Commit Graph

638 Commits

Author SHA1 Message Date
Mina Almasry e9fe92ae0c hugetlb_cgroup: add reservation accounting for private mappings
Normally the pointer to the cgroup to uncharge hangs off the struct page,
and gets queried when it's time to free the page.  With hugetlb_cgroup
reservations, this is not possible.  Because it's possible for a page to
be reserved by one task and actually faulted in by another task.

The best place to put the hugetlb_cgroup pointer to uncharge for
reservations is in the resv_map.  But, because the resv_map has different
semantics for private and shared mappings, the code patch to
charge/uncharge shared and private mappings is different.  This patch
implements charging and uncharging for private mappings.

For private mappings, the counter to uncharge is in
resv_map->reservation_counter.  On initializing the resv_map this is set
to NULL.  On reservation of a region in private mapping, the tasks
hugetlb_cgroup is charged and the hugetlb_cgroup is placed is
resv_map->reservation_counter.

On hugetlb_vm_op_close, we uncharge resv_map->reservation_counter.

[akpm@linux-foundation.org: forward declare struct resv_map]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-3-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:32 -07:00
Mina Almasry 1adc4d419a hugetlb_cgroup: add interface for charge/uncharge hugetlb reservations
Augments hugetlb_cgroup_charge_cgroup to be able to charge hugetlb usage
or hugetlb reservation counter.

Adds a new interface to uncharge a hugetlb_cgroup counter via
hugetlb_cgroup_uncharge_counter.

Integrates the counter with hugetlb_cgroup, via hugetlb_cgroup_init,
hugetlb_cgroup_have_usage, and hugetlb_cgroup_css_offline.

Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-2-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:32 -07:00
Mike Kravetz 87bf91d39b hugetlbfs: Use i_mmap_rwsem to address page fault/truncate race
hugetlbfs page faults can race with truncate and hole punch operations.
Current code in the page fault path attempts to handle this by 'backing
out' operations if we encounter the race.  One obvious omission in the
current code is removing a page newly added to the page cache.  This is
pretty straight forward to address, but there is a more subtle and
difficult issue of backing out hugetlb reservations.  To handle this
correctly, the 'reservation state' before page allocation needs to be
noted so that it can be properly backed out.  There are four distinct
possibilities for reservation state: shared/reserved, shared/no-resv,
private/reserved and private/no-resv.  Backing out a reservation may
require memory allocation which could fail so that needs to be taken
into account as well.

Instead of writing the required complicated code for this rare
occurrence, just eliminate the race.  i_mmap_rwsem is now held in read
mode for the duration of page fault processing.  Hold i_mmap_rwsem in
write mode when modifying i_size.  In this way, truncation can not
proceed when page faults are being processed.  In addition, i_size
will not change during fault processing so a single check can be made
to ensure faults are not beyond (proposed) end of file.  Faults can
still race with hole punch, but that race is handled by existing code
and the use of hugetlb_fault_mutex.

With this modification, checks for races with truncation in the page
fault path can be simplified and removed.  remove_inode_hugepages no
longer needs to take hugetlb_fault_mutex in the case of truncation.
Comments are expanded to explain reasoning behind locking.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-3-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:32 -07:00
Mike Kravetz c0d0381ade hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.

While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races.  These issues are:

1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
   invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
   reserve counts and state.

A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2].  However, those patches were reverted starting with [3]
due to locking issues.

To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing.  However, during fault
processing we need to lock the page we will be adding.  Lock ordering
requires we take page lock before i_mmap_rwsem.  Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.

To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages.  This is not too invasive as hugetlbfs
processing is done separate from core mm in many places.  However, I don't
really like this idea.  Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.

The only other way I can think of to address these issues is by catching
all the races.  After catching a race, cleanup, backout, retry ...  etc,
as needed.  This can get really ugly, especially for huge page
reservations.  At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races.  Any other
suggestions would be welcome.

[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/

This patch (of 2):

While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table.  Consider the following:

A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep.  Suppose the returned ptep points to a
shared pmd.

Now, another task truncates the hugetlbfs file.  As part of truncation, it
unmaps everyone who has the file mapped.  If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called.  For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd.  If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse.  This leads to bad things such as incorrect page
map/reference counts or invalid memory references.

To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
  huge_pmd_share is only called via huge_pte_alloc, so callers of
  huge_pte_alloc take i_mmap_rwsem before calling.  In addition, callers
  of huge_pte_alloc continue to hold the semaphore until finished with
  the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.

One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults.  This is not the order
specified in the rest of mm code.  Handling of hugetlbfs pages is mostly
isolated today.  Therefore, we use this alternative locking order for
PageHuge() pages.

         mapping->i_mmap_rwsem
           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
             page->flags PG_locked (lock_page)

To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.

In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma.  A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:32 -07:00
Peter Xu 71335f37c5 mm/gup: allow to react to fatal signals
The existing gup code does not react to the fatal signals in many code
paths.  For example, in one retry path of gup we're still using
down_read() rather than down_read_killable().  Also, when doing page
faults we don't pass in FAULT_FLAG_KILLABLE as well, which means that
within the faulting process we'll wait in non-killable way as well.  These
were spotted by Linus during the code review of some other patches.

Let's allow the gup code to react to fatal signals to improve the
responsiveness of threads when during gup and being killed.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220160256.9887-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:30 -07:00
Peter Xu 4426e945df mm/gup: allow VM_FAULT_RETRY for multiple times
This is the gup counterpart of the change that allows the VM_FAULT_RETRY
to happen for more than once.  One thing to mention is that we must check
the fatal signal here before retry because the GUP can be interrupted by
that, otherwise we can loop forever.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220195357.16371-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:30 -07:00
Peter Xu 4f6da93411 mm/gup: rename "nonblocking" to "locked" where proper
Patch series "mm: Page fault enhancements", v6.

This series contains cleanups and enhancements to current page fault
logic.  The whole idea comes from the discussion between Andrea and Linus
on the bug reported by syzbot here:

  https://lkml.org/lkml/2017/11/2/833

Basically it does two things:

  (a) Allows the page fault logic to be more interactive on not only
      SIGKILL, but also the rest of userspace signals, and,

  (b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more
      than once.

For (a): with the changes we should be able to react faster when page
faults are working in parallel with userspace signals like SIGSTOP and
SIGCONT (and more), and with that we can remove the buggy part in
userfaultfd and benefit the whole page fault mechanism on faster signal
processing to reach the userspace.

For (b), we should be able to allow the page fault handler to loop for
even more than twice.  Some context: for now since we have
FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the
same interrupt context, however never more than twice.  This can be not
only a potential cleanup to remove this assumption since AFAIU the code
itself doesn't really have this twice-only limitation (though that should
be a protective approach in the past), at the same time it'll greatly
simplify future works like userfaultfd write-protect where it's possible
to retry for more than twice (please have a look at [1] below for a
possible user that might require the page fault to be handled for a third
time; if we can remove the retry limitation we can simply drop that patch
and those complexity).

This patch (of 16):

There's plenty of places around __get_user_pages() that has a parameter
"nonblocking" which does not really mean that "it won't block" (because it
can really block) but instead it shows whether the mmap_sem is released by
up_read() during the page fault handling mostly when VM_FAULT_RETRY is
returned.

We have the correct naming in e.g.  get_user_pages_locked() or
get_user_pages_remote() as "locked", however there're still many places
that are using the "nonblocking" as name.

Renaming the places to "locked" where proper to better suite the
functionality of the variable.  While at it, fixing up some of the
comments accordingly.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220155353.8676-2-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
John Hubbard 47e29d32af mm/gup: page->hpage_pinned_refcount: exact pin counts for huge pages
For huge pages (and in fact, any compound page), the GUP_PIN_COUNTING_BIAS
scheme tends to overflow too easily, each tail page increments the head
page->_refcount by GUP_PIN_COUNTING_BIAS (1024).  That limits the number
of huge pages that can be pinned.

This patch removes that limitation, by using an exact form of pin counting
for compound pages of order > 1.  The "order > 1" is required because this
approach uses the 3rd struct page in the compound page, and order 1
compound pages only have two pages, so that won't work there.

A new struct page field, hpage_pinned_refcount, has been added, replacing
a padding field in the union (so no new space is used).

This enhancement also has a useful side effect: huge pages and compound
pages (of order > 1) do not suffer from the "potential false positives"
problem that is discussed in the page_dma_pinned() comment block.  That is
because these compound pages have extra space for tracking things, so they
get exact pin counts instead of overloading page->_refcount.

Documentation/core-api/pin_user_pages.rst is updated accordingly.

Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-8-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:27 -07:00
John Hubbard 3faa52c03f mm/gup: track FOLL_PIN pages
Add tracking of pages that were pinned via FOLL_PIN.  This tracking is
implemented via overloading of page->_refcount: pins are added by adding
GUP_PIN_COUNTING_BIAS (1024) to the refcount.  This provides a fuzzy
indication of pinning, and it can have false positives (and that's OK).
Please see the pre-existing Documentation/core-api/pin_user_pages.rst for
details.

As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN
(typically via pin_user_pages*()) are required to ultimately free such
pages via unpin_user_page().

Please also note the limitation, discussed in pin_user_pages.rst under the
"TODO: for 1GB and larger huge pages" section.  (That limitation will be
removed in a following patch.)

The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be
thought of as "FOLL_GET for DIO and/or RDMA use".

Pages that have been pinned via FOLL_PIN are identifiable via a new
function call:

   bool page_maybe_dma_pinned(struct page *page);

What to do in response to encountering such a page, is left to later
patchsets. There is discussion about this in [1], [2], [3], and [4].

This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask().

