000000000000000 ffff88017f1dbc60 ffffffff8126b42c ffff88017f1dbcb0
[ 9238.594422] 0000000000000000 ffff88017f1dbca0 ffffffff81052b14 00000ad37f1dbd18
[ 9238.594423] 0000000000000001 ffff88018068a558 ffff88005c4b9c00 ffff880233f60db0
[ 9238.594424] Call Trace:
[ 9238.594428] [<ffffffff8126b42c>] dump_stack+0x67/0x90
[ 9238.594430] [<ffffffff81052b14>] __warn+0xc2/0xdd
[ 9238.594432] [<ffffffff81052b7a>] warn_slowpath_fmt+0x4b/0x53
[ 9238.594434] [<ffffffff8116c311>] ? kmem_cache_free+0x128/0x188
[ 9238.594450] [<ffffffffa04d43f5>] btrfs_remove_chunk+0x2e5/0x793 [btrfs]
[ 9238.594452] [<ffffffff8108e456>] ? arch_local_irq_save+0x9/0xc
[ 9238.594464] [<ffffffffa04a26fa>] btrfs_delete_unused_bgs+0x317/0x382 [btrfs]
[ 9238.594476] [<ffffffffa04a961d>] cleaner_kthread+0x1ad/0x1c7 [btrfs]
[ 9238.594489] [<ffffffffa04a9470>] ? btree_invalidatepage+0x8e/0x8e [btrfs]
[ 9238.594490] [<ffffffff8106f403>] kthread+0xd4/0xdc
[ 9238.594494] [<ffffffff8149e242>] ret_from_fork+0x22/0x40
[ 9238.594495] [<ffffffff8106f32f>] ? kthread_stop+0x286/0x286
[ 9238.594496] ---[ end trace 183efbe50275f059 ]---
The sequence of steps leading to this is like the following:
CPU 1 CPU 2
btrfs_dev_replace_finishing()
at this point
dev_replace->tgtdev->devid ==
BTRFS_DEV_REPLACE_DEVID (0ULL)
...
btrfs_start_transaction()
btrfs_commit_transaction()
btrfs_delete_unused_bgs()
btrfs_remove_chunk()
looks up for the extent map
corresponding to the chunk
lock_chunks() (chunk_mutex)
check_system_chunk()
unlock_chunks() (chunk_mutex)
locks fs_info->chunk_mutex
btrfs_dev_replace_update_device_in_mapping_tree()
--> iterates fs_info->mapping_tree and
replaces the device in every extent
map's map->stripes[] with
dev_replace->tgtdev, which still has
an id of 0ULL (BTRFS_DEV_REPLACE_DEVID)
iterates over all stripes from
the extent map
--> calls btrfs_free_dev_extent()
passing it the target device
that still has an ID of 0ULL
--> btrfs_free_dev_extent() fails
--> aborts current transaction
finishes setting up the target device,
namely it sets tgtdev->devid to the value
of srcdev->devid (which is necessarily > 0)
frees the srcdev
unlocks fs_info->chunk_mutex
So fix this by taking the device list mutex while processing the stripes
for the chunk's extent map. This is similar to the race between device
replace and block group creation that was fixed by commit 50460e3718
("Btrfs: fix race when finishing dev replace leading to transaction abort").
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
commit 059500940d (ACPI/video: export acpi_video_get_levels)
mistakenly dropped the correct value of max_level and that caused the
set_level function following failed and the acpi_video backlight interface
didn't get created. Fix this by passing back the correct max_level value.
While at it, also fix the param used in acpi_video_device_lcd_query_levels
where acpi_handle is expected but acpi_video_device is passed.
Fixes: 059500940d (ACPI/video: export acpi_video_get_levels)
Reported-and-tested-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Submitters of device tree binding documentation may forget to CC
the subsystem maintainer if this is missing.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: linux-gpio@vger.kernel.org
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
The input/output directions were inversed on the GPIO direction
read function. Loose a ! and it is correct.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
As irqchip and gpiochip functions are orthogonal, the IRQ
set-up or something else can have changed the direction of
the GPIO line from what the GPIO descriptor knows when we
get into gpiochip_lock_as_irq(). Make sure to re-read the
direction setting if we have the .get_direction() callback
enabled for the chip.
