The only part of proc_dir_entry the code outside of fs/proc
really cares about is PDE(inode)->data. Provide a helper
for that; static inline for now, eventually will be moved
to fs/proc, along with the knowledge of struct proc_dir_entry
layout.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs pile (part one) from Al Viro:
"Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
locking violations, etc.
The most visible changes here are death of FS_REVAL_DOT (replaced with
"has ->d_weak_revalidate()") and a new helper getting from struct file
to inode. Some bits of preparation to xattr method interface changes.
Misc patches by various people sent this cycle *and* ocfs2 fixes from
several cycles ago that should've been upstream right then.
PS: the next vfs pile will be xattr stuff."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
saner proc_get_inode() calling conventions
proc: avoid extra pde_put() in proc_fill_super()
fs: change return values from -EACCES to -EPERM
fs/exec.c: make bprm_mm_init() static
ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
ocfs2: fix possible use-after-free with AIO
ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
target: writev() on single-element vector is pointless
export kernel_write(), convert open-coded instances
fs: encode_fh: return FILEID_INVALID if invalid fid_type
kill f_vfsmnt
vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
nfsd: handle vfs_getattr errors in acl protocol
switch vfs_getattr() to struct path
default SET_PERSONALITY() in linux/elf.h
ceph: prepopulate inodes only when request is aborted
d_hash_and_lookup(): export, switch open-coded instances
9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
9p: split dropping the acls from v9fs_set_create_acl()
...
proc_net_remove is only used to remove proc entries
that under /proc/net,it's not a general function for
removing proc entries of netns. if we want to remove
some proc entries which under /proc/net/stat/, we still
need to call remove_proc_entry.
this patch use remove_proc_entry to replace proc_net_remove.
we can remove proc_net_remove after this patch.
Signed-off-by: Gao feng <gaofeng@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The %pK format specifier is designed to hide exposed kernel pointers,
specifically via /proc interfaces. Exposing these pointers provides an
easy target for kernel write vulnerabilities, since they reveal the
locations of writable structures containing easily triggerable function
pointers. The behavior of %pK depends on the kptr_restrict sysctl.
If kptr_restrict is set to 0, no deviation from the standard %p behavior
occurs. If kptr_restrict is set to 1, the default, if the current user
(intended to be a reader via seq_printf(), etc.) does not have CAP_SYSLOG
(currently in the LSM tree), kernel pointers using %pK are printed as 0's.
If kptr_restrict is set to 2, kernel pointers using %pK are printed as
0's regardless of privileges. Replacing with 0's was chosen over the
default "(null)", which cannot be parsed by userland %p, which expects
"(nil)".
The supporting code for kptr_restrict and %pK are currently in the -mm
tree. This patch converts users of %p in net/ to %pK. Cases of printing
pointers to the syslog are not covered, since this would eliminate useful
information for postmortem debugging and the reading of the syslog is
already optionally protected by the dmesg_restrict sysctl.
Signed-off-by: Dan Rosenberg <drosenberg@vsecurity.com>
Cc: James Morris <jmorris@namei.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Thomas Graf <tgraf@infradead.org>
Cc: Eugene Teo <eugeneteo@kernel.org>
Cc: Kees Cook <kees.cook@canonical.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David S. Miller <davem@davemloft.net>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Eric Paris <eparis@parisplace.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Convert #include <asm... to #include <linux...
Mostly 80 column wrapped.
Spacing cleanups
Move trailing statements to new lines
switch/case cleanups
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
String literals are constant, and usually, we can also tag the array
of pointers const too, moving it to the .rodata section.
Signed-off-by: Jan Engelhardt <jengelh@medozas.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
commit 2b85a34e91
(net: No more expensive sock_hold()/sock_put() on each tx)
changed initial sk_wmem_alloc value.
This broke net/atm since this protocol assumed a null
initial value. This patch makes necessary changes.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Setting ->owner as done currently (pde->owner = THIS_MODULE) is racy
as correctly noted at bug #12454. Someone can lookup entry with NULL
->owner, thus not pinning enything, and release it later resulting
in module refcount underflow.
We can keep ->owner and supply it at registration time like ->proc_fops
and ->data.
But this leaves ->owner as easy-manipulative field (just one C assignment)
and somebody will forget to unpin previous/pin current module when
switching ->owner. ->proc_fops is declared as "const" which should give
some thoughts.
->read_proc/->write_proc were just fixed to not require ->owner for
protection.
rmmod'ed directories will be empty and return "." and ".." -- no harm.
And directories with tricky enough readdir and lookup shouldn't be modular.
We definitely don't want such modular code.
Removing ->owner will also make PDE smaller.
So, let's nuke it.
Kudos to Jeff Layton for reminding about this, let's say, oversight.
http://bugzilla.kernel.org/show_bug.cgi?id=12454
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Simply replace proc_create and further data assigned with proc_create_data.
proc_atm_dev_ops holds proper referrence.
Signed-off-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
lec_seq_open/lec_seq_release and __vcc_seq_open/vcc_seq_release
do seq_open/release_private's job.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use proc_create() to make sure that ->proc_fops be setup before gluing
PDE to main tree.
Signed-off-by: Wang Chen <wangchen@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
cat /proc/net/atm/arp causes the NULL pointer dereference in the
get_proc_net+0xc/0x3a. This happens as proc_get_net believes that the
parent proc dir entry contains struct net.
Fix this assumption for "net/atm" case.
The problem is introduced by the commit c0097b07abf5f92ab135d024dd41bd2aada1512f
from Eric W. Biederman/Daniel Lezcano.
Signed-off-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes /proc/net per network namespace. It modifies the global
variables proc_net and proc_net_stat to be per network namespace.
The proc_net file helpers are modified to take a network namespace argument,
and all of their callers are fixed to pass &init_net for that argument.
This ensures that all of the /proc/net files are only visible and
usable in the initial network namespace until the code behind them
has been updated to be handle multiple network namespaces.
Making /proc/net per namespace is necessary as at least some files
in /proc/net depend upon the set of network devices which is per
network namespace, and even more files in /proc/net have contents
that are relevant to a single network namespace.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Make all initialized struct seq_operations in net/ const
Signed-off-by: Philippe De Muyter <phdm@macqel.be>
Signed-off-by: David S. Miller <davem@davemloft.net>
Many struct file_operations in the kernel can be "const". Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data. In addition it'll catch accidental writes at compile time to
these shared resources.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
atm_proc_exit() is declared as __exit, and thus in .exit.text. On
some architectures (ARM) .exit.text is discarded at compile time, and
since atm_proc_exit() is called by some other __init functions, it
results in a link error.
Signed-off-by: Kevin Hilman <khilman@mvista.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!