Very long RCU read-side critical sections (50 milliseconds or
so) can cause a race between force_quiescent_state() and
rcu_start_gp() as follows on kernel builds with multi-level
rcu_node hierarchies:
1. CPU 0 calls force_quiescent_state(), sees that there is a
grace period in progress, and acquires ->fsqlock.
2. CPU 1 detects the end of the grace period, and so
cpu_quiet_msk_finish() sets rsp->completed to rsp->gpnum.
This operation is carried out under the root rnp->lock,
but CPU 0 has not yet acquired that lock. Note that
rsp->signaled is still RCU_SAVE_DYNTICK from the last
grace period.
3. CPU 1 calls rcu_start_gp(), but no one wants a new grace
period, so it drops the root rnp->lock and returns.
4. CPU 0 acquires the root rnp->lock and picks up rsp->completed
and rsp->signaled, then drops rnp->lock. It then enters the
RCU_SAVE_DYNTICK leg of the switch statement.
5. CPU 2 invokes call_rcu(), and now needs a new grace period.
It calls rcu_start_gp(), which acquires the root rnp->lock, sets
rsp->signaled to RCU_GP_INIT (too bad that CPU 0 is already in
the RCU_SAVE_DYNTICK leg of the switch statement!) and starts
initializing the rcu_node hierarchy. If there are multiple
levels to the hierarchy, it will drop the root rnp->lock and
initialize the lower levels of the hierarchy.
6. CPU 0 notes that rsp->completed has not changed, which permits
both CPU 2 and CPU 0 to try updating it concurrently. If CPU 0's
update prevails, later calls to force_quiescent_state() can
count old quiescent states against the new grace period, which
can in turn result in premature ending of grace periods.
Not good.
This patch adds an RCU_GP_IDLE state for rsp->signaled that is
set initially at boot time and any time a grace period ends.
This prevents CPU 0 from getting into the workings of
force_quiescent_state() in step 4. Additional locking and
checks prevent the concurrent update of rsp->signaled in step 6.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1256742889199-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If the following sequence of events occurs, then
TREE_PREEMPT_RCU will hang waiting for a grace period to
complete, eventually OOMing the system:
o A TREE_PREEMPT_RCU build of the kernel is booted on a system
with more than 64 physical CPUs present (32 on a 32-bit system).
Alternatively, a TREE_PREEMPT_RCU build of the kernel is booted
with RCU_FANOUT set to a sufficiently small value that the
physical CPUs populate two or more leaf rcu_node structures.
o A task is preempted in an RCU read-side critical section
while running on a CPU corresponding to a given leaf rcu_node
structure.
o All CPUs corresponding to this same leaf rcu_node structure
record quiescent states for the current grace period.
o All of these same CPUs go offline (hence the need for enough
physical CPUs to populate more than one leaf rcu_node structure).
This causes the preempted task to be moved to the root rcu_node
structure.
At this point, there is nothing left to cause the quiescent
state to be propagated up the rcu_node tree, so the current
grace period never completes.
The simplest fix, especially after considering the deadlock
possibilities, is to detect this situation when the last CPU is
offlined, and to set that CPU's ->qsmask bit in its leaf
rcu_node structure. This will cause the next invocation of
force_quiescent_state() to end the grace period.
Without this fix, this hang can be triggered in an hour or so on
some machines with rcutorture and random CPU onlining/offlining.
With this fix, these same machines pass a full 10 hours of this
sort of abuse.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <20091015162614.GA19131@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Before this patch, all of the rcu_node structures were in the same lockdep
class, so that lockdep would complain when rcu_preempt_offline_tasks()
acquired the root rcu_node structure's lock while holding one of the leaf
rcu_nodes' locks.
This patch changes rcu_init_one() to use a separate
spin_lock_init() for the root rcu_node structure's lock than is
used for that of all of the rest of the rcu_node structures, which
puts the root rcu_node structure's lock in its own lockdep class.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12548908983277-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The current interaction between RCU and CPU hotplug requires that
RCU block in CPU notifiers waiting for callbacks to drain.