Else we get problems like this:
iio iio:device2: interrupts on the rising edge
gpio gpiochip2: (8012e080.gpio): gpiochip_lock_as_irq:
tried to flag a GPIO set as output for IRQ
gpio gpiochip2: (8012e080.gpio): unable to lock HW IRQ 0 for IRQ
genirq: Failed to request resources for l3g4200d-trigger
(irq 111) on irqchip nmk1-32-63
iio iio:device2: failed to request trigger IRQ.
st-gyro-i2c: probe of 2-0068 failed with error -22
Fixes: 72d3200061 ("gpio: set up initial state from .get_direction()")
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
The "to_irq" functionality is broken inside this driver since commit
76ba59f836 ("genirq: Add irq_domain-aware core IRQ handler").
The addition of the new lpc32xx irqchip driver in 4.7, fixed the
lpc32xx platform interrupt issue.
When switching to the new lpc32xx irqchip driver, a warning appear
in the lpc32xx gpio driver: warning: "NR_IRQS" redefined.
To remove this warning (temporary solution), this patch
disables the broken "to_irq" mapping functionality support.
Signed-off-by: Sylvain Lemieux <slemieux@tycoint.com>
Acked-by: Vladimir Zapolskiy <vz@mleia.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Since the drm core sets plane->crtc correctly, we don't need to do that.
Signed-off-by: Liu Ying <gnuiyl@gmail.com>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
This patch allows to select a specific video mode from a list of modes
defined in DT by setting the 'native-mode' property appropriately.
This change does not affect the behaviour of existing platforms, since
they either:
- have just one display-timings subnode
- have the native-mode property pointing to the first entry
- let the bootloader select the appropriate timing
Signed-off-by: Lothar Waßmann <LW@KARO-electronics.de>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
The 'mode_valid' flag is never set in this driver. Remove it and the
code that depends on it.
Signed-off-by: Lothar Waßmann <LW@KARO-electronics.de>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
This patch allows panels to set pixel clock and data enable pin polarity
other than the default of driving data at the falling pixel clock edge
and active high display enable.
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Instead of using of_graph_get_port_by_id() to get the port and then
of_get_child_by_name() to get the first endpoint, get to the endpoint
in a single step.
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Instead of using of_graph_get_port_by_id() to get the port and then
of_get_child_by_name() to get the first endpoint, get to the endpoint
in a single step.
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Document the ddc-i2c-bus property used by imx-ldb driver to read EDID
information via I2C interface.
Signed-off-by: Akshay Bhat <akshay.bhat@timesys.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Add support for reading EDID over Display Data Channel. If no DDC
adapter is available, falls back to hardcoded EDID or display-timings
node as before.
Signed-off-by: Steve Longerbeam <steve_longerbeam@mentor.com>
Signed-off-by: Akshay Bhat <akshay.bhat@timesys.com>
Acked-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
l2tp_ip6 tunnel and session lookups were still using init_net, although
the l2tp core infrastructure already supports lookups keyed by 'net'.
As a result, l2tp_ip6_recv discarded packets for tunnels/sessions
created in namespaces other than the init_net.
Fix, by using dev_net(skb->dev) or sock_net(sk) where appropriate.
Signed-off-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Clarify how secure_redirects works. Mention that RFC1122 always applies.
Signed-off-by: Eric Garver <e@erig.me>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix a logic error to avoid potential null pointer dereference.
Signed-off-by: Baozeng Ding <sploving1@gmail.com>
Reviewed-by: Stefan Schmidt<stefan@osg.samsung.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since NAPI works by shutting down event interrupts when theres
work and turning them on when theres none, the net driver must
make sure that interrupts are disabled when it reschedules polling.
By calling napi_reschedule, the driver switches to polling mode,
therefor there should be no interrupt interference.
Any received packets will be handled in nps_enet_poll by polling the HW
indication of received packet until all packets are handled.
Signed-off-by: Elad Kanfi <eladkan@mellanox.com>
Acked-by: Noam Camus <noamca@mellanox.com>
Tested-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use %*ph specifier to dump small buffers in hex format instead doing this
byte-by-byte.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If we pass ERR_PTR(-EFAULT) to kfree() then it's going to oops.
Fixes: 2ece068e1b ('ptp: use memdup_user().')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A previous patch added the fou6.ko module, but that failed to link
in a couple of configurations:
net/built-in.o: In function `ip6_tnl_encap_add_fou_ops':
net/ipv6/fou6.c:88: undefined reference to `ip6_tnl_encap_add_ops'
net/ipv6/fou6.c:94: undefined reference to `ip6_tnl_encap_add_ops'
net/ipv6/fou6.c:97: undefined reference to `ip6_tnl_encap_del_ops'
net/built-in.o: In function `ip6_tnl_encap_del_fou_ops':
net/ipv6/fou6.c:106: undefined reference to `ip6_tnl_encap_del_ops'
net/ipv6/fou6.c:107: undefined reference to `ip6_tnl_encap_del_ops'
If CONFIG_IPV6=m, ip6_tnl_encap_add_ops/ip6_tnl_encap_del_ops
are in a module, but fou6.c can still be built-in, and that
obviously fails to link.