[1] Some slow progress on get_user_pages() (Apr 2, 2019):
    https://lwn.net/Articles/784574/
[2] DMA and get_user_pages() (LPC: Dec 12, 2018):
    https://lwn.net/Articles/774411/
[3] The trouble with get_user_pages() (Apr 30, 2018):
    https://lwn.net/Articles/753027/
[4] LWN kernel index: get_user_pages():
    https://lwn.net/Kernel/Index/#Memory_management-get_user_pages

[jhubbard@nvidia.com: add kerneldoc]
  Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com
[imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough]
  Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com
[akpm@linux-foundation.org: fix put_compound_head defined but not used]
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:27 -07:00
Waiman Long c77c0a8ac4 mm/hugetlb: defer freeing of huge pages if in non-task context
The following lockdep splat was observed when a certain hugetlbfs test
was run:

  ================================
  WARNING: inconsistent lock state
  4.18.0-159.el8.x86_64+debug #1 Tainted: G        W --------- -  -
  --------------------------------
  inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
  swapper/30/0 [HC0[0]:SC1[1]:HE1:SE0] takes:
  ffffffff9acdc038 (hugetlb_lock){+.?.}, at: free_huge_page+0x36f/0xaa0
  {SOFTIRQ-ON-W} state was registered at:
    lock_acquire+0x14f/0x3b0
    _raw_spin_lock+0x30/0x70
    __nr_hugepages_store_common+0x11b/0xb30
    hugetlb_sysctl_handler_common+0x209/0x2d0
    proc_sys_call_handler+0x37f/0x450
    vfs_write+0x157/0x460
    ksys_write+0xb8/0x170
    do_syscall_64+0xa5/0x4d0
    entry_SYSCALL_64_after_hwframe+0x6a/0xdf
  irq event stamp: 691296
  hardirqs last  enabled at (691296): [<ffffffff99bb034b>] _raw_spin_unlock_irqrestore+0x4b/0x60
  hardirqs last disabled at (691295): [<ffffffff99bb0ad2>] _raw_spin_lock_irqsave+0x22/0x81
  softirqs last  enabled at (691284): [<ffffffff97ff0c63>] irq_enter+0xc3/0xe0
  softirqs last disabled at (691285): [<ffffffff97ff0ebe>] irq_exit+0x23e/0x2b0

  other info that might help us debug this:
   Possible unsafe locking scenario:

         CPU0
         ----
    lock(hugetlb_lock);
    <Interrupt>
      lock(hugetlb_lock);

   *** DEADLOCK ***
      :
  Call Trace:
   <IRQ>
   __lock_acquire+0x146b/0x48c0
   lock_acquire+0x14f/0x3b0
   _raw_spin_lock+0x30/0x70
   free_huge_page+0x36f/0xaa0
   bio_check_pages_dirty+0x2fc/0x5c0
   clone_endio+0x17f/0x670 [dm_mod]
   blk_update_request+0x276/0xe50
   scsi_end_request+0x7b/0x6a0
   scsi_io_completion+0x1c6/0x1570
   blk_done_softirq+0x22e/0x350
   __do_softirq+0x23d/0xad8
   irq_exit+0x23e/0x2b0
   do_IRQ+0x11a/0x200
   common_interrupt+0xf/0xf
   </IRQ>

Both the hugetbl_lock and the subpool lock can be acquired in
free_huge_page().  One way to solve the problem is to make both locks
irq-safe.  However, Mike Kravetz had learned that the hugetlb_lock is
held for a linear scan of ALL hugetlb pages during a cgroup reparentling
operation.  So it is just too long to have irq disabled unless we can
break hugetbl_lock down into finer-grained locks with shorter lock hold
times.

Another alternative is to defer the freeing to a workqueue job.  This
patch implements the deferred freeing by adding a free_hpage_workfn()
work function to do the actual freeing.  The free_huge_page() call in a
non-task context saves the page to be freed in the hpage_freelist linked
list in a lockless manner using the llist APIs.

The generic workqueue is used to process the work, but a dedicated
workqueue can be used instead if it is desirable to have the huge page
freed ASAP.

Thanks to Kirill Tkhai <ktkhai@virtuozzo.com> for suggesting the use of
llist APIs which simplfy the code.

Link: http://lkml.kernel.org/r/20191217170331.30893-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-04 13:55:09 -08:00
Zhigang Lu acbfb087e3 mm/hugetlb: avoid looping to the same hugepage if !pages and !vmas
When mmapping an existing hugetlbfs file with MAP_POPULATE, we find it
is very time consuming.  For example, mmapping a 128GB file takes about
50 milliseconds.  Sampling with perfevent shows it spends 99% time in
the same_page loop in follow_hugetlb_page().

samples: 205  of event 'cycles', Event count (approx.): 136686374
-  99.04%  test_mmap_huget  [kernel.kallsyms]  [k] follow_hugetlb_page
        follow_hugetlb_page
        __get_user_pages
        __mlock_vma_pages_range
        __mm_populate
        vm_mmap_pgoff
        sys_mmap_pgoff
        sys_mmap
        system_call_fastpath
        __mmap64

follow_hugetlb_page() is called with pages=NULL and vmas=NULL, so for
each hugepage, we run into the same_page loop for pages_per_huge_page()
times, but doing nothing.  With this change, it takes less then 1
millisecond to mmap a 128GB file in hugetlbfs.

Link: http://lkml.kernel.org/r/1567581712-5992-1-git-send-email-totty.lu@gmail.com
Signed-off-by: Zhigang Lu <tonnylu@tencent.com>
Reviewed-by: Haozhong Zhang <hzhongzhang@tencent.com>
Reviewed-by: Zongming Zhang <knightzhang@tencent.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:08 -08:00
Wei Yang 188b04a7d9 hugetlb: remove unused hstate in hugetlb_fault_mutex_hash()
The first parameter hstate in function hugetlb_fault_mutex_hash() is not
used anymore.

This patch removes it.

[akpm@linux-foundation.org: various build fixes]
[cai@lca.pw: fix a GCC compilation warning]
 Link: http://lkml.kernel.org/r/1570544108-32331-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20191005003302.785-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:08 -08:00
Mina Almasry d75c6af9c8 hugetlb: remove duplicated code
Remove duplicated code between region_chg and region_add, and refactor
it into a common function, add_reservation_in_range.  This is mostly
done because there is a follow up change in another series that disables
region coalescing in region_add, and I want to make that change in one
place only.  It should improve maintainability anyway on its own.

[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20190919200428.188797-3-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:08 -08:00
Mina Almasry 5c91195420 hugetlb: region_chg provides only cache entry
Current behavior is that region_chg provides both a cache entry in
resv->region_cache, AND a placeholder entry in resv->regions.
region_add first tries to use the placeholder, and if it finds that the
placeholder has been deleted by a racing region_del call, it uses the
cache entry.

This behavior is completely unnecessary and is removed in this patch for
a couple of reasons:

1. region_add needs to either find a cached file_region entry in
   resv->region_cache, or find an entry in resv->regions to expand. It
   does not need both.

2. region_chg adding a placeholder entry in resv->regions opens up
   a possible race with region_del, where region_chg adds a placeholder
   region in resv->regions, and this region is deleted by a racing call
   to region_del during region_chg execution or before region_add is
   called. Removing the race makes the code easier to reason about and
   maintain.

In addition, a follow up patch in another series that disables region
coalescing, which would be further complicated if the race with
region_del exists.

Link: http://lkml.kernel.org/r/20190919200428.188797-2-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:08 -08:00
Waiman Long 930668c344 hugetlbfs: take read_lock on i_mmap for PMD sharing
A customer with large SMP systems (up to 16 sockets) with application
that uses large amount of static hugepages (~500-1500GB) are
experiencing random multisecond delays.  These delays were caused by the
long time it took to scan the VMA interval tree with mmap_sem held.

The sharing of huge PMD does not require changes to the i_mmap at all.
Therefore, we can just take the read lock and let other threads
searching for the right VMA share it in parallel.  Once the right VMA is
found, either the PMD lock (2M huge page for x86-64) or the
mm->page_table_lock will be acquired to perform the actual PMD sharing.

Lock contention, if present, will happen in the spinlock.  That is much
better than contention in the rwsem where the time needed to scan the
the interval tree is indeterminate.

With this patch applied, the customer is seeing significant performance
improvement over the unpatched kernel.

Link: http://lkml.kernel.org/r/20191107211809.9539-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:08 -08:00
Mike Kravetz 552546366a hugetlbfs: hugetlb_fault_mutex_hash() cleanup
A new clang diagnostic (-Wsizeof-array-div) warns about the calculation
to determine the number of u32's in an array of unsigned longs.
Suppress warning by adding parentheses.

While looking at the above issue, noticed that the 'address' parameter
to hugetlb_fault_mutex_hash is no longer used.  So, remove it from the
definition and all callers.

No functional change.

Link: http://lkml.kernel.org/r/20190919011847.18400-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Ilie Halip <ilie.halip@gmail.com>
Cc: David Bolvansky <david.bolvansky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:08 -08:00
Anshuman Khandual 5e27a2df03 mm/page_alloc: add alloc_contig_pages()
HugeTLB helper alloc_gigantic_page() implements fairly generic
allocation method where it scans over various zones looking for a large
contiguous pfn range before trying to allocate it with
alloc_contig_range().

Other than deriving the requested order from 'struct hstate', there is
nothing HugeTLB specific in there.  This can be made available for
general use to allocate contiguous memory which could not have been
allocated through the buddy allocator.

alloc_gigantic_page() has been split carving out actual allocation
method which is then made available via new alloc_contig_pages() helper
wrapped under CONFIG_CONTIG_ALLOC.  All references to 'gigantic' have
been replaced with more generic term 'contig'.  Allocated pages here
should be freed with free_contig_range() or by calling __free_page() on
each allocated page.

Link: http://lkml.kernel.org/r/1571300646-32240-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:06 -08:00
David Hildenbrand f231fe4235 hugetlbfs: don't access uninitialized memmaps in pfn_range_valid_gigantic()
Uninitialized memmaps contain garbage and in the worst case trigger
kernel BUGs, especially with CONFIG_PAGE_POISONING.  They should not get
touched.

Let's make sure that we only consider online memory (managed by the
buddy) that has initialized memmaps.  ZONE_DEVICE is not applicable.

page_zone() will call page_to_nid(), which will trigger
VM_BUG_ON_PGFLAGS(PagePoisoned(page), page) with CONFIG_PAGE_POISONING
and CONFIG_DEBUG_VM_PGFLAGS when called on uninitialized memmaps.  This
can be the case when an offline memory block (e.g., never onlined) is
spanned by a zone.

Note: As explained by Michal in [1], alloc_contig_range() will verify
the range.  So it boils down to the wrong access in this function.

[1] http://lkml.kernel.org/r/20180423000943.GO17484@dhcp22.suse.cz

Link: http://lkml.kernel.org/r/20191015120717.4858-1-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-19 06:32:32 -04:00
Mike Kravetz f60858f9d3 hugetlbfs: don't retry when pool page allocations start to fail
When allocating hugetlbfs pool pages via /proc/sys/vm/nr_hugepages, the
pages will be interleaved between all nodes of the system.  If nodes are
not equal, it is quite possible for one node to fill up before the others.
When this happens, the code still attempts to allocate pages from the
full node.  This results in calls to direct reclaim and compaction which
slow things down considerably.

When allocating pool pages, note the state of the previous allocation for
each node.  If previous allocation failed, do not use the aggressive retry
algorithm on successive attempts.  The allocation will still succeed if
there is memory available, but it will not try as hard to free up memory.

Link: http://lkml.kernel.org/r/20190806014744.15446-5-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:10 -07:00
Mike Kravetz 4643d67e8c hugetlbfs: fix hugetlb page migration/fault race causing SIGBUS
Li Wang discovered that LTP/move_page12 V2 sometimes triggers SIGBUS in
the kernel-v5.2.3 testing.  This is caused by a race between hugetlb
page migration and page fault.

