Simplify the handling of the flag storage for the timer statistics. No
intermediate storage anymore. Just hand over the flags field.
I left the printout of 'deferrable' for now because changing this
would be an ABI update and I have no idea how strong people feel about
that. OTOH, I wonder whether we should kill the whole timer stats
stuff because all of that information can be retrieved via ftrace/perf
as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.046626248@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Instead of storing a pointer to the per cpu tvec_base we can simply
cache a CPU index in the timer_list and use that to get hold of the
correct per cpu tvec_base. This is only used in lock_timer_base() and
the slightly larger code is peanuts versus the spinlock operation and
the d-cache foot print of the timer wheel.
Aside of that this allows to get rid of following nuisances:
- boot_tvec_base
That statically allocated 4k bss data is just kept around so the
timer has a home when it gets statically initialized. It serves no
other purpose.
With the CPU index we assign the timer to CPU0 at static
initialization time and therefor can avoid the whole boot_tvec_base
dance. That also simplifies the init code, which just can use the
per cpu base.
Before:
text data bss dec hex filename
17491 9201 4160 30852 7884 ../build/kernel/time/timer.o
After:
text data bss dec hex filename
17440 9193 0 26633 6809 ../build/kernel/time/timer.o
- Overloading the base pointer with various flags
The CPU index has enough space to hold the flags (deferrable,
irqsafe) so we can get rid of the extra masking and bit fiddling
with the base pointer.
As a benefit we reduce the size of struct timer_list on 64 bit
machines. 4 - 8 bytes, a size reduction up to 15% per struct timer_list,
which is a real win as we have tons of them embedded in other structs.
This changes also the newly added deferrable printout of the timer
start trace point to capture and print all timer->flags, which allows
us to decode the target cpu of the timer as well.
We might have used bitfields for this, but that would change the
static initializers and the init function for no value to accomodate
big endian bitfields.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Badhri Jagan Sridharan <Badhri@google.com>
Link: http://lkml.kernel.org/r/20150526224511.950084301@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This reduces the size of struct tvec_base by 50% and results in
slightly smaller code as well.
Before:
struct tvec_base: size: 8256, cachelines: 129
text data bss dec hex filename
17698 13297 8256 39251 9953 ../build/kernel/time/timer.o
After:
struct tvec_base: 4160, cachelines: 65
text data bss dec hex filename
17491 9201 4160 30852 7884 ../build/kernel/time/timer.o
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224511.854731214@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The FIFO guarantee is only there if two timers are queued into the
same bucket at the same jiffie on the same cpu:
- The slack value depends on the delta between expiry and enqueue
time, so the resulting expiry time can be different for timers
which are queued in different jiffies.
- Timers which are queued into the secondary array end up after a
later queued timer which was queued into the primary array due to
cascading.
- Timers can end up on different cpus due to the NOHZ target moving
around. Obviously there is no guarantee of expiry ordering between
cpus.
So anything which relies on FIFO behaviour of the timer wheel is
broken already.
This is a preparatory patch for converting the timer wheel to hlist
which reduces the memory foot print of the wheel by 50%.
It's a seperate patch so any (unlikely to happen) regression caused by
this can be identified clearly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Cc: George Spelvin <linux@horizon.com>
Link: http://lkml.kernel.org/r/20150526224511.757520403@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
catchup_timer_jiffies() has been applied blindly to several functions
without looking for possible better ways to do it.
1) internal_add_timer()
Move the update to base->all_timers before we actually insert the
timer into the wheel.
2) detach_if_pending()
Again the update to base->all_timers allows us to explicitely do
the timer_jiffies update in place, if this was the last timer which
got removed.
3) __run_timers()
We only check on entry, which is silly, because base->timer_jiffies
can be behind - especially on NOHZ kernels - and if there is a
single deferrable timer somewhere between base->timer_jiffies and
jiffies we expire it and then loop until base->timer_jiffies ==
jiffies.
Move it into the loop.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224511.662994644@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently an hrtimer callback function cannot free its own timer
because __run_hrtimer() still needs to clear HRTIMER_STATE_CALLBACK
after it. Freeing the timer would result in a clear use-after-free.