This can be greatly simplified by having each CPU relinquish its
own callbacks, and for both _rcu_barrier() and CPU_DEAD notifiers
to adopt all callbacks that were previously relinquished.
This change also eliminates the possibility of certain types of
hangs due to the previous practice of waiting for callbacks to be
invoked from within CPU notifiers. If you don't every wait, you
cannot hang.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1254890898456-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
These issues identified during an old-fashioned face-to-face code
review extending over many hours. This group improves an existing
abstraction and introduces two new ones. It also fixes an RCU
stall-warning bug found while making the other changes.
o Make RCU_INIT_FLAVOR() declare its own variables, removing
the need to declare them at each call site.
o Create an rcu_for_each_leaf() macro that scans the leaf
nodes of the rcu_node tree.
o Create an rcu_for_each_node_breadth_first() macro that does
a breadth-first traversal of the rcu_node tree, AKA
stepping through the array in index-number order.
o If all CPUs corresponding to a given leaf rcu_node
structure go offline, then any tasks queued on that leaf
will be moved to the root rcu_node structure. Therefore,
the stall-warning code must dump out tasks queued on the
root rcu_node structure as well as those queued on the leaf
rcu_node structures.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12541491934126-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Whitespace fixes, updated comments, and trivial code movement.
o Fix whitespace error in RCU_HEAD_INIT()
o Move "So where is rcu_write_lock()" comment so that it does
not come between the rcu_read_unlock() header comment and
the rcu_read_unlock() definition.
o Move the module_param statements for blimit, qhimark, and
qlowmark to immediately follow the corresponding
definitions.
o In __rcu_offline_cpu(), move the assignment to rdp_me
inside the "if" statement, given that rdp_me is not used
outside of that "if" statement.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12541491931164-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Move the rcu_lock_map definition from rcutree.c to rcupdate.c so that
TINY_RCU can use lockdep.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
These issues identified during an old-fashioned face-to-face code
review extending over many hours.
o Add comments for tricky parts of code, and correct comments
that have passed their sell-by date.
o Get rid of the vestiges of rcu_init_sched(), which is no
longer needed now that PREEMPT_RCU is gone.
o Move the #include of rcutree_plugin.h to the end of
rcutree.c, which means that, rather than having a random
collection of forward declarations, the new set of forward
declarations document the set of plugins. The new home for
this #include also allows __rcu_init_preempt() to move into
rcutree_plugin.h.
o Fix rcu_preempt_check_callbacks() to be static.
Suggested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12537246443924-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Peter Zijlstra <peterz@infradead.org>
These issues identified during an old-fashioned face-to-face code
review extended over many hours.
o Bury various forms of the "rsp->completed == rsp->gpnum"
comparison into an rcu_gp_in_progress() function, which has
the beneficial side-effect of forcing consistent use of
ACCESS_ONCE().
o Replace hand-coded arithmetic with DIV_ROUND_UP().
o Bury several "!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x01])"
instances into an rcu_preempted_readers() function, as this
expression indicates that there are no readers blocked
within RCU read-side critical sections blocking the current
grace period. (Though there might well be similar readers
blocking the next grace period.)
o Remove a dangling rcu_restart_cpu() declaration that has
been dangling for almost 20 minor releases of the kernel.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12537246442687-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
o Drop the calls to cpu_quiet() from the online/offline code.
These are unnecessary, since force_quiescent_state() will
clean up, and removing them simplifies the code a bit.
o Add a warning to check that we don't enqueue the same blocked
task twice onto the ->blocked_tasks[] lists.
o Rework the phase computation in rcu_preempt_note_context_switch()
to be more readable, as suggested by Josh Triplett.
o Disable irqs to close a race between the scheduling clock
interrupt and rcu_preempt_note_context_switch() WRT the
->rcu_read_unlock_special field.
o Add comments to rnp->lock acquisition and release within
rcu_read_unlock_special() noting that irqs are already
disabled.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
LKML-Reference: <12532926201851-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The earlier approach required two scheduling-clock ticks to note an
preemptable-RCU quiescent state in the situation in which the
scheduling-clock interrupt is unlucky enough to always interrupt an
RCU read-side critical section.