If a hugetlb page can not be allocated to satisfy a page fault, the task
is sent SIGBUS.  This is normal hugetlbfs behavior.  A hugetlb fault
mutex exists to prevent two tasks from trying to instantiate the same
page.  This protects against the situation where there is only one
hugetlb page, and both tasks would try to allocate.  Without the mutex,
one would fail and SIGBUS even though the other fault would be
successful.

There is a similar race between hugetlb page migration and fault.
Migration code will allocate a page for the target of the migration.  It
will then unmap the original page from all page tables.  It does this
unmap by first clearing the pte and then writing a migration entry.  The
page table lock is held for the duration of this clear and write
operation.  However, the beginnings of the hugetlb page fault code
optimistically checks the pte without taking the page table lock.  If
clear (as it can be during the migration unmap operation), a hugetlb
page allocation is attempted to satisfy the fault.  Note that the page
which will eventually satisfy this fault was already allocated by the
migration code.  However, the allocation within the fault path could
fail which would result in the task incorrectly being sent SIGBUS.

Ideally, we could take the hugetlb fault mutex in the migration code
when modifying the page tables.  However, locks must be taken in the
order of hugetlb fault mutex, page lock, page table lock.  This would
require significant rework of the migration code.  Instead, the issue is
addressed in the hugetlb fault code.  After failing to allocate a huge
page, take the page table lock and check for huge_pte_none before
returning an error.  This is the same check that must be made further in
the code even if page allocation is successful.

Link: http://lkml.kernel.org/r/20190808000533.7701-1-mike.kravetz@oracle.com
Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Li Wang <liwang@redhat.com>
Tested-by: Li Wang <liwang@redhat.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Cyril Hrubis <chrubis@suse.cz>
Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:53 -07:00
Naoya Horiguchi faf53def3b mm: hugetlb: soft-offline: dissolve_free_huge_page() return zero on !PageHuge
madvise(MADV_SOFT_OFFLINE) often returns -EBUSY when calling soft offline
for hugepages with overcommitting enabled.  That was caused by the
suboptimal code in current soft-offline code.  See the following part:

    ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
                            MIGRATE_SYNC, MR_MEMORY_FAILURE);
    if (ret) {
            ...
    } else {
            /*
             * We set PG_hwpoison only when the migration source hugepage
             * was successfully dissolved, because otherwise hwpoisoned
             * hugepage remains on free hugepage list, then userspace will
             * find it as SIGBUS by allocation failure. That's not expected
             * in soft-offlining.
             */
            ret = dissolve_free_huge_page(page);
            if (!ret) {
                    if (set_hwpoison_free_buddy_page(page))
                            num_poisoned_pages_inc();
            }
    }
    return ret;

Here dissolve_free_huge_page() returns -EBUSY if the migration source page
was freed into buddy in migrate_pages(), but even in that case we actually
has a chance that set_hwpoison_free_buddy_page() succeeds.  So that means
current code gives up offlining too early now.

dissolve_free_huge_page() checks that a given hugepage is suitable for
dissolving, where we should return success for !PageHuge() case because
the given hugepage is considered as already dissolved.

This change also affects other callers of dissolve_free_huge_page(), which
are cleaned up together.

[n-horiguchi@ah.jp.nec.com: v3]
  Link: http://lkml.kernel.org/r/1560761476-4651-3-git-send-email-n-horiguchi@ah.jp.nec.comLink: http://lkml.kernel.org/r/1560154686-18497-3-git-send-email-n-horiguchi@ah.jp.nec.com
Fixes: 6bc9b56433 ("mm: fix race on soft-offlining")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Chen, Jerry T <jerry.t.chen@intel.com>
Tested-by: Chen, Jerry T <jerry.t.chen@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Cc: "Chen, Jerry T" <jerry.t.chen@intel.com>
Cc: "Zhuo, Qiuxu" <qiuxu.zhuo@intel.com>
Cc: <stable@vger.kernel.org>	[4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-29 16:43:45 +08:00
Thomas Gleixner 457c899653 treewide: Add SPDX license identifier for missed files
Add SPDX license identifiers to all files which:

 - Have no license information of any form

 - Have EXPORT_.*_SYMBOL_GPL inside which was used in the
   initial scan/conversion to ignore the file

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:45 +02:00
Mike Kravetz f27a5136f7 hugetlbfs: always use address space in inode for resv_map pointer
Continuing discussion about 58b6e5e8f1 ("hugetlbfs: fix memory leak for
resv_map") brought up the issue that inode->i_mapping may not point to the
address space embedded within the inode at inode eviction time.  The
hugetlbfs truncate routine handles this by explicitly using inode->i_data.
However, code cleaning up the resv_map will still use the address space
pointed to by inode->i_mapping.  Luckily, private_data is NULL for address
spaces in all such cases today but, there is no guarantee this will
continue.

Change all hugetlbfs code getting a resv_map pointer to explicitly get it
from the address space embedded within the inode.  In addition, add more
comments in the code to indicate why this is being done.

Link: http://lkml.kernel.org/r/20190419204435.16984-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Yufen Yu <yuyufen@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:50 -07:00
Jérôme Glisse 7269f99993 mm/mmu_notifier: use correct mmu_notifier events for each invalidation
This updates each existing invalidation to use the correct mmu notifier
event that represent what is happening to the CPU page table.  See the
patch which introduced the events to see the rational behind this.

Link: http://lkml.kernel.org/r/20190326164747.24405-7-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Jérôme Glisse 6f4f13e8d9 mm/mmu_notifier: contextual information for event triggering invalidation
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).

Users of mmu notifier API track changes to the CPU page table and take
specific action for them.  While current API only provide range of virtual
address affected by the change, not why the changes is happening.

This patchset do the initial mechanical convertion of all the places that
calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP
event as well as the vma if it is know (most invalidation happens against
a given vma).  Passing down the vma allows the users of mmu notifier to
inspect the new vma page protection.

The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier
should assume that every for the range is going away when that event
happens.  A latter patch do convert mm call path to use a more appropriate
events for each call.

This is done as 2 patches so that no call site is forgotten especialy
as it uses this following coccinelle patch:

%<----------------------------------------------------------------------
@@
identifier I1, I2, I3, I4;
@@
static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1,
+enum mmu_notifier_event event,
+unsigned flags,
+struct vm_area_struct *vma,
struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... }

@@
@@
-#define mmu_notifier_range_init(range, mm, start, end)
+#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end)

@@
expression E1, E3, E4;
identifier I1;
@@
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, I1,
I1->vm_mm, E3, E4)
...>

@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(..., struct vm_area_struct *VMA, ...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }

@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(...) {
struct vm_area_struct *VMA;
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }

@@
expression E1, E2, E3, E4;
identifier FN;
@@
FN(...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, NULL,
E2, E3, E4)
...> }
---------------------------------------------------------------------->%

Applied with:
spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place
spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place
spatch --sp-file mmu-notifier.spatch --dir mm --in-place

Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Mike Kravetz 1b426bac66 hugetlb: use same fault hash key for shared and private mappings
hugetlb uses a fault mutex hash table to prevent page faults of the
same pages concurrently.  The key for shared and private mappings is
different.  Shared keys off address_space and file index.  Private keys
off mm and virtual address.  Consider a private mappings of a populated
hugetlbfs file.  A fault will map the page from the file and if needed
do a COW to map a writable page.

Hugetlbfs hole punch uses the fault mutex to prevent mappings of file
pages.  It uses the address_space file index key.  However, private
mappings will use a different key and could race with this code to map
the file page.  This causes problems (BUG) for the page cache remove
code as it expects the page to be unmapped.  A sample stack is:

page dumped because: VM_BUG_ON_PAGE(page_mapped(page))
kernel BUG at mm/filemap.c:169!
...
RIP: 0010:unaccount_page_cache_page+0x1b8/0x200
...
Call Trace:
__delete_from_page_cache+0x39/0x220
delete_from_page_cache+0x45/0x70
remove_inode_hugepages+0x13c/0x380
? __add_to_page_cache_locked+0x162/0x380
hugetlbfs_fallocate+0x403/0x540
? _cond_resched+0x15/0x30
? __inode_security_revalidate+0x5d/0x70
? selinux_file_permission+0x100/0x130
vfs_fallocate+0x13f/0x270
ksys_fallocate+0x3c/0x80
__x64_sys_fallocate+0x1a/0x20
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x44/0xa9

There seems to be another potential COW issue/race with this approach
of different private and shared keys as noted in commit 8382d914eb
("mm, hugetlb: improve page-fault scalability").

Since every hugetlb mapping (even anon and private) is actually a file
mapping, just use the address_space index key for all mappings.  This
results in potentially more hash collisions.  However, this should not
be the common case.

Link: http://lkml.kernel.org/r/20190328234704.27083-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20190412165235.t4sscoujczfhuiyt@linux-r8p5
Fixes: b5cec28d36 ("hugetlbfs: truncate_hugepages() takes a range of pages")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Mike Kravetz 0919e1b69a hugetlbfs: on restore reserve error path retain subpool reservation
When a huge page is allocated, PagePrivate() is set if the allocation
consumed a reservation.  When freeing a huge page, PagePrivate is checked.
If set, it indicates the reservation should be restored.  PagePrivate
being set at free huge page time mostly happens on error paths.

When huge page reservations are created, a check is made to determine if
the mapping is associated with an explicitly mounted filesystem.  If so,
pages are also reserved within the filesystem.  The default action when
freeing a huge page is to decrement the usage count in any associated
explicitly mounted filesystem.  However, if the reservation is to be
restored the reservation/use count within the filesystem should not be
decrementd.  Otherwise, a subsequent page allocation and free for the same
mapping location will cause the file filesystem usage to go 'negative'.

Filesystem                         Size  Used Avail Use% Mounted on
nodev                              4.0G -4.0M  4.1G    - /opt/hugepool

To fix, when freeing a huge page do not adjust filesystem usage if
PagePrivate() is set to indicate the reservation should be restored.

I did not cc stable as the problem has been around since reserves were
added to hugetlbfs and nobody has noticed.

Link: http://lkml.kernel.org/r/20190328234704.27083-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Oscar Salvador 2d0adf7e0d mm/hugetlb: get rid of NODEMASK_ALLOC
NODEMASK_ALLOC is used to allocate a nodemask bitmap, and it does it by
first determining whether it should be allocated on the stack or
dynamically, depending on NODES_SHIFT.  Right now, it goes the dynamic
path whenever the nodemask_t is above 32 bytes.

Although we could bump it to a reasonable value, the largest a nodemask_t
can get is 128 bytes, so since __nr_hugepages_store_common is called from
a rather short stack we can just get rid of the NODEMASK_ALLOC call here.

This reduces some code churn and complexity.

