Mark file system inode and similar slab caches subject to SLAB_MEM_SPREAD
memory spreading.
If a slab cache is marked SLAB_MEM_SPREAD, then anytime that a task that's
in a cpuset with the 'memory_spread_slab' option enabled goes to allocate
from such a slab cache, the allocations are spread evenly over all the
memory nodes (task->mems_allowed) allowed to that task, instead of favoring
allocation on the node local to the current cpu.
The following inode and similar caches are marked SLAB_MEM_SPREAD:
file cache
==== =====
fs/adfs/super.c adfs_inode_cache
fs/affs/super.c affs_inode_cache
fs/befs/linuxvfs.c befs_inode_cache
fs/bfs/inode.c bfs_inode_cache
fs/block_dev.c bdev_cache
fs/cifs/cifsfs.c cifs_inode_cache
fs/coda/inode.c coda_inode_cache
fs/dquot.c dquot
fs/efs/super.c efs_inode_cache
fs/ext2/super.c ext2_inode_cache
fs/ext2/xattr.c (fs/mbcache.c) ext2_xattr
fs/ext3/super.c ext3_inode_cache
fs/ext3/xattr.c (fs/mbcache.c) ext3_xattr
fs/fat/cache.c fat_cache
fs/fat/inode.c fat_inode_cache
fs/freevxfs/vxfs_super.c vxfs_inode
fs/hpfs/super.c hpfs_inode_cache
fs/isofs/inode.c isofs_inode_cache
fs/jffs/inode-v23.c jffs_fm
fs/jffs2/super.c jffs2_i
fs/jfs/super.c jfs_ip
fs/minix/inode.c minix_inode_cache
fs/ncpfs/inode.c ncp_inode_cache
fs/nfs/direct.c nfs_direct_cache
fs/nfs/inode.c nfs_inode_cache
fs/ntfs/super.c ntfs_big_inode_cache_name
fs/ntfs/super.c ntfs_inode_cache
fs/ocfs2/dlm/dlmfs.c dlmfs_inode_cache
fs/ocfs2/super.c ocfs2_inode_cache
fs/proc/inode.c proc_inode_cache
fs/qnx4/inode.c qnx4_inode_cache
fs/reiserfs/super.c reiser_inode_cache
fs/romfs/inode.c romfs_inode_cache
fs/smbfs/inode.c smb_inode_cache
fs/sysv/inode.c sysv_inode_cache
fs/udf/super.c udf_inode_cache
fs/ufs/super.c ufs_inode_cache
net/socket.c sock_inode_cache
net/sunrpc/rpc_pipe.c rpc_inode_cache
The choice of which slab caches to so mark was quite simple. I marked
those already marked SLAB_RECLAIM_ACCOUNT, except for fs/xfs, dentry_cache,
inode_cache, and buffer_head, which were marked in a previous patch. Even
though SLAB_RECLAIM_ACCOUNT is for a different purpose, it marks the same
potentially large file system i/o related slab caches as we need for memory
spreading.
Given that the rule now becomes "wherever you would have used a
SLAB_RECLAIM_ACCOUNT slab cache flag before (usually the inode cache), use
the SLAB_MEM_SPREAD flag too", this should be easy enough to maintain.
Future file system writers will just copy one of the existing file system
slab cache setups and tend to get it right without thinking.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The conversion was generated via scripts, and the result was validated
automatically via a script as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
MS_RDONLU implies not atime updates at all, no need for the MS_NOATIME and
MS_NODIRATIME flags.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Anton Altaparmakov <aia21@cantab.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch converts the inode semaphore to a mutex. I have tested it on
XFS and compiled as much as one can consider on an ia64. Anyway your
luck with it might be different.
Modified-by: Ingo Molnar <mingo@elte.hu>
(finished the conversion)
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
an octal number to conform to how chmod(1) works, too. Thanks to
Giuseppe Bilotta and Horst von Brand for pointing out the errors of
my ways.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
- Support journals ($LogFile) which have been modified by chkdsk. This
means users can boot into Windows after we marked the volume dirty.
The Windows boot will run chkdsk and then reboot. The user can then
immediately boot into Linux rather than having to do a full Windows
boot first before rebooting into Linux and we will recognize such a
journal and empty it as it is clean by definition.
- Support journals ($LogFile) with only one restart page as well as
journals with two different restart pages. We sanity check both and
either use the only sane one or the more recent one of the two in the
case that both are valid.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
to be mounted and if this is the case do not allow (re)mounting
read-write. This is done by parsing hiberfil.sys if present.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
is active on the volume and we are mounting read-write or remounting
from read-only to read-write.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
Thus, relax the checking in fs/ntfs/super.c::is_boot_sector_ntfs() to
only emit a warning when the checksum is incorrect rather than
refusing the mount. Thanks to Bernd Casimir for pointing this
problem out.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
definition of ntfs_export_ops from fs/ntfs/super.c to namei.c.
Also, declare ntfs_export_ops in fs/ntfs/ntfs.h.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
enable bit which is set appropriately and a per inode sparse disable
bit which is preset on some system file inodes as appropriate.
- Enforce that sparse support is disabled on NTFS volumes pre 3.0.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
value afterwards. Cache the initialized_size in the same way and
protect access to the two sizes using the size_lock.
- Minor optimization to fs/ntfs/super.c::ntfs_statfs() and its helpers.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!