With this change, the quiescent state is instead noted by the
outermost rcu_read_unlock() immediately following the first
scheduling-clock tick, or, alternatively, by the first subsequent
context switch. Therefore, this change also speeds up grace
periods.
Suggested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
LKML-Reference: <12528585111945-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Prior implementations initialized the root and any internal
nodes without holding locks, then initialized the leaves
holding locks.
This is a false economy, as the leaf nodes will usually greatly
outnumber the root and internal nodes. Acquiring locks on all
nodes is conceptually much simpler as well.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
LKML-Reference: <12524504773190-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Without this patch, tasks preempted in RCU read-side critical
sections can fail to block the grace period, given that
rnp->gpnum is used to determine which rnp->blocked_tasks[]
element the preempted task is enqueued on.
Before the patch, rnp->gpnum is always zero, so preempted tasks
are always enqueued on rnp->blocked_tasks[0], which is correct
only when the current CPU has not checked into the current
grace period and the grace-period number is even, or,
similarly, if the current CPU -has- checked into the current
grace period and the grace-period number is odd.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
LKML-Reference: <12524504771622-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (28 commits)
rcu: Move end of special early-boot RCU operation earlier
rcu: Changes from reviews: avoid casts, fix/add warnings, improve comments
rcu: Create rcutree plugins to handle hotplug CPU for multi-level trees
rcu: Remove lockdep annotations from RCU's _notrace() API members
rcu: Add #ifdef to suppress __rcu_offline_cpu() warning in !HOTPLUG_CPU builds
rcu: Add CPU-offline processing for single-node configurations
rcu: Add "notrace" to RCU function headers used by ftrace
rcu: Remove CONFIG_PREEMPT_RCU
rcu: Merge preemptable-RCU functionality into hierarchical RCU
rcu: Simplify rcu_pending()/rcu_check_callbacks() API
rcu: Use debugfs_remove_recursive() simplify code.
rcu: Merge per-RCU-flavor initialization into pre-existing macro
rcu: Fix online/offline indication for rcudata.csv trace file
rcu: Consolidate sparse and lockdep declarations in include/linux/rcupdate.h
rcu: Renamings to increase RCU clarity
rcu: Move private definitions from include/linux/rcutree.h to kernel/rcutree.h
rcu: Expunge lingering references to CONFIG_CLASSIC_RCU, optimize on !SMP
rcu: Delay rcu_barrier() wait until beginning of next CPU-hotunplug operation.
rcu: Fix typo in rcu_irq_exit() comment header
rcu: Make rcupreempt_trace.c look at offline CPUs
...
When offlining CPUs from a multi-level tree, there is the
possibility of offlining the last CPU from a given node when
there are preempted RCU read-side critical sections that
started life on one of the CPUs on that node.
In this case, the corresponding tasks will be enqueued via the
task_struct's rcu_node_entry list_head onto one of the
rcu_node's blocked_tasks[] lists. These tasks need to be moved
somewhere else so that they will prevent the current grace
period from ending. That somewhere is the root rcu_node.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <20090827215816.GA30472@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When debugging a recent lockup bug i found various deficiencies
in how our current lockup detection helpers work:
- SysRq-L is not very efficient as it uses a workqueue, hence
it cannot punch through hard lockups and cannot see through
most soft lockups either.
- The SysRq-L code depends on the NMI watchdog - which is off
by default.
- We dont print backtraces from the RCU code's built-in
'RCU state machine is stuck' debug code. This debug
code tends to be one of the first (and only) mechanisms
that show that a lockup has occured.