Solve this by using a scheme similar to regular timers; track the
current running timer in hrtimer_clock_base::running.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: wanpeng.li@linux.intel.com
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124743.471563047@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Introduce raw_write_seqcount_barrier(), a new construct that can be
used to provide write barrier semantics in seqcount read loops instead
of the usual consistency guarantee.
raw_write_seqcount_barier() is equivalent to:
raw_write_seqcount_begin();
raw_write_seqcount_end();
But avoids issueing two back-to-back smp_wmb() instructions.
This construct works because the read side will 'stall' when observing
odd values. This means that -- referring to the example in the comment
below -- even though there is no (matching) read barrier between the
loads of X and Y, we cannot observe !x && !y, because:
- if we observe Y == false we must observe the first sequence
increment, which makes us loop, until
- we observe !(seq & 1) -- the second sequence increment -- at which
time we must also observe T == true.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: umgwanakikbuti@gmail.com
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20150617122924.GP3644@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
I'll shortly be introducing another seqcount primitive that's useful
to provide ordering semantics and would like to use the
write_seqcount_barrier() name for that.
Seeing how there's only one user of the current primitive, lets rename
it to invalidate, as that appears what its doing.
While there, employ lockdep_assert_held() instead of
assert_spin_locked() to not generate debug code for regular kernels.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: wanpeng.li@linux.intel.com
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124743.279926217@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In 0c4a5fc95b (Add leap-second timer edge testing to
leap-a-day.c), we added a timer to the test which checks to make
sure timers near the leapsecond edge behave correctly.
However, the output generated from the timer uses ctime_r, which
isn't async-signal safe, and should that signal land while the
main test is using ctime_r to print its output, its possible for
the test to deadlock on glibc internal locks.
Thus this patch reworks the output to avoid using ctime_r in
the signal handler.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434565003-3386-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The fix in d151832650 (time: Move clock_was_set_seq update
before updating shadow-timekeeper) was unfortunately incomplete.
The main gist of that change was to do the shadow-copy update
last, so that any state changes were properly duplicated, and
we wouldn't accidentally have stale data in the shadow.
Unfortunately in the main update_wall_time() logic, we update
use the shadow-timekeeper to calculate the next update values,
then while holding the lock, copy the shadow-timekeeper over,
then call timekeeping_update() to do some additional
bookkeeping, (skipping the shadow mirror). The bug with this is
the additional bookkeeping isn't all read-only, and some
changes timkeeper state. Thus we might then overwrite this state
change on the next update.
To avoid this problem, do the timekeeping_update() on the
shadow-timekeeper prior to copying the full state over to
the real-timekeeper.
This avoids problems with both the clock_was_set_seq and
next_leap_ktime being overwritten and possibly the
fast-timekeepers as well.
Many thanks to Prarit for his rigorous testing, which discovered
this problem, along with Prarit and Daniel's work validating this
fix.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Tested-by: Prarit Bhargava <prarit@redhat.com>
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434560753-7441-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
CLOCK_EVT_MODE_* macros are present for backward compatibility (as most
of the drivers are still using old ->set_mode() interface).
These macro's shouldn't be used anymore in code, that is common to both
driver interfaces, i.e. ->set_mode() and ->set_state_*().
Drivers implementing ->set_state_*() interface, which have their
clkevt->mode set to 0 (clkevt device structures are normally globally
defined), will not participate in suspend/resume as they will always be
marked as UNUSED.
Fix this by checking state of the clockevent device instead of mode,
which is updated for both the interfaces.
Fixes: ac34ad27fc ("clockevents: Do not suspend/resume if unused")
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: alexandre.belloni@free-electrons.com
Cc: sylvain.rochet@finsecur.com
Link: http://lkml.kernel.org/r/a1964eef6e8a47d02b1ff9083c6c91f73f0ff643.1434537215.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Prarit reported an issue w/ timers around the leapsecond, where a
timer set for Midnight UTC (00:00:00) might fire a second early right
before the leapsecond (23:59:60 - though it appears as a repeated
23:59:59) is applied.
So I've updated the leap-a-day.c test to integrate a similar test,
where we set a timer and check if it triggers at the right time, and
if the ntp state transition is managed properly.
Reported-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Reported-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434063297-28657-6-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since the leapsecond is applied at tick-time, this means there is a
small window of time at the start of a leap-second where we cross into
the next second before applying the leap.
This patch modified adjtimex so that the leap-second is applied on the
second edge. Providing more correct leapsecond behavior.