Link: http://lkml.kernel.org/r/20190402133415.21983-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Alex Ghiti <alex@ghiti.fr>
Cc: David Rientjes <rientjes@google.com>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Mike Kravetz fd875dca7c hugetlbfs: fix potential over/underflow setting node specific nr_hugepages
The number of node specific huge pages can be set via a file such as:
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages
When a node specific value is specified, the global number of huge pages
must also be adjusted.  This adjustment is calculated as the specified
node specific value + (global value - current node value).  If the node
specific value provided by the user is large enough, this calculation
could overflow an unsigned long leading to a smaller than expected number
of huge pages.

To fix, check the calculation for overflow.  If overflow is detected, use
ULONG_MAX as the requested value.  This is inline with the user request to
allocate as many huge pages as possible.

It was also noticed that the above calculation was done outside the
hugetlb_lock.  Therefore, the values could be inconsistent and result in
underflow.  To fix, the calculation is moved within the routine
set_max_huge_pages() where the lock is held.

In addition, the code in __nr_hugepages_store_common() which tries to
handle the case of not being able to allocate a node mask would likely
result in incorrect behavior.  Luckily, it is very unlikely we will ever
take this path.  If we do, simply return ENOMEM.

Link: http://lkml.kernel.org/r/20190328220533.19884-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jing Xiangfeng <jingxiangfeng@huawei.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Alex Ghiti <alex@ghiti.fr>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:48 -07:00
Alexandre Ghiti 4eb0716e86 hugetlb: allow to free gigantic pages regardless of the configuration
On systems without CONTIG_ALLOC activated but that support gigantic pages,
boottime reserved gigantic pages can not be freed at all.  This patch
simply enables the possibility to hand back those pages to memory
allocator.

Link: http://lkml.kernel.org/r/20190327063626.18421-5-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: David S. Miller <davem@davemloft.net> [sparc]
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Kai Shen 2bf753e64b mm/hugetlb.c: don't put_page in lock of hugetlb_lock
spinlock recursion happened when do LTP test:
#!/bin/bash
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &

The dtor returned by get_compound_page_dtor in __put_compound_page may be
the function of free_huge_page which will lock the hugetlb_lock, so don't
put_page in lock of hugetlb_lock.

 BUG: spinlock recursion on CPU#0, hugemmap05/1079
  lock: hugetlb_lock+0x0/0x18, .magic: dead4ead, .owner: hugemmap05/1079, .owner_cpu: 0
 Call trace:
  dump_backtrace+0x0/0x198
  show_stack+0x24/0x30
  dump_stack+0xa4/0xcc
  spin_dump+0x84/0xa8
  do_raw_spin_lock+0xd0/0x108
  _raw_spin_lock+0x20/0x30
  free_huge_page+0x9c/0x260
  __put_compound_page+0x44/0x50
  __put_page+0x2c/0x60
  alloc_surplus_huge_page.constprop.19+0xf0/0x140
  hugetlb_acct_memory+0x104/0x378
  hugetlb_reserve_pages+0xe0/0x250
  hugetlbfs_file_mmap+0xc0/0x140
  mmap_region+0x3e8/0x5b0
  do_mmap+0x280/0x460
  vm_mmap_pgoff+0xf4/0x128
  ksys_mmap_pgoff+0xb4/0x258
  __arm64_sys_mmap+0x34/0x48
  el0_svc_common+0x78/0x130
  el0_svc_handler+0x38/0x78
  el0_svc+0x8/0xc

Link: http://lkml.kernel.org/r/b8ade452-2d6b-0372-32c2-703644032b47@huawei.com
Fixes: 9980d744a0 ("mm, hugetlb: get rid of surplus page accounting tricks")
Signed-off-by: Kai Shen <shenkai8@huawei.com>
Signed-off-by: Feilong Lin <linfeilong@huawei.com>
Reported-by: Wang Wang <wangwang2@huawei.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:44 -07:00
Linus Torvalds 171c2bcbcb Merge branch 'core-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull unified TLB flushing from Ingo Molnar:
 "This contains the generic mmu_gather feature from Peter Zijlstra,
  which is an all-arch unification of TLB flushing APIs, via the
  following (broad) steps:

   - enhance the <asm-generic/tlb.h> APIs to cover more arch details

   - convert most TLB flushing arch implementations to the generic
     <asm-generic/tlb.h> APIs.

   - remove leftovers of per arch implementations

  After this series every single architecture makes use of the unified
  TLB flushing APIs"

* 'core-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  mm/resource: Use resource_overlaps() to simplify region_intersects()
  ia64/tlb: Eradicate tlb_migrate_finish() callback
  asm-generic/tlb: Remove tlb_table_flush()
  asm-generic/tlb: Remove tlb_flush_mmu_free()
  asm-generic/tlb: Remove CONFIG_HAVE_GENERIC_MMU_GATHER
  asm-generic/tlb: Remove arch_tlb*_mmu()
  s390/tlb: Convert to generic mmu_gather
  asm-generic/tlb: Introduce CONFIG_HAVE_MMU_GATHER_NO_GATHER=y
  arch/tlb: Clean up simple architectures
  um/tlb: Convert to generic mmu_gather
  sh/tlb: Convert SH to generic mmu_gather
  ia64/tlb: Convert to generic mmu_gather
  arm/tlb: Convert to generic mmu_gather
  asm-generic/tlb, arch: Invert CONFIG_HAVE_RCU_TABLE_INVALIDATE
  asm-generic/tlb, ia64: Conditionally provide tlb_migrate_finish()
  asm-generic/tlb: Provide generic tlb_flush() based on flush_tlb_mm()
  asm-generic/tlb, arch: Provide generic tlb_flush() based on flush_tlb_range()
  asm-generic/tlb, arch: Provide generic VIPT cache flush
  asm-generic/tlb, arch: Provide CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
  asm-generic/tlb: Provide a comment
2019-05-06 11:36:58 -07:00
Linus Torvalds 6b3a707736 Merge branch 'page-refs' (page ref overflow)
Merge page ref overflow branch.

Jann Horn reported that he can overflow the page ref count with
sufficient memory (and a filesystem that is intentionally extremely
slow).

Admittedly it's not exactly easy.  To have more than four billion
references to a page requires a minimum of 32GB of kernel memory just
for the pointers to the pages, much less any metadata to keep track of
those pointers.  Jann needed a total of 140GB of memory and a specially
crafted filesystem that leaves all reads pending (in order to not ever
free the page references and just keep adding more).

Still, we have a fairly straightforward way to limit the two obvious
user-controllable sources of page references: direct-IO like page
references gotten through get_user_pages(), and the splice pipe page
duplication.  So let's just do that.

* branch page-refs:
  fs: prevent page refcount overflow in pipe_buf_get
  mm: prevent get_user_pages() from overflowing page refcount
  mm: add 'try_get_page()' helper function
  mm: make page ref count overflow check tighter and more explicit
2019-04-14 15:09:40 -07:00
Linus Torvalds 8fde12ca79 mm: prevent get_user_pages() from overflowing page refcount
If the page refcount wraps around past zero, it will be freed while
there are still four billion references to it.  One of the possible
avenues for an attacker to try to make this happen is by doing direct IO
on a page multiple times.  This patch makes get_user_pages() refuse to
take a new page reference if there are already more than two billion
references to the page.

Reported-by: Jann Horn <jannh@google.com>
Acked-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-14 10:00:04 -07:00
Peter Zijlstra ed6a79352c asm-generic/tlb, arch: Provide CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
Move the mmu_gather::page_size things into the generic code instead of
PowerPC specific bits.

No change in behavior intended.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 10:32:40 +02:00
Aneesh Kumar K.V 9a4e9f3b2d mm: update get_user_pages_longterm to migrate pages allocated from CMA region
This patch updates get_user_pages_longterm to migrate pages allocated
out of CMA region.  This makes sure that we don't keep non-movable pages
(due to page reference count) in the CMA area.

This will be used by ppc64 in a later patch to avoid pinning pages in
the CMA region.  ppc64 uses CMA region for allocation of the hardware
page table (hash page table) and not able to migrate pages out of CMA
region results in page table allocation failures.

One case where we hit this easy is when a guest using a VFIO passthrough
device.  VFIO locks all the guest's memory and if the guest memory is
backed by CMA region, it becomes unmovable resulting in fragmenting the
CMA and possibly preventing other guests from allocation a large enough
hash page table.

NOTE: We allocate the new page without using __GFP_THISNODE

Link: http://lkml.kernel.org/r/20190114095438.32470-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Aneesh Kumar K.V 023bdd0023 mm/hugetlb: add prot_modify_start/commit sequence for hugetlb update
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte.  Follow the regular pte change protection
sequence for hugetlb too.  This allows the architectures to override the
update sequence.

Link: http://lkml.kernel.org/r/20190116085035.29729-5-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Anshuman Khandual 7ed2c31dab mm/hugetlb: distinguish between migratability and movability
Patch series "arm64/mm: Enable HugeTLB migration", v4.

This patch series enables HugeTLB migration support for all supported
huge page sizes at all levels including contiguous bit implementation.
Following HugeTLB migration support matrix has been enabled with this
patch series.  All permutations have been tested except for the 16GB.

           CONT PTE    PMD    CONT PMD    PUD
           --------    ---    --------    ---
  4K:         64K     2M         32M     1G
  16K:         2M    32M          1G
  64K:         2M   512M         16G

First the series adds migration support for PUD based huge pages.  It
then adds a platform specific hook to query an architecture if a given
huge page size is supported for migration while also providing a default
fallback option preserving the existing semantics which just checks for
(PMD|PUD|PGDIR)_SHIFT macros.  The last two patches enables HugeTLB
migration on arm64 and subscribe to this new platform specific hook by
defining an override.

The second patch differentiates between movability and migratability
aspects of huge pages and implements hugepage_movable_supported() which
can then be used during allocation to decide whether to place the huge
page in movable zone or not.

This patch (of 5):

During huge page allocation it's migratability is checked to determine
if it should be placed under movable zones with GFP_HIGHUSER_MOVABLE.
But the movability aspect of the huge page could depend on other factors
than just migratability.  Movability in itself is a distinct property
which should not be tied with migratability alone.

This differentiates these two and implements an enhanced movability check
which also considers huge page size to determine if it is feasible to be
placed under a movable zone.  At present it just checks for gigantic pages
but going forward it can incorporate other enhanced checks.

Link: http://lkml.kernel.org/r/1545121450-1663-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:15 -08:00
Anshuman Khandual 98fa15f34c mm: replace all open encodings for NUMA_NO_NODE
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.

All these places for replacement were found by running the following
grep patterns on the entire kernel code.  Please let me know if this
might have missed some instances.  This might also have replaced some
false positives.  I will appreciate suggestions, inputs and review.

1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"

This patch (of 2):

At present there are multiple places where invalid node number is
encoded as -1.  Even though implicitly understood it is always better to
have macros in there.  Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE.  This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.

Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>	[ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk>			[mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org>			[dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au>		[powerpc]
Acked-by: Doug Ledford <dledford@redhat.com>		[drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:14 -08:00
Mike Kravetz cb6acd01e2 hugetlbfs: fix races and page leaks during migration
hugetlb pages should only be migrated if they are 'active'.  The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.