This patch changes the code so taht we:
- Trigger the NMI backtrace code from SysRq-L instead of using
a workqueue (which cannot punch through hard lockups)
- Trigger print-all-CPU-backtraces from the RCU lockup detection
code
Also decouple the backtrace printing code from the NMI watchdog:
- Dont use variable size cpumasks (it might not be initialized
and they are a bit more fragile anyway)
- Trigger an NMI immediately via an IPI, instead of waiting
for the NMI tick to occur. This is a lot faster and can
produce more relevant backtraces. It will also work if the
NMI watchdog is disabled.
- Dont print the 'dazed and confused' message when we print
a backtrace from the NMI
- Do a show_regs() plus a dump_stack() to get maximum info
out of the dump. Worst-case we get two stacktraces - which
is not a big deal. Sometimes, if register content is
corrupted, the precise stack walker in show_regs() wont
give us a full backtrace - in this case dump_stack() will
do it.
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch fixes a hierarchical-RCU performance bug located by Anton
Blanchard. The problem stems from a misguided attempt to provide a
work-around for jiffies-counter failure. This work-around uses a per-CPU
n_rcu_pending counter, which is incremented on each call to rcu_pending(),
which in turn is called from each scheduling-clock interrupt. Each CPU
then treats this counter as a surrogate for the jiffies counter, so
that if the jiffies counter fails to advance, the per-CPU n_rcu_pending
counter will cause RCU to invoke force_quiescent_state(), which in turn
will (among other things) send resched IPIs to CPUs that have thus far
failed to pass through an RCU quiescent state.
Unfortunately, each CPU resets only its own counter after sending a
batch of IPIs. This means that the other CPUs will also (needlessly)
send -another- round of IPIs, for a full N-squared set of IPIs in the
worst case every three scheduler-clock ticks until the grace period
finally ends. It is not reasonable for a given CPU to reset each and
every n_rcu_pending for all the other CPUs, so this patch instead simply
disables the jiffies-counter "training wheels", thus eliminating the
excessive IPIs.
Note that the jiffies-counter IPIs do not have this problem due to
the fact that the jiffies counter is global, so that the CPU sending
the IPIs can easily reset things, thus preventing the other CPUs from
sending redundant IPIs.
Note also that the n_rcu_pending counter remains, as it will continue to
be used for tracing. It may also see use to update the jiffies counter,
should an appropriate kick-the-jiffies-counter API appear.
Located-by: Anton Blanchard <anton@au1.ibm.com>
Tested-by: Anton Blanchard <anton@au1.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: anton@samba.org
Cc: akpm@linux-foundation.org
Cc: dipankar@in.ibm.com
Cc: manfred@colorfullife.com
Cc: cl@linux-foundation.org
Cc: josht@linux.vnet.ibm.com
Cc: schamp@sgi.com
Cc: niv@us.ibm.com
Cc: dvhltc@us.ibm.com
Cc: ego@in.ibm.com
Cc: laijs@cn.fujitsu.com
Cc: rostedt@goodmis.org
Cc: peterz@infradead.org
Cc: penberg@cs.helsinki.fi
Cc: andi@firstfloor.org
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
LKML-Reference: <12396834793575-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
We want to remove rcutree internals from the public rcutree.h file for
upcoming kmemtrace changes - but kernel/rcutree_trace.c depends on them.
Introduce kernel/rcutree.h for internal definitions. (Probably all
the other data types from include/linux/rcutree.h could be
moved here too - except rcu_data.)
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: paulmck@linux.vnet.ibm.com
LKML-Reference: <1237898630.25315.83.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: build fix for all non-x86 architectures
We want to remove percpu.h from rcuclassic.h/rcutree.h (for upcoming
kmemtrace changes) but that would break the DECLARE_PER_CPU based
declarations in these files.
Move the quiescent counter management functions to their respective
RCU implementation .c files - they were slightly above the inlining
limit anyway.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: paulmck@linux.vnet.ibm.com
LKML-Reference: <1237898630.25315.83.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch fixes a bug located by Vegard Nossum with the aid of
kmemcheck, updated based on review comments from Nick Piggin,
Ingo Molnar, and Andrew Morton. And cleans up the variable-name
and function-name language. ;-)
The boot CPU runs in the context of its idle thread during boot-up.