This does make it so that adjtimex()'s returned time values can be
inconsistent with time values read from gettimeofday() or
clock_gettime(CLOCK_REALTIME,...) for a brief period of one tick at
the leapsecond. However, those other interfaces do not provide the
TIME_OOP time_state return that adjtimex() provides, which allows the
leapsecond to be properly represented. They instead only see a time
discontinuity, and cannot tell the first 23:59:59 from the repeated
23:59:59 leap second.
This seems like a reasonable tradeoff given clock_gettime() /
gettimeofday() cannot properly represent a leapsecond, and users
likely care more about performance, while folks who are using
adjtimex() more likely care about leap-second correctness.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434063297-28657-5-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently, leapsecond adjustments are done at tick time. As a result,
the leapsecond was applied at the first timer tick *after* the
leapsecond (~1-10ms late depending on HZ), rather then exactly on the
second edge.
This was in part historical from back when we were always tick based,
but correcting this since has been avoided since it adds extra
conditional checks in the gettime fastpath, which has performance
overhead.
However, it was recently pointed out that ABS_TIME CLOCK_REALTIME
timers set for right after the leapsecond could fire a second early,
since some timers may be expired before we trigger the timekeeping
timer, which then applies the leapsecond.
This isn't quite as bad as it sounds, since behaviorally it is similar
to what is possible w/ ntpd made leapsecond adjustments done w/o using
the kernel discipline. Where due to latencies, timers may fire just
prior to the settimeofday call. (Also, one should note that all
applications using CLOCK_REALTIME timers should always be careful,
since they are prone to quirks from settimeofday() disturbances.)
However, the purpose of having the kernel do the leap adjustment is to
avoid such latencies, so I think this is worth fixing.
So in order to properly keep those timers from firing a second early,
this patch modifies the ntp and timekeeping logic so that we keep
enough state so that the update_base_offsets_now accessor, which
provides the hrtimer core the current time, can check and apply the
leapsecond adjustment on the second edge. This prevents the hrtimer
core from expiring timers too early.
This patch does not modify any other time read path, so no additional
overhead is incurred. However, this also means that the leap-second
continues to be applied at tick time for all other read-paths.
Apologies to Richard Cochran, who pushed for similar changes years
ago, which I resisted due to the concerns about the performance
overhead.
While I suspect this isn't extremely critical, folks who care about
strict leap-second correctness will likely want to watch
this. Potentially a -stable candidate eventually.
Originally-suggested-by: Richard Cochran <richardcochran@gmail.com>
Reported-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Reported-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434063297-28657-4-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently the leapsecond logic uses what looks like magic values.
Improve this by defining SECS_PER_DAY and using that macro
to make the logic more clear.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434063297-28657-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It was reported that 868a3e915f (hrtimer: Make offset
update smarter) was causing timer problems after suspend/resume.
The problem with that change is the modification to
clock_was_set_seq in timekeeping_update is done prior to
mirroring the time state to the shadow-timekeeper. Thus the
next time we do update_wall_time() the updated sequence is
overwritten by whats in the shadow copy.
This patch moves the shadow-timekeeper mirroring to the end
of the function, after all updates have been made, so all data
is kept in sync.
(This patch also affects the update_fast_timekeeper calls which
were also problematically done prior to the mirroring).
Reported-and-tested-by: Jeremiah Mahler <jmmahler@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1434063297-28657-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
clocksource messages aren't prefixed in dmesg so it's a bit unclear
what subsystem emits the messages.
Use pr_fmt and pr_<level> to auto-prefix the messages appropriately.
Miscellanea:
o Remove "Warning" from KERN_WARNING level messages
o Align "timekeeping watchdog: " messages
o Coalesce formats
o Align multiline arguments
Signed-off-by: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/1432579795.2846.75.camel@perches.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To allow constant folding in usecs_to_jiffies() conditionally calls
the HZ dependent _usecs_to_jiffies() helpers or, when gcc can not
figure out constant folding, __usecs_to_jiffies, which is the renamed
original usecs_to_jiffies() function.