When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked.  Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code.  This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.

To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.

Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available.  A program mmaps a 2G file in a hugetlbfs filesystem.  It
then migrates the pages associated with the file from one node to
another.  When the program exits, huge page counts are as follows:

  node0
  1024    free_hugepages
  1024    nr_hugepages

  node1
  0       free_hugepages
  1024    nr_hugepages

  Filesystem                         Size  Used Avail Use% Mounted on
  nodev                              4.0G  2.0G  2.0G  50% /var/opt/hugepool

That is as expected.  2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem.  If the file is then removed, the counts become:

  node0
  1024    free_hugepages
  1024    nr_hugepages

  node1
  1024    free_hugepages
  1024    nr_hugepages

  Filesystem                         Size  Used Avail Use% Mounted on
  nodev                              4.0G  2.0G  2.0G  50% /var/opt/hugepool

Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use.  The only way to 'fix' the filesystem
accounting is to unmount the filesystem

If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field.  At migration
time, this information is not preserved.  To fix, simply transfer
page_private from old to new page at migration time if necessary.

There is a related race with removing a huge page from a file and
migration.  When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page().  A page could be migrated
while in this state.  However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.

To fix that, check for this condition before migrating a huge page.  If
the condition is detected, return EBUSY for the page.

Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc5422230 ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
[mike.kravetz@oracle.com: v2]
  Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz@oracle.com: update comment and changelog]
  Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-01 09:02:33 -08:00
Andrea Arcangeli 1ac25013fb mm/hugetlb.c: teach follow_hugetlb_page() to handle FOLL_NOWAIT
hugetlb needs the same fix as faultin_nopage (which was applied in
commit 96312e6128 ("mm/gup.c: teach get_user_pages_unlocked to handle
FOLL_NOWAIT")) or KVM hangs because it thinks the mmap_sem was already
released by hugetlb_fault() if it returned VM_FAULT_RETRY, but it wasn't
in the FOLL_NOWAIT case.

Link: http://lkml.kernel.org/r/20190109020203.26669-2-aarcange@redhat.com
Fixes: ce53053ce3 ("kvm: switch get_user_page_nowait() to get_user_pages_unlocked()")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Reported-by: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01 15:46:23 -08:00
Mike Kravetz ddeaab32a8 hugetlbfs: revert "use i_mmap_rwsem for more pmd sharing synchronization"
This reverts b43a999005

The reverted commit caused issues with migration and poisoning of anon
huge pages.  The LTP move_pages12 test will cause an "unable to handle
kernel NULL pointer" BUG would occur with stack similar to:

  RIP: 0010:down_write+0x1b/0x40
  Call Trace:
    migrate_pages+0x81f/0xb90
    __ia32_compat_sys_migrate_pages+0x190/0x190
    do_move_pages_to_node.isra.53.part.54+0x2a/0x50
    kernel_move_pages+0x566/0x7b0
    __x64_sys_move_pages+0x24/0x30
    do_syscall_64+0x5b/0x180
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

The purpose of the reverted patch was to fix some long existing races
with huge pmd sharing.  It used i_mmap_rwsem for this purpose with the
idea that this could also be used to address truncate/page fault races
with another patch.  Further analysis has determined that i_mmap_rwsem
can not be used to address all these hugetlbfs synchronization issues.
Therefore, revert this patch while working an another approach to the
underlying issues.

Link: http://lkml.kernel.org/r/20190103235452.29335-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-08 17:15:11 -08:00
Mike Kravetz e7c5809779 hugetlbfs: revert "Use i_mmap_rwsem to fix page fault/truncate race"
This reverts c86aa7bbfd

The reverted commit caused ABBA deadlocks when file migration raced with
file eviction for specific hugetlbfs files.  This was discovered with a
modified version of the LTP move_pages12 test.

The purpose of the reverted patch was to close a long existing race
between hugetlbfs file truncation and page faults.  After more analysis
of the patch and impacted code, it was determined that i_mmap_rwsem can
not be used for all required synchronization.  Therefore, revert this
patch while working an another approach to the underlying issue.

Link: http://lkml.kernel.org/r/20190103235452.29335-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-08 17:15:11 -08:00
Davidlohr Bueso fa45f1162f mm/: remove caller signal_pending branch predictions
This is already done for us internally by the signal machinery.

Link: http://lkml.kernel.org/r/20181116002713.8474-5-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 13:13:48 -08:00
Mike Kravetz c86aa7bbfd hugetlbfs: Use i_mmap_rwsem to fix page fault/truncate race
hugetlbfs page faults can race with truncate and hole punch operations.
Current code in the page fault path attempts to handle this by 'backing
out' operations if we encounter the race.  One obvious omission in the
current code is removing a page newly added to the page cache.  This is
pretty straight forward to address, but there is a more subtle and
difficult issue of backing out hugetlb reservations.  To handle this
correctly, the 'reservation state' before page allocation needs to be
noted so that it can be properly backed out.  There are four distinct
possibilities for reservation state: shared/reserved, shared/no-resv,
private/reserved and private/no-resv.  Backing out a reservation may
require memory allocation which could fail so that needs to be taken into
account as well.

Instead of writing the required complicated code for this rare occurrence,
just eliminate the race.  i_mmap_rwsem is now held in read mode for the
duration of page fault processing.  Hold i_mmap_rwsem longer in truncation
and hold punch code to cover the call to remove_inode_hugepages.

With this modification, code in remove_inode_hugepages checking for races
becomes 'dead' as it can not longer happen.  Remove the dead code and
expand comments to explain reasoning.  Similarly, checks for races with
truncation in the page fault path can be simplified and removed.

[mike.kravetz@oracle.com: incorporat suggestions from Kirill]
  Link: http://lkml.kernel.org/r/20181222223013.22193-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20181218223557.5202-3-mike.kravetz@oracle.com
Fixes: ebed4bfc8d ("hugetlb: fix absurd HugePages_Rsvd")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:52 -08:00
Mike Kravetz b43a999005 hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table.  Consider the following:

A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep.  Suppose the returned ptep points to a
shared pmd.

Now, another task truncates the hugetlbfs file.  As part of truncation, it
unmaps everyone who has the file mapped.  If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called.  For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd.  If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse.  This leads to bad things such as incorrect page
map/reference counts or invalid memory references.

To fix, expand the use of i_mmap_rwsem as follows:

- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
  huge_pmd_share is only called via huge_pte_alloc, so callers of
  huge_pte_alloc take i_mmap_rwsem before calling.  In addition, callers
  of huge_pte_alloc continue to hold the semaphore until finished with the
  ptep.

- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is
  called.

[mike.kravetz@oracle.com: add explicit check for mapping != null]
Link: http://lkml.kernel.org/r/20181218223557.5202-2-mike.kravetz@oracle.com
Fixes: 39dde65c99 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:51 -08:00
Jérôme Glisse ac46d4f3c4 mm/mmu_notifier: use structure for invalidate_range_start/end calls v2
To avoid having to change many call sites everytime we want to add a
parameter use a structure to group all parameters for the mmu_notifier
invalidate_range_start/end cakks.  No functional changes with this patch.

[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181205053628.3210-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
From: Jérôme Glisse <jglisse@redhat.com>
Subject: mm/mmu_notifier: use structure for invalidate_range_start/end calls v3

fix build warning in migrate.c when CONFIG_MMU_NOTIFIER=n

Link: http://lkml.kernel.org/r/20181213171330.8489-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:50 -08:00
Yongkai Wu 8ace22bce8 hugetlbfs: call VM_BUG_ON_PAGE earlier in free_huge_page()
A stack trace was triggered by VM_BUG_ON_PAGE(page_mapcount(page), page)
in free_huge_page().  Unfortunately, the page->mapping field was set to
NULL before this test.  This made it more difficult to determine the
root cause of the problem.

Move the VM_BUG_ON_PAGE tests earlier in the function so that if they do
trigger more information is present in the page struct.

Link: http://lkml.kernel.org/r/1543491843-23438-1-git-send-email-nic_w@163.com
Signed-off-by: Yongkai Wu <nic_w@163.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-14 15:05:45 -08:00
Andrea Arcangeli 9e368259ad userfaultfd: use ENOENT instead of EFAULT if the atomic copy user fails
Patch series "userfaultfd shmem updates".

Jann found two bugs in the userfaultfd shmem MAP_SHARED backend: the
lack of the VM_MAYWRITE check and the lack of i_size checks.

Then looking into the above we also fixed the MAP_PRIVATE case.

Hugh by source review also found a data loss source if UFFDIO_COPY is
used on shmem MAP_SHARED PROT_READ mappings (the production usages
incidentally run with PROT_READ|PROT_WRITE, so the data loss couldn't
happen in those production usages like with QEMU).

The whole patchset is marked for stable.

We verified QEMU postcopy live migration with guest running on shmem
MAP_PRIVATE run as well as before after the fix of shmem MAP_PRIVATE.
Regardless if it's shmem or hugetlbfs or MAP_PRIVATE or MAP_SHARED, QEMU
unconditionally invokes a punch hole if the guest mapping is filebacked
and a MADV_DONTNEED too (needed to get rid of the MAP_PRIVATE COWs and
for the anon backend).

This patch (of 5):

We internally used EFAULT to communicate with the caller, switch to
ENOENT, so EFAULT can be used as a non internal retval.

Link: http://lkml.kernel.org/r/20181126173452.26955-2-aarcange@redhat.com
Fixes: 4c27fe4c4c ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Hugh Dickins <hughd@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jann Horn <jannh@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 14:56:14 -08:00
Mike Kravetz 5e41540c8a hugetlbfs: fix kernel BUG at fs/hugetlbfs/inode.c:444!
This bug has been experienced several times by the Oracle DB team.  The
BUG is in remove_inode_hugepages() as follows:

	/*
	 * If page is mapped, it was faulted in after being
	 * unmapped in caller.  Unmap (again) now after taking
	 * the fault mutex.  The mutex will prevent faults
	 * until we finish removing the page.
	 *
	 * This race can only happen in the hole punch case.
	 * Getting here in a truncate operation is a bug.
	 */
	if (unlikely(page_mapped(page))) {
		BUG_ON(truncate_op);

In this case, the elevated map count is not the result of a race.
Rather it was incorrectly incremented as the result of a bug in the huge
pmd sharing code.  Consider the following:

 - Process A maps a hugetlbfs file of sufficient size and alignment
   (PUD_SIZE) that a pmd page could be shared.

 - Process B maps the same hugetlbfs file with the same size and
   alignment such that a pmd page is shared.

 - Process B then calls mprotect() to change protections for the mapping
   with the shared pmd. As a result, the pmd is 'unshared'.

 - Process B then calls mprotect() again to chage protections for the
   mapping back to their original value. pmd remains unshared.