Also, if CONFIG_IPV6=y, but CONFIG_IPV6_TUNNEL=m or
CONFIG_IPV6_TUNNEL=n, the same problem happens for a different
reason.
This adds two new silent Kconfig symbols to work around both
problems:
- CONFIG_IPV6_FOU is now always set to 'm' if either CONFIG_NET_FOU=m
or CONFIG_IPV6=m
- CONFIG_IPV6_FOU_TUNNEL is set implicitly when IPV6_FOU is enabled
and NET_FOU_IP_TUNNELS is also turned out, and it will ensure
that CONFIG_IPV6_TUNNEL is also available.
The options could be made user-visible as well, to give additional
room for configuration, but it seems easier not to bother users
with more choice here.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: aa3463d65e ("fou: Add encap ops for IPv6 tunnels")
Signed-off-by: David S. Miller <davem@davemloft.net>
A recent cleanup moved MAX_IPTUN_ENCAP_OPS along with some other
definitions, but it is now invisible when CONFIG_INET is
not defined, but still referenced from ip6_tunnel.h:
In file included from net/xfrm/xfrm_input.c:17:0:
include/net/ip6_tunnel.h:67:17: error: 'MAX_IPTUN_ENCAP_OPS' undeclared here (not in a function)
ip6tun_encaps[MAX_IPTUN_ENCAP_OPS];
^~~~~~~~~~~~~~~~~~~
This hides the ip6_encap_hlen and ip6_tnl_encap functions inside
of CONFIG_INET so we don't run into the the problem.
Alternatively we could move the macro out of the #ifdef again to
restore the previous behavior
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: 55c2bc1432 ("net: Cleanup encap items in ip_tunnels.h")
Signed-off-by: David S. Miller <davem@davemloft.net>
The RTAS calls "ibm,configure-pe" and "ibm,configure-bridge" perform the
same actions, however the former can skip configuration if unnecessary.
The existing code treats them as different tokens even though only one
will ever be called. Refactor this by making a single token that is
assigned during init.
Signed-off-by: Russell Currey <ruscur@russell.cc>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In the "ibm,configure-pe" and "ibm,configure-bridge" RTAS calls, the
spec states that values of 9900-9905 can be returned, indicating that
software should delay for 10^x (where x is the last digit, i.e. 990x)
milliseconds and attempt the call again. Currently, the kernel doesn't
know about this, and respecting it fixes some PCI failures when the
hypervisor is busy.
The delay is capped at 0.2 seconds.
Cc: <stable@vger.kernel.org> # 3.10+
Signed-off-by: Russell Currey <ruscur@russell.cc>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We must handle data access exception as well as memory address unaligned
exceptions from return from trap window fill faults, not just normal
TLB misses.
Otherwise we can get an OOPS that looks like this:
ld-linux.so.2(36808): Kernel bad sw trap 5 [#1]
CPU: 1 PID: 36808 Comm: ld-linux.so.2 Not tainted 4.6.0 #34
task: fff8000303be5c60 ti: fff8000301344000 task.ti: fff8000301344000
TSTATE: 0000004410001601 TPC: 0000000000a1a784 TNPC: 0000000000a1a788 Y: 00000002 Not tainted
TPC: <do_sparc64_fault+0x5c4/0x700>
g0: fff8000024fc8248 g1: 0000000000db04dc g2: 0000000000000000 g3: 0000000000000001
g4: fff8000303be5c60 g5: fff800030e672000 g6: fff8000301344000 g7: 0000000000000001
o0: 0000000000b95ee8 o1: 000000000000012b o2: 0000000000000000 o3: 0000000200b9b358
o4: 0000000000000000 o5: fff8000301344040 sp: fff80003013475c1 ret_pc: 0000000000a1a77c
RPC: <do_sparc64_fault+0x5bc/0x700>
l0: 00000000000007ff l1: 0000000000000000 l2: 000000000000005f l3: 0000000000000000
l4: fff8000301347e98 l5: fff8000024ff3060 l6: 0000000000000000 l7: 0000000000000000
i0: fff8000301347f60 i1: 0000000000102400 i2: 0000000000000000 i3: 0000000000000000
i4: 0000000000000000 i5: 0000000000000000 i6: fff80003013476a1 i7: 0000000000404d4c
I7: <user_rtt_fill_fixup+0x6c/0x7c>
Call Trace:
[0000000000404d4c] user_rtt_fill_fixup+0x6c/0x7c
The window trap handlers are slightly clever, the trap table entries for them are
composed of two pieces of code. First comes the code that actually performs
the window fill or spill trap handling, and then there are three instructions at
the end which are for exception processing.