During this time, idle_cpu(0) will always return nonzero, which will
fool Classic and Hierarchical RCU into deciding that a large chunk of
the boot-up sequence is a big long quiescent state. This in turn causes
RCU to prematurely end grace periods during this time.
This patch changes the rcutree.c and rcuclassic.c rcu_check_callbacks()
function to ignore the idle task as a quiescent state until the
system has started up the scheduler in rest_init(), introducing a
new non-API function rcu_idle_now_means_idle() to inform RCU of this
transition. RCU maintains an internal rcu_idle_cpu_truthful variable
to track this state, which is then used by rcu_check_callback() to
determine if it should believe idle_cpu().
Because this patch has the effect of disallowing RCU grace periods
during long stretches of the boot-up sequence, this patch also introduces
Josh Triplett's UP-only optimization that makes synchronize_rcu() be a
no-op if num_online_cpus() returns 1. This allows boot-time code that
calls synchronize_rcu() to proceed normally. Note, however, that RCU
callbacks registered by call_rcu() will likely queue up until later in
the boot sequence. Although rcuclassic and rcutree can also use this
same optimization after boot completes, rcupreempt must restrict its
use of this optimization to the portion of the boot sequence before the
scheduler starts up, given that an rcupreempt RCU read-side critical
section may be preeempted.
In addition, this patch takes Nick Piggin's suggestion to make the
system_state global variable be __read_mostly.
Changes since v4:
o Changes the name of the introduced function and variable to
be less emotional. ;-)
Changes since v3:
o WARN_ON(nr_context_switches() > 0) to verify that RCU
switches out of boot-time mode before the first context
switch, as suggested by Nick Piggin.
Changes since v2:
o Created rcu_blocking_is_gp() internal-to-RCU API that
determines whether a call to synchronize_rcu() is itself
a grace period.
o The definition of rcu_blocking_is_gp() for rcuclassic and
rcutree checks to see if but a single CPU is online.
o The definition of rcu_blocking_is_gp() for rcupreempt
checks to see both if but a single CPU is online and if
the system is still in early boot.
This allows rcupreempt to again work correctly if running
on a single CPU after booting is complete.
o Added check to rcupreempt's synchronize_sched() for there
being but one online CPU.
Tested all three variants both SMP and !SMP, booted fine, passed a short
rcutorture test on both x86 and Power.
Located-by: Vegard Nossum <vegard.nossum@gmail.com>
Tested-by: Vegard Nossum <vegard.nossum@gmail.com>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: reduce memory footprint
add __cpuinit to rcu_init_percpu_data(), and this function's text
will be discarded after boot when !CONFIG_HOTPLUG_CPU.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix kernel warnings [and potential crash] during suspend+resume
Kudos to both Dhaval Giani and Jens Axboe for finding a bug in treercu
that causes warnings after suspend-resume cycles in Dhaval's case and
during stress tests in Jens's case. It would also probably cause failures
if heavily stressed. The solution, ironically enough, is to revert to
rcupreempt's code for initializing the dynticks state. And the patch
even results in smaller code -- so what was I thinking???
This is 2.6.29 material, given that people really do suspend and resume
Linux these days. ;-)
Reported-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Reported-by: Jens Axboe <jens.axboe@oracle.com>
Tested-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Tested-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix delays during bootup
Kudos to Andi Kleen for finding a grace-period-latency problem! The
problem was that the special-case code for small machines never updated
the ->signaled field to indicate that grace-period initialization had
completed, which prevented force_quiescent_state() from ever expediting
grace periods. This problem resulted in grace periods extending for more
than 20 seconds. Not subtle. I introduced this bug during my inspection
process when I fixed a race between grace-period initialization and
force_quiescent_state() execution.
The following patch properly updates the ->signaled field for the
"small"-system case (no more than 32 CPUs for 32-bit kernels and no more
than 64 CPUs for 64-bit kernels).
Reported-by: Andi Kleen <andi@firstfloor.org>
Tested-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>