 - Process B then forks and process C is created. During the fork
   process, we do dup_mm -> dup_mmap -> copy_page_range to copy page
   tables. Copying page tables for hugetlb mappings is done in the
   routine copy_hugetlb_page_range.

In copy_hugetlb_page_range(), the destination pte is obtained by:

	dst_pte = huge_pte_alloc(dst, addr, sz);

If pmd sharing is possible, the returned pointer will be to a pte in an
existing page table.  In the situation above, process C could share with
either process A or process B.  Since process A is first in the list,
the returned pte is a pointer to a pte in process A's page table.

However, the check for pmd sharing in copy_hugetlb_page_range is:

	/* If the pagetables are shared don't copy or take references */
	if (dst_pte == src_pte)
		continue;

Since process C is sharing with process A instead of process B, the
above test fails.  The code in copy_hugetlb_page_range which follows
assumes dst_pte points to a huge_pte_none pte.  It copies the pte entry
from src_pte to dst_pte and increments this map count of the associated
page.  This is how we end up with an elevated map count.

To solve, check the dst_pte entry for huge_pte_none.  If !none, this
implies PMD sharing so do not copy.

Link: http://lkml.kernel.org/r/20181105212315.14125-1-mike.kravetz@oracle.com
Fixes: c5c99429fa ("fix hugepages leak due to pagetable page sharing")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-18 10:15:09 -08:00
Mike Rapoport 57c8a661d9 mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.

The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>

@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>

[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
  Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport 97ad1087ef memblock: replace BOOTMEM_ALLOC_* with MEMBLOCK variants
Drop BOOTMEM_ALLOC_ACCESSIBLE and BOOTMEM_ALLOC_ANYWHERE in favor of
identical MEMBLOCK definitions.

Link: http://lkml.kernel.org/r/1536927045-23536-29-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport eb31d559f1 memblock: remove _virt from APIs returning virtual address
The conversion is done using

sed -i 's@memblock_virt_alloc@memblock_alloc@g' \
	$(git grep -l memblock_virt_alloc)

Link: http://lkml.kernel.org/r/1536927045-23536-8-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:15 -07:00
Mike Kravetz 22146c3ce9 hugetlbfs: dirty pages as they are added to pagecache
Some test systems were experiencing negative huge page reserve counts and
incorrect file block counts.  This was traced to /proc/sys/vm/drop_caches
removing clean pages from hugetlbfs file pagecaches.  When non-hugetlbfs
explicit code removes the pages, the appropriate accounting is not
performed.

This can be recreated as follows:
 fallocate -l 2M /dev/hugepages/foo
 echo 1 > /proc/sys/vm/drop_caches
 fallocate -l 2M /dev/hugepages/foo
 grep -i huge /proc/meminfo
   AnonHugePages:         0 kB
   ShmemHugePages:        0 kB
   HugePages_Total:    2048
   HugePages_Free:     2047
   HugePages_Rsvd:    18446744073709551615
   HugePages_Surp:        0
   Hugepagesize:       2048 kB
   Hugetlb:         4194304 kB
 ls -lsh /dev/hugepages/foo
   4.0M -rw-r--r--. 1 root root 2.0M Oct 17 20:05 /dev/hugepages/foo

To address this issue, dirty pages as they are added to pagecache.  This
can easily be reproduced with fallocate as shown above.  Read faulted
pages will eventually end up being marked dirty.  But there is a window
where they are clean and could be impacted by code such as drop_caches.
So, just dirty them all as they are added to the pagecache.

Link: http://lkml.kernel.org/r/b5be45b8-5afe-56cd-9482-28384699a049@oracle.com
Fixes: 6bda666a03 ("hugepages: fold find_or_alloc_pages into huge_no_page()")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Mihcla Hocko <mhocko@suse.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:38:16 -07:00
Mike Kravetz dff11abe28 hugetlb: take PMD sharing into account when flushing tlb/caches
When fixing an issue with PMD sharing and migration, it was discovered via
code inspection that other callers of huge_pmd_unshare potentially have an
issue with cache and tlb flushing.

Use the routine adjust_range_if_pmd_sharing_possible() to calculate worst
case ranges for mmu notifiers.  Ensure that this range is flushed if
huge_pmd_unshare succeeds and unmaps a PUD_SUZE area.

Link: http://lkml.kernel.org/r/20180823205917.16297-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 16:32:04 -07:00
Mike Kravetz 017b1660df mm: migration: fix migration of huge PMD shared pages
The page migration code employs try_to_unmap() to try and unmap the source
page.  This is accomplished by using rmap_walk to find all vmas where the
page is mapped.  This search stops when page mapcount is zero.  For shared
PMD huge pages, the page map count is always 1 no matter the number of
mappings.  Shared mappings are tracked via the reference count of the PMD
page.  Therefore, try_to_unmap stops prematurely and does not completely
unmap all mappings of the source page.

This problem can result is data corruption as writes to the original
source page can happen after contents of the page are copied to the target
page.  Hence, data is lost.

This problem was originally seen as DB corruption of shared global areas
after a huge page was soft offlined due to ECC memory errors.  DB
developers noticed they could reproduce the issue by (hotplug) offlining
memory used to back huge pages.  A simple testcase can reproduce the
problem by creating a shared PMD mapping (note that this must be at least
PUD_SIZE in size and PUD_SIZE aligned (1GB on x86)), and using
migrate_pages() to migrate process pages between nodes while continually
writing to the huge pages being migrated.

To fix, have the try_to_unmap_one routine check for huge PMD sharing by
calling huge_pmd_unshare for hugetlbfs huge pages.  If it is a shared
mapping it will be 'unshared' which removes the page table entry and drops
the reference on the PMD page.  After this, flush caches and TLB.

mmu notifiers are called before locking page tables, but we can not be
sure of PMD sharing until page tables are locked.  Therefore, check for
the possibility of PMD sharing before locking so that notifiers can
prepare for the worst possible case.

Link: http://lkml.kernel.org/r/20180823205917.16297-2-mike.kravetz@oracle.com
[mike.kravetz@oracle.com: make _range_in_vma() a static inline]
  Link: http://lkml.kernel.org/r/6063f215-a5c8-2f0c-465a-2c515ddc952d@oracle.com
Fixes: 39dde65c99 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 16:32:04 -07:00
Souptick Joarder 2b74030354 mm: Change return type int to vm_fault_t for fault handlers
Use new return type vm_fault_t for fault handler.  For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno.  Once all instances are converted, vm_fault_t will become a
distinct type.

Ref-> commit 1c8f422059 ("mm: change return type to vm_fault_t")

The aim is to change the return type of finish_fault() and
handle_mm_fault() to vm_fault_t type.  As part of that clean up return
type of all other recursively called functions have been changed to
vm_fault_t type.

The places from where handle_mm_fault() is getting invoked will be
change to vm_fault_t type but in a separate patch.

vmf_error() is the newly introduce inline function in 4.17-rc6.

[akpm@linux-foundation.org: don't shadow outer local `ret' in __do_huge_pmd_anonymous_page()]
Link: http://lkml.kernel.org/r/20180604171727.GA20279@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-23 18:48:44 -07:00
Naoya Horiguchi 6bc9b56433 mm: fix race on soft-offlining free huge pages
Patch series "mm: soft-offline: fix race against page allocation".

Xishi recently reported the issue about race on reusing the target pages
of soft offlining.  Discussion and analysis showed that we need make
sure that setting PG_hwpoison should be done in the right place under
zone->lock for soft offline.  1/2 handles free hugepage's case, and 2/2
hanldes free buddy page's case.

This patch (of 2):

There's a race condition between soft offline and hugetlb_fault which
causes unexpected process killing and/or hugetlb allocation failure.

The process killing is caused by the following flow:

  CPU 0               CPU 1              CPU 2

  soft offline
    get_any_page
    // find the hugetlb is free
                      mmap a hugetlb file
                      page fault
                        ...
                          hugetlb_fault
                            hugetlb_no_page
                              alloc_huge_page
                              // succeed
      soft_offline_free_page
      // set hwpoison flag
                                         mmap the hugetlb file
                                         page fault
                                           ...
                                             hugetlb_fault
                                               hugetlb_no_page
                                                 find_lock_page
                                                   return VM_FAULT_HWPOISON
                                           mm_fault_error
                                             do_sigbus
                                             // kill the process

The hugetlb allocation failure comes from the following flow:

  CPU 0                          CPU 1

                                 mmap a hugetlb file
                                 // reserve all free page but don't fault-in
  soft offline
    get_any_page
    // find the hugetlb is free
      soft_offline_free_page
      // set hwpoison flag
        dissolve_free_huge_page
        // fail because all free hugepages are reserved
                                 page fault
                                   ...
                                     hugetlb_fault
                                       hugetlb_no_page
                                         alloc_huge_page
                                           ...
                                             dequeue_huge_page_node_exact
                                             // ignore hwpoisoned hugepage
                                             // and finally fail due to no-mem

The root cause of this is that current soft-offline code is written based
on an assumption that PageHWPoison flag should be set at first to avoid
accessing the corrupted data.  This makes sense for memory_failure() or
hard offline, but does not for soft offline because soft offline is about
corrected (not uncorrected) error and is safe from data lost.  This patch
changes soft offline semantics where it sets PageHWPoison flag only after
containment of the error page completes successfully.

Link: http://lkml.kernel.org/r/1531452366-11661-2-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Suggested-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <zy.zhengyi@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-23 18:48:43 -07:00
Cannon Matthews 330d6e489a mm/hugetlb.c: don't zero 1GiB bootmem pages
When using 1GiB pages during early boot, use the new
memblock_virt_alloc_try_nid_raw() to allocate memory without zeroing it.
Zeroing out hundreds or thousands of GiB in a single core memset() call
is very slow, and can make early boot last upwards of 20-30 minutes on
multi TiB machines.

The memory does not need to be zero'd as the hugetlb pages are always
zero'd on page fault.

Tested: Booted with ~3800 1G pages, and it booted successfully in
roughly the same amount of time as with 0, as opposed to the 25+ minutes
it would take before.

Link: http://lkml.kernel.org/r/20180711213313.92481-1-cannonmatthews@google.com
Signed-off-by: Cannon Matthews <cannonmatthews@google.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:32 -07:00
Mike Kravetz 40d18ebffb mm/hugetlb: remove gigantic page support for HIGHMEM
This reverts ee8f248d26 ("hugetlb: add phys addr to struct
huge_bootmem_page").

At one time powerpc used this field and supporting code.  However that
was removed with commit 79cc38ded1 ("powerpc/mm/hugetlb: Add support
for reserving gigantic huge pages via kernel command line").

There are no users of this field and supporting code, so remove it.