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Michal Marek <mmarek@suse.cz>
Link: http://lkml.kernel.org/r/1432832996-12129-2-git-send-email-hofrat@osadl.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor the usecs_to_jiffies conditional code part in time.c and
jiffies.h putting it into conditional functions rather than #ifdefs
to improve readability. This is analogous to the msecs_to_jiffies()
cleanup in commit ca42aaf0c8 ("time: Refactor msecs_to_jiffies")
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Michal Marek <mmarek@suse.cz>
Link: http://lkml.kernel.org/r/1432832996-12129-1-git-send-email-hofrat@osadl.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
... in the !CONFIG_HIGH_RES_TIMERS case too. And thus fix warnings like
this one:
net/sched/sch_api.c: In function ‘psched_show’:
net/sched/sch_api.c:1891:6: warning: format ‘%x’ expects argument of type ‘unsigned int’, but argument 6 has type ‘long int’ [-Wformat=]
(u32)NSEC_PER_SEC / hrtimer_resolution);
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1433583000-32090-1-git-send-email-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Pull clockevents/clocksource changes from Daniel Lezcano:
- Removed dead code in the files related to mach-msm for qcom (Stephen Boyd)
- Cleaned up code for exynos_mct (Krzysztof Kozlowski)
- Added the new timer lpc3220 (Joachim Eastwood)
- Added the new timer STM32 and ARM system timer (Maxime Coquelin)
The only sensible way to make abuse of core internal fields obvious
and easy to grep for.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
We want to rename dev->state, so provide proper get and set
functions. Rename clockevents_set_state() to
clockevents_switch_state() to avoid confusion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
This patch fixes below warning spotted by kbuild test robot when building
with ARCH=powerpc:
drivers/clocksource/timer-stm32.c: In function 'stm32_clockevent_init':
>> drivers/clocksource/timer-stm32.c:140:9: warning: large integer implicitly
truncated to unsigned type [-Woverflow]
writel_relaxed(~0UL, data->base + TIM_ARR);
The fix consists in using 0U instead of 0UL.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
STM32 MCUs feature 16 and 32 bits general purpose timers with prescalers.
The drivers detects whether the time is 16 or 32 bits, and applies a
1024 prescaler value if it is 16 bits.
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Chanwoo Choi <cw00.choi@samsung.com>
Signed-off-by: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
This adds documentation of device tree bindings for the
STM32 timer.
Tested-by: Chanwoo Choi <cw00.choi@samsung.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
This patch adds clocksource support for ARMv7-M's System timer,
also known as SysTick.
Tested-by: Chanwoo Choi <cw00.choi@samsung.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
This adds documentation of device tree bindings for the
ARM System timer.
Tested-by: Chanwoo Choi <cw00.choi@samsung.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Add DT bindings documentation for lpc3220-timer. This timer is
used as clocksource on many NXP platforms.
Signed-off-by: Joachim Eastwood <manabian@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Add support for using the NXP LPC timer as clocksource and clock
event. These timers are present on many NXP devices including
LPC32xx, LPC17xx, LPC18xx and LPC43xx.
The timer has a 32-bit timer counter register with a programmable
32-bit prescaler. It supports up to 4 compare match values with
interrupt generation and reset/stop timer counter action.
Signed-off-by: Joachim Eastwood <manabian@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Since commit 228e3023eb ("Merge tag 'mct-exynos-for-v3.10' of ...") the
mct_init() was superseded by mct_init_dt() and is not referenced
anywhere. Remove it.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
The struct clocksource 'mct_frc' is not exported and used outside so
make it static.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Return value of exynos4_mct_tick_clear() was never checked so it can
be safely changed to void.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
This code is no longer used now that mach-msm has been removed.
Delete it.
Cc: David Brown <davidb@codeaurora.org>
Cc: Bryan Huntsman <bryanh@codeaurora.org>
Cc: Daniel Walker <dwalker@fifo99.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
There is no point in calling suspend/resume for unused clockevents as
they are already stopped and disabled.
This is really important for AT91 as the hardware is a trainwreck and
takes ages to synchronize.
Reported-by: Sylvain Rochet <sylvain.rochet@finsecur.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Nicolas Ferre <nicolas.ferre@atmel.com>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Maxime Ripard <maxime.ripard@free-electrons.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/1421399151-26800-1-git-send-email-alexandre.belloni@free-electrons.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now that we have a read_boot_clock64() function available on every
architecture, and converted all the users to it, it's time to remove
the (now unused) read_boot_clock() completely from the kernel.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
[jstultz: Minor commit message tweak suggested by Ingo]
Signed-off-by: John Stultz <john.stultz@linaro.org>
As part of addressing the "y2038 problem" for in-kernel uses,
this patch converts read_boot_clock() to read_boot_clock64()
and read_persistent_clock() to read_persistent_clock64() using
timespec64.