The userland register window fill handler is:
add %sp, STACK_BIAS + 0x00, %g1; \
ldxa [%g1 + %g0] ASI, %l0; \
mov 0x08, %g2; \
mov 0x10, %g3; \
ldxa [%g1 + %g2] ASI, %l1; \
mov 0x18, %g5; \
ldxa [%g1 + %g3] ASI, %l2; \
ldxa [%g1 + %g5] ASI, %l3; \
add %g1, 0x20, %g1; \
ldxa [%g1 + %g0] ASI, %l4; \
ldxa [%g1 + %g2] ASI, %l5; \
ldxa [%g1 + %g3] ASI, %l6; \
ldxa [%g1 + %g5] ASI, %l7; \
add %g1, 0x20, %g1; \
ldxa [%g1 + %g0] ASI, %i0; \
ldxa [%g1 + %g2] ASI, %i1; \
ldxa [%g1 + %g3] ASI, %i2; \
ldxa [%g1 + %g5] ASI, %i3; \
add %g1, 0x20, %g1; \
ldxa [%g1 + %g0] ASI, %i4; \
ldxa [%g1 + %g2] ASI, %i5; \
ldxa [%g1 + %g3] ASI, %i6; \
ldxa [%g1 + %g5] ASI, %i7; \
restored; \
retry; nop; nop; nop; nop; \
b,a,pt %xcc, fill_fixup_dax; \
b,a,pt %xcc, fill_fixup_mna; \
b,a,pt %xcc, fill_fixup;
And the way this works is that if any of those memory accesses
generate an exception, the exception handler can revector to one of
those final three branch instructions depending upon which kind of
exception the memory access took. In this way, the fault handler
doesn't have to know if it was a spill or a fill that it's handling
the fault for. It just always branches to the last instruction in
the parent trap's handler.
For example, for a regular fault, the code goes:
winfix_trampoline:
rdpr %tpc, %g3
or %g3, 0x7c, %g3
wrpr %g3, %tnpc
done
All window trap handlers are 0x80 aligned, so if we "or" 0x7c into the
trap time program counter, we'll get that final instruction in the
trap handler.
On return from trap, we have to pull the register window in but we do
this by hand instead of just executing a "restore" instruction for
several reasons. The largest being that from Niagara and onward we
simply don't have enough levels in the trap stack to fully resolve all
possible exception cases of a window fault when we are already at
trap level 1 (which we enter to get ready to return from the original
trap).
This is executed inline via the FILL_*_RTRAP handlers. rtrap_64.S's
code branches directly to these to do the window fill by hand if
necessary. Now if you look at them, we'll see at the end:
ba,a,pt %xcc, user_rtt_fill_fixup;
ba,a,pt %xcc, user_rtt_fill_fixup;
ba,a,pt %xcc, user_rtt_fill_fixup;
And oops, all three cases are handled like a fault.
This doesn't work because each of these trap types (data access
exception, memory address unaligned, and faults) store their auxiliary
info in different registers to pass on to the C handler which does the
real work.
So in the case where the stack was unaligned, the unaligned trap
handler sets up the arg registers one way, and then we branched to
the fault handler which expects them setup another way.
So the FAULT_TYPE_* value ends up basically being garbage, and
randomly would generate the backtrace seen above.
Reported-by: Nick Alcock <nix@esperi.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a set of four fixes noticed in the merge window. The aacraid
one is an optimisation, the mp3sas one fixes a spurious printk, the
sd_check_events one fixes a theoretical race and the failed zero
length commands fixes a bug in our completion/retry routines that has
been causing problems in the field.