Link: http://lkml.kernel.org/r/20180711195913.1294-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:32 -07:00
Huang Ying 974e6d66b6 mm, hugetlbfs: pass fault address to cow handler
This is to take better advantage of the general huge page copying
optimization.  Where, the target subpage will be copied last to avoid
the cache lines of target subpage to be evicted when copying other
subpages.  This works better if the address of the target subpage is
available when copying huge page.  So hugetlbfs page fault handlers are
changed to pass that information to hugetlb_cow().  This will benefit
workloads which don't access the begin of the hugetlbfs huge page after
the page fault under heavy cache contention.

Link: http://lkml.kernel.org/r/20180524005851.4079-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Huang Ying 5b7a1d4060 mm, hugetlbfs: rename address to haddr in hugetlb_cow()
To take better advantage of general huge page copying optimization, the
target subpage address will be passed to hugetlb_cow(), then
copy_user_huge_page().  So we will use both target subpage address and
huge page size aligned address in hugetlb_cow().  To distinguish between
them, "haddr" is used for huge page size aligned address to be
consistent with Transparent Huge Page naming convention.

Now, only huge page size aligned address is used in hugetlb_cow(), so
the "address" is renamed to "haddr" in hugetlb_cow() in this patch.
Next patch will use target subpage address in hugetlb_cow() too.

The patch is just code cleanup without any functionality changes.

Link: http://lkml.kernel.org/r/20180524005851.4079-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Jane Chu eec3636ad1 ipc/shm.c add ->pagesize function to shm_vm_ops
Commit 05ea88608d ("mm, hugetlbfs: introduce ->pagesize() to
vm_operations_struct") adds a new ->pagesize() function to
hugetlb_vm_ops, intended to cover all hugetlbfs backed files.

With System V shared memory model, if "huge page" is specified, the
"shared memory" is backed by hugetlbfs files, but the mappings initiated
via shmget/shmat have their original vm_ops overwritten with shm_vm_ops,
so we need to add a ->pagesize function to shm_vm_ops.  Otherwise,
vma_kernel_pagesize() returns PAGE_SIZE given a hugetlbfs backed vma,
result in below BUG:

  fs/hugetlbfs/inode.c
        443             if (unlikely(page_mapped(page))) {
        444                     BUG_ON(truncate_op);

resulting in

  hugetlbfs: oracle (4592): Using mlock ulimits for SHM_HUGETLB is deprecated
  ------------[ cut here ]------------
  kernel BUG at fs/hugetlbfs/inode.c:444!
  Modules linked in: nfsv3 rpcsec_gss_krb5 nfsv4 ...
  CPU: 35 PID: 5583 Comm: oracle_5583_sbt Not tainted 4.14.35-1829.el7uek.x86_64 #2
  RIP: 0010:remove_inode_hugepages+0x3db/0x3e2
  ....
  Call Trace:
    hugetlbfs_evict_inode+0x1e/0x3e
    evict+0xdb/0x1af
    iput+0x1a2/0x1f7
    dentry_unlink_inode+0xc6/0xf0
    __dentry_kill+0xd8/0x18d
    dput+0x1b5/0x1ed
    __fput+0x18b/0x216
    ____fput+0xe/0x10
    task_work_run+0x90/0xa7
    exit_to_usermode_loop+0xdd/0x116
    do_syscall_64+0x187/0x1ae
    entry_SYSCALL_64_after_hwframe+0x150/0x0

[jane.chu@oracle.com: relocate comment]
  Link: http://lkml.kernel.org/r/20180731044831.26036-1-jane.chu@oracle.com
Link: http://lkml.kernel.org/r/20180727211727.5020-1-jane.chu@oracle.com
Fixes: 05ea88608d ("mm, hugetlbfs: introduce ->pagesize() to vm_operations_struct")
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Manfred Spraul <manfred@colorfullife.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-02 16:03:40 -07:00
Cannon Matthews 520495fe96 mm: hugetlb: yield when prepping struct pages
When booting with very large numbers of gigantic (i.e.  1G) pages, the
operations in the loop of gather_bootmem_prealloc, and specifically
prep_compound_gigantic_page, takes a very long time, and can cause a
softlockup if enough pages are requested at boot.

For example booting with 3844 1G pages requires prepping
(set_compound_head, init the count) over 1 billion 4K tail pages, which
takes considerable time.

Add a cond_resched() to the outer loop in gather_bootmem_prealloc() to
prevent this lockup.

Tested: Booted with softlockup_panic=1 hugepagesz=1G hugepages=3844 and
no softlockup is reported, and the hugepages are reported as
successfully setup.

Link: http://lkml.kernel.org/r/20180627214447.260804-1-cannonmatthews@google.com
Signed-off-by: Cannon Matthews <cannonmatthews@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-07-03 17:32:19 -07:00
Kees Cook 6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Huang Ying 285b8dcaac mm, hugetlbfs: pass fault address to no page handler
This is to take better advantage of general huge page clearing
optimization (commit c79b57e462b5: "mm: hugetlb: clear target sub-page
last when clearing huge page") for hugetlbfs.

In the general optimization patch, the sub-page to access will be
cleared last to avoid the cache lines of to access sub-page to be
evicted when clearing other sub-pages.  This works better if we have the
address of the sub-page to access, that is, the fault address inside the
huge page.  So the hugetlbfs no page fault handler is changed to pass
that information.  This will benefit workloads which don't access the
begin of the hugetlbfs huge page after the page fault under heavy cache
contention for shared last level cache.

The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case.  To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on hugetlbfs.

With this patch, the throughput increases ~28.1% in vm-scalability
anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4
system (44 cores, 88 threads).  The test case creates 88 processes, each
process mmaps a big anonymous memory area with MAP_HUGETLB and writes to
it from the end to the begin.  For each process, other processes could
be seen as other workload which generates heavy cache pressure.  At the
same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC
(instruction per cycle) increased from 0.3 to 0.37, and the time spent
in user space is reduced ~19.3%.

Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:36 -07:00
Souptick Joarder b3ec9f33ac mm: change return type to vm_fault_t
Use new return type vm_fault_t for fault handler in struct
vm_operations_struct.  For now, this is just documenting that the
function returns a VM_FAULT value rather than an errno.  Once all
instances are converted, vm_fault_t will become a distinct type.

See commit 1c8f422059 ("mm: change return type to vm_fault_t")

Link: http://lkml.kernel.org/r/20180512063745.GA26866@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joe Perches <joe@perches.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:36 -07:00
Jonathan Corbet 24844fd339 Merge branch 'mm-rst' into docs-next
Mike Rapoport says:

  These patches convert files in Documentation/vm to ReST format, add an
  initial index and link it to the top level documentation.

  There are no contents changes in the documentation, except few spelling
  fixes. The relatively large diffstat stems from the indentation and
  paragraph wrapping changes.

  I've tried to keep the formatting as consistent as possible, but I could
  miss some places that needed markup and add some markup where it was not
  necessary.

[jc: significant conflicts in vm/hmm.rst]
2018-04-16 14:25:08 -06:00
Mike Rapoport ad56b738c5 docs/vm: rename documentation files to .rst
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2018-04-16 14:18:15 -06:00
Dan Williams 05ea88608d mm, hugetlbfs: introduce ->pagesize() to vm_operations_struct
When device-dax is operating in huge-page mode we want it to behave like
hugetlbfs and report the MMU page mapping size that is being enforced by
the vma.

Similar to commit 31383c6865 "mm, hugetlbfs: introduce ->split() to
vm_operations_struct" it would be messy to teach vma_mmu_pagesize()
about device-dax page mapping sizes in the same (hstate) way that
hugetlbfs communicates this attribute.  Instead, these patches introduce
a new ->pagesize() vm operation.

Link: http://lkml.kernel.org/r/151996254734.27922.15813097401404359642.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:26 -07:00
Dan Williams 09135cc594 mm, powerpc: use vma_kernel_pagesize() in vma_mmu_pagesize()
Patch series "mm, smaps: MMUPageSize for device-dax", v3.

Similar to commit 31383c6865 ("mm, hugetlbfs: introduce ->split() to
vm_operations_struct") here is another occasion where we want
special-case hugetlbfs/hstate enabling to also apply to device-dax.

This prompts the question what other hstate conversions we might do
beyond ->split() and ->pagesize(), but this appears to be the last of
the usages of hstate_vma() in generic/non-hugetlbfs specific code paths.

This patch (of 3):

The current powerpc definition of vma_mmu_pagesize() open codes looking
up the page size via hstate.  It is identical to the generic
vma_kernel_pagesize() implementation.

Now, vma_kernel_pagesize() is growing support for determining the page
size of Device-DAX vmas in addition to the existing Hugetlbfs page size
determination.

Ideally, if the powerpc vma_mmu_pagesize() used vma_kernel_pagesize() it
would automatically benefit from any new vma-type support that is added
to vma_kernel_pagesize().  However, the powerpc vma_mmu_pagesize() is
prevented from calling vma_kernel_pagesize() due to a circular header
dependency that requires vma_mmu_pagesize() to be defined before
including <linux/hugetlb.h>.

Break this circular dependency by defining the default vma_mmu_pagesize()
as a __weak symbol to be overridden by the powerpc version.

Link: http://lkml.kernel.org/r/151996254179.27922.2213728278535578744.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Jane Chu <jane.chu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:26 -07:00
Mike Kravetz 63489f8e82 hugetlbfs: check for pgoff value overflow
A vma with vm_pgoff large enough to overflow a loff_t type when
converted to a byte offset can be passed via the remap_file_pages system
call.  The hugetlbfs mmap routine uses the byte offset to calculate
reservations and file size.

A sequence such as:

  mmap(0x20a00000, 0x600000, 0, 0x66033, -1, 0);
  remap_file_pages(0x20a00000, 0x600000, 0, 0x20000000000000, 0);

will result in the following when task exits/file closed,

  kernel BUG at mm/hugetlb.c:749!
  Call Trace:
    hugetlbfs_evict_inode+0x2f/0x40
    evict+0xcb/0x190
    __dentry_kill+0xcb/0x150
    __fput+0x164/0x1e0
    task_work_run+0x84/0xa0
    exit_to_usermode_loop+0x7d/0x80
    do_syscall_64+0x18b/0x190
    entry_SYSCALL_64_after_hwframe+0x3d/0xa2

The overflowed pgoff value causes hugetlbfs to try to set up a mapping
with a negative range (end < start) that leaves invalid state which
causes the BUG.

The previous overflow fix to this code was incomplete and did not take
the remap_file_pages system call into account.