Rename some instances of 'timespec' to 'timespec64' in time.c and
related references
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux390@de.ibm.com
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
[jstultz: Fixed minor style and grammer tweaks
pointed out by Ingo]
Signed-off-by: John Stultz <john.stultz@linaro.org>
On 32-bit systems, timespec64_add_ns() calls __iter_div_u64_rem()
which needs math64.h, and we want to include time64.h in some
cases.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The timer_start event now shows whether the timer is
deferrable in case of a low-res timer. The debug_activate
function now includes a deferrable flag while calling
the trace_timer_start event.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Badhri Jagan Sridharan <Badhri@google.com>
[jstultz: Fixed minor whitespace and grammer tweaks
pointed out by Ingo]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Ingo suggested that the timekeeping debugging variables
recently added should not be global, and should be tied
to the timekeeper's read_base.
Thus this patch implements that suggestion.
This version is different from the earlier versions
as it keeps the variables in the timekeeper structure
rather then in the tkr.
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch series introduces a new function
u32 ktime_get_resolution_ns(void)
which allows to clean up some driver code.
In particular the IIO subsystem has a function to provide timestamps for
events but no means to get their resolution. So currently the dht11 driver
tries to guess the resolution in a rather messy and convoluted way. We
can do much better with the new code.
This API is not designed to be exposed to user space.
This has been tested on i386, sunxi and mxs.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Harald Geyer <harald@ccbib.org>
[jstultz: Tweaked to make it build after upstream changes]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Invalid values may overflow later, leading to undefined behaviour when
multiplied by 60 to get the amount of seconds.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Somehow I missed to clean that up when applying the patches. Fix it up
now.
Reported-by: Joe Perches <joe@perches.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Nicholas Mc Guire <der.herr@hofr.at>
To avoid getting spurious interrupts on a tickless CPU, clockevent
device can now be stopped by switching to ONESHOT_STOPPED state.
The natural place for handling this transition is tick_program_event().
On 'expires == KTIME_MAX', we skip programming the event and so we need
to fix such call sites as well, to always call tick_program_event()
irrespective of the expires value.
Once the clockevent device is required again, check if it was earlier
put into ONESHOT_STOPPED state. If yes, switch its state to ONESHOT
before programming its event.
To make sure we haven't missed any corner case, add a WARN() for the
case where we try to reprogram clockevent device while we aren't
configured in ONESHOT_STOPPED state.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5146b07be7f0bc497e0ebae036590ec2fa73e540.1428031396.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When no timers/hrtimers are pending, the expiry time is set to a
special value: 'KTIME_MAX'. This normally happens with
NO_HZ_{IDLE|FULL} in both LOWRES/HIGHRES modes.
When 'expiry == KTIME_MAX', we either cancel the 'tick-sched' hrtimer
(NOHZ_MODE_HIGHRES) or skip reprogramming clockevent device
(NOHZ_MODE_LOWRES). But, the clockevent device is already
reprogrammed from the tick-handler for next tick.
As the clock event device is programmed in ONESHOT mode it will at
least fire one more time (unnecessarily). Timers on few
implementations (like arm_arch_timer, etc.) only support PERIODIC mode
and their drivers emulate ONESHOT over that. Which means that on these
platforms we will get spurious interrupts periodically (at last
programmed interval rate, normally tick rate).
In order to avoid spurious interrupts, the clockevent device should be
stopped or its interrupts should be masked.
A simple (yet hacky) solution to get this fixed could be: update
hrtimer_force_reprogram() to always reprogram clockevent device and
update clockevent drivers to STOP generating events (or delay it to
max time) when 'expires' is set to KTIME_MAX. But the drawback here is
that every clockevent driver has to be hacked for this particular case
and its very easy for new ones to miss this.
However, Thomas suggested to add an optional state ONESHOT_STOPPED to
solve this problem: lkml.org/lkml/2014/5/9/508.
This patch adds support for ONESHOT_STOPPED state in clockevents
core. It will only be available to drivers that implement the
state-specific callbacks instead of the legacy ->set_mode() callback.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Cc: linaro-kernel@lists.linaro.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/b8b383a03ac07b13312c16850b5106b82e4245b5.1428031396.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>