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABAgAGBQJXSxydAAoJEAVr7HOZEZN4cX0P/jglYFqIaemY8k4MPocQdXAO
ajnM1tf8gp3riWAvPso6FWK252yikPhUdaQh8FFWsTEhz9rBKCk5hbefGYSVL1TB
LaTOisJLWlcY7zuU0ysfOW9+aZ9ahZe2ODdCX3sOBh8frO4id8sqzWVoyvb/oz8t
cpfQM7iwZghoVKRy1ZSIDOC9k7MuSQzjq2rS9kaNjd+lIliJfoSsfDbBaUzM07gr
Azs93o/cruUXYvx91HREj4Lh+4gIWFmPOZl8c3VgLHLKGANJmZRfPCXSysDJjF9S
nDtmg+SoZUwNKM+BGLc+tgOsxYFWQzywNHcVQ+qNrfk914mGQWeRez1qnFdzApZy
HLBHJRcnCbSyltakKB7L3fDHWU52+tnWUCgbnAMtBS8YHXCFhJch+SO9esadNfBP
YEVBJ1mQoQ9HWddeZuj27i+j+R8RtsOyGZwmS8ju9NWuYHaDz7P7ZabABcaailIm
YKJDWo+BtXqV4QpKoxDg7T8xxJ/gBTdPaa8ivdbOt477ijRLBCsHYWx4xvTFxfUe
mmOScVoqKKvPDMY0K7Tay2gCu3jmNRVUly+l0/JWeit6c7hRMiUFdtuqwqatCl5y
2+NpLbXiPTSzdoZJvASBw5ip46pH5PdbVFWqoG8o9xYEdlK4CuD3t3mjYkFK78s0
+izLkr10CZ7y7+zN/XG4
=FNTy
-----END PGP SIGNATURE-----
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
Pull SCSI fixes from James Bottomley:
"This is a set of four fixes noticed in the merge window. The aacraid
one is an optimisation, the mp3sas one fixes a spurious printk, the
sd_check_events one fixes a theoretical race and the failed zero
length commands fixes a bug in our completion/retry routines that has
been causing problems in the field"
* tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi:
aacraid: do not activate events on non-SRC adapters
mpt3sas: add missing curly braces
sd: get disk reference in sd_check_events()
scsi_lib: correctly retry failed zero length REQ_TYPE_FS commands
All signal frames must be at least 16-byte aligned, because that is
the alignment we explicitly create when we build signal return stack
frames.
All stack pointers must be at least 8-byte aligned.
Signed-off-by: David S. Miller <davem@davemloft.net>
The self-test was updated to cover zero-length strings; the function
needs to be updated, too.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: George Spelvin <linux@sciencehorizons.net>
Fixes: fcfd2fbf22 ("fs/namei.c: Add hashlen_string() function")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original name was simply hash_string(), but that conflicted with a
function with that name in drivers/base/power/trace.c, and I decided
that calling it "hashlen_" was better anyway.
But you have to do it in two places.
[ This caused build errors for architectures that don't define
CONFIG_DCACHE_WORD_ACCESS - Linus ]
Signed-off-by: George Spelvin <linux@sciencehorizons.net>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Fixes: fcfd2fbf22 ("fs/namei.c: Add hashlen_string() function")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The HPFS filesystem used generic_show_options to produce string that is
displayed in /proc/mounts. However, there is a problem that the options
may disappear after remount. If we mount the filesystem with option1
and then remount it with option2, /proc/mounts should show both option1
and option2, however it only shows option2 because the whole option
string is replaced with replace_mount_options in hpfs_remount_fs.
To fix this bug, implement the hpfs_show_options function that prints
options that are currently selected.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c8f33d0bec ("affs: kstrdup() memory handling") checks if the
kstrdup function returns NULL due to out-of-memory condition.
However, if we are remounting a filesystem with no change to
filesystem-specific options, the parameter data is NULL. In this case,
kstrdup returns NULL (because it was passed NULL parameter), although no
out of memory condition exists. The mount syscall then fails with
ENOMEM.
This patch fixes the bug. We fail with ENOMEM only if data is non-NULL.
The patch also changes the call to replace_mount_options - if we didn't
pass any filesystem-specific options, we don't call
replace_mount_options (thus we don't erase existing reported options).
Fixes: c8f33d0bec ("affs: kstrdup() memory handling")
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org # v4.1+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ce657611ba ("hpfs: kstrdup() out of memory handling") checks if
the kstrdup function returns NULL due to out-of-memory condition.
However, if we are remounting a filesystem with no change to
filesystem-specific options, the parameter data is NULL. In this case,
kstrdup returns NULL (because it was passed NULL parameter), although no
out of memory condition exists. The mount syscall then fails with
ENOMEM.
This patch fixes the bug. We fail with ENOMEM only if data is non-NULL.
The patch also changes the call to replace_mount_options - if we didn't
pass any filesystem-specific options, we don't call
replace_mount_options (thus we don't erase existing reported options).
Fixes: ce657611ba ("hpfs: kstrdup() out of memory handling")
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>