[mike.kravetz@oracle.com: v3]
  Link: http://lkml.kernel.org/r/20180309002726.7248-1-mike.kravetz@oracle.com
[akpm@linux-foundation.org: include mmdebug.h]
[akpm@linux-foundation.org: fix -ve left shift count on sh]
Link: http://lkml.kernel.org/r/20180308210502.15952-1-mike.kravetz@oracle.com
Fixes: 045c7a3f53 ("hugetlbfs: fix offset overflow in hugetlbfs mmap")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Nic Losby <blurbdust@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-22 17:07:01 -07:00
Michal Hocko 4704dea36d hugetlb: fix surplus pages accounting
Dan Rue has noticed that libhugetlbfs test suite fails counter test:

  # mount_point="/mnt/hugetlb/"
  # echo 200 > /proc/sys/vm/nr_hugepages
  # mkdir -p "${mount_point}"
  # mount -t hugetlbfs hugetlbfs "${mount_point}"
  # export LD_LIBRARY_PATH=/root/libhugetlbfs/libhugetlbfs-2.20/obj64
  # /root/libhugetlbfs/libhugetlbfs-2.20/tests/obj64/counters
  Starting testcase "/root/libhugetlbfs/libhugetlbfs-2.20/tests/obj64/counters", pid 3319
  Base pool size: 0
  Clean...
  FAIL    Line 326: Bad HugePages_Total: expected 0, actual 1

The bug was bisected to 0c397daea1 ("mm, hugetlb: further simplify
hugetlb allocation API").

The reason is that alloc_surplus_huge_page() misaccounts per node
surplus pages.  We should increase surplus_huge_pages_node rather than
nr_huge_pages_node which is already handled by alloc_fresh_huge_page.

Link: http://lkml.kernel.org/r/20180221191439.GM2231@dhcp22.suse.cz
Fixes: 0c397daea1 ("mm, hugetlb: further simplify hugetlb allocation API")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dan Rue <dan.rue@linaro.org>
Tested-by: Dan Rue <dan.rue@linaro.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-09 16:40:01 -08:00
Michal Hocko 389c8178d0 hugetlb, mbind: fall back to default policy if vma is NULL
Dan Carpenter has noticed that mbind migration callback (new_page) can
get a NULL vma pointer and choke on it inside alloc_huge_page_vma which
relies on the VMA to get the hstate.  We used to BUG_ON this case but
the BUG_+ON has been removed recently by "hugetlb, mempolicy: fix the
mbind hugetlb migration".

The proper way to handle this is to get the hstate from the migrated
page and rely on huge_node (resp.  get_vma_policy) do the right thing
with null VMA.  We are currently falling back to the default mempolicy
in that case which is in line what THP path is doing here.

Link: http://lkml.kernel.org/r/20180110104712.GR1732@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko ebd6372358 hugetlb, mempolicy: fix the mbind hugetlb migration
do_mbind migration code relies on alloc_huge_page_noerr for hugetlb
pages.  alloc_huge_page_noerr uses alloc_huge_page which is a highlevel
allocation function which has to take care of reserves, overcommit or
hugetlb cgroup accounting.  None of that is really required for the page
migration because the new page is only temporal and either will replace
the original page or it will be dropped.  This is essentially as for
other migration call paths and there shouldn't be any reason to handle
mbind in a special way.

The current implementation is even suboptimal because the migration
might fail just because the hugetlb cgroup limit is reached, or the
overcommit is saturated.

Fix this by making mbind like other hugetlb migration paths.  Add a new
migration helper alloc_huge_page_vma as a wrapper around
alloc_huge_page_nodemask with additional mempolicy handling.

alloc_huge_page_noerr has no more users and it can go.

Link: http://lkml.kernel.org/r/20180103093213.26329-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko 0c397daea1 mm, hugetlb: further simplify hugetlb allocation API
Hugetlb allocator has several layer of allocation functions depending
and the purpose of the allocation.  There are two allocators depending
on whether the page can be allocated from the page allocator or we need
a contiguous allocator.  This is currently opencoded in
alloc_fresh_huge_page which is the only path that might allocate giga
pages which require the later allocator.  Create alloc_fresh_huge_page
which hides this implementation detail and use it in all callers which
hardcoded the buddy allocator path (__hugetlb_alloc_buddy_huge_page).
This shouldn't introduce any funtional change because both migration and
surplus allocators exlude giga pages explicitly.

While we are at it let's do some renaming.  The current scheme is not
consistent and overly painfull to read and understand.  Get rid of
prefix underscores from most functions.  There is no real reason to make
names longer.

* alloc_fresh_huge_page is the new layer to abstract underlying
  allocator
* __hugetlb_alloc_buddy_huge_page becomes shorter and neater
  alloc_buddy_huge_page.
* Former alloc_fresh_huge_page becomes alloc_pool_huge_page because we put
  the new page directly to the pool
* alloc_surplus_huge_page can drop the opencoded prep_new_huge_page code
  as it uses alloc_fresh_huge_page now
* others lose their excessive prefix underscores to make names shorter

[dan.carpenter@oracle.com: fix double unlock bug in alloc_surplus_huge_page()]
  Link: http://lkml.kernel.org/r/20180109200559.g3iz5kvbdrz7yydp@mwanda
Link: http://lkml.kernel.org/r/20180103093213.26329-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko 9980d744a0 mm, hugetlb: get rid of surplus page accounting tricks
alloc_surplus_huge_page increases the pool size and the number of
surplus pages opportunistically to prevent from races with the pool size
change.  See commit d1c3fb1f8f ("hugetlb: introduce
nr_overcommit_hugepages sysctl") for more details.

The resulting code is unnecessarily hairy, cause code duplication and
doesn't allow to share the allocation paths.  Moreover pool size changes
tend to be very seldom so optimizing for them is not really reasonable.
Simplify the code and allow to allocate a fresh surplus page as long as
we are under the overcommit limit and then recheck the condition after
the allocation and drop the new page if the situation has changed.  This
should provide a reasonable guarantee that an abrupt allocation requests
will not go way off the limit.

If we consider races with the pool shrinking and enlarging then we
should be reasonably safe as well.  In the first case we are off by one
in the worst case and the second case should work OK because the page is
not yet visible.  We can waste CPU cycles for the allocation but that
should be acceptable for a relatively rare condition.

Link: http://lkml.kernel.org/r/20180103093213.26329-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko ab5ac90aec mm, hugetlb: do not rely on overcommit limit during migration
hugepage migration relies on __alloc_buddy_huge_page to get a new page.
This has 2 main disadvantages.

1) it doesn't allow to migrate any huge page if the pool is used
   completely which is not an exceptional case as the pool is static and
   unused memory is just wasted.

2) it leads to a weird semantic when migration between two numa nodes
   might increase the pool size of the destination NUMA node while the
   page is in use.  The issue is caused by per NUMA node surplus pages
   tracking (see free_huge_page).

Address both issues by changing the way how we allocate and account
pages allocated for migration.  Those should temporal by definition.  So
we mark them that way (we will abuse page flags in the 3rd page) and
update free_huge_page to free such pages to the page allocator.  Page
migration path then just transfers the temporal status from the new page
to the old one which will be freed on the last reference.  The global
surplus count will never change during this path but we still have to be
careful when migrating a per-node suprlus page.  This is now handled in
move_hugetlb_state which is called from the migration path and it copies
the hugetlb specific page state and fixes up the accounting when needed

Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better
reflect its purpose.  The new allocation routine for the migration path
is __alloc_migrate_huge_page.

The user visible effect of this patch is that migrated pages are really
temporal and they travel between NUMA nodes as per the migration
request:

Before migration
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0

After
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0

with the previous implementation, both nodes would have nr_hugepages:1
until the page is freed.

Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko d9cc948f6f mm, hugetlb: integrate giga hugetlb more naturally to the allocation path
Gigantic hugetlb pages were ingrown to the hugetlb code as an alien
specie with a lot of special casing.  The allocation path is not an
exception.  Unnecessarily so to be honest.  It is true that the
underlying allocator is different but that is an implementation detail.

This patch unifies the hugetlb allocation path that a prepares fresh
pool pages.  alloc_fresh_gigantic_page basically copies
alloc_fresh_huge_page logic so we can move everything there.  This will
simplify set_max_huge_pages which doesn't have to care about what kind
of huge page we allocate.

Link: http://lkml.kernel.org/r/20180103093213.26329-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko af0fb9df78 mm, hugetlb: unify core page allocation accounting and initialization
Patch series "mm, hugetlb: allocation API and migration improvements"

Motivation:

this is a follow up for [3] for the allocation API and [4] for the
hugetlb migration.  It wasn't really easy to split those into two
separate patch series as they share some code.

My primary motivation to touch this code is to make the gigantic pages
migration working.  The giga pages allocation code is just too fragile
and hacked into the hugetlb code now.  This series tries to move giga
pages closer to the first class citizen.  We are not there yet but
having 5 patches is quite a lot already and it will already make the
code much easier to follow.  I will come with other changes on top after
this sees some review.

The first two patches should be trivial to review.  The third patch
changes the way how we migrate huge pages.  Newly allocated pages are a
subject of the overcommit check and they participate surplus accounting
which is quite unfortunate as the changelog explains.  This patch
doesn't change anything wrt.  giga pages.

Patch #4 removes the surplus accounting hack from
__alloc_surplus_huge_page.  I hope I didn't miss anything there and a
deeper review is really due there.

Patch #5 finally unifies allocation paths and giga pages shouldn't be
any special anymore.  There is also some renaming going on as well.

This patch (of 6):

hugetlb allocator has two entry points to the page allocator
 - alloc_fresh_huge_page_node
 - __hugetlb_alloc_buddy_huge_page

The two differ very subtly in two aspects.  The first one doesn't care
about HTLB_BUDDY_* stats and it doesn't initialize the huge page.
prep_new_huge_page is not used because it not only initializes hugetlb
specific stuff but because it also put_page and releases the page to the
hugetlb pool which is not what is required in some contexts.  This makes
things more complicated than necessary.

Simplify things by a) removing the page allocator entry point duplicity
and only keep __hugetlb_alloc_buddy_huge_page and b) make
prep_new_huge_page more reusable by removing the put_page which moves
the page to the allocator pool.  All current callers are updated to call
put_page explicitly.  Later patches will add new callers which won't
need it.

This patch shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20180103093213.26329-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko d6cb41cc44 mm, hugetlb: remove hugepages_treat_as_movable sysctl
hugepages_treat_as_movable has been introduced by 396faf0303 ("Allow
huge page allocations to use GFP_HIGH_MOVABLE") to allow hugetlb
allocations from ZONE_MOVABLE even when hugetlb pages were not
migrateable.  The purpose of the movable zone was different at the time.
It aimed at reducing memory fragmentation and hugetlb pages being long
lived and large werre not contributing to the fragmentation so it was
acceptable to use the zone back then.

Things have changed though and the primary purpose of the zone became
migratability guarantee.  If we allow non migrateable hugetlb pages to
be in ZONE_MOVABLE memory hotplug might fail to offline the memory.

Remove the knob and only rely on hugepage_migration_supported to allow
movable zones.

Mel said:

: Primarily it was aimed at allowing the hugetlb pool to safely shrink with
: the ability to grow it again.  The use case was for batched jobs, some of
: which needed huge pages and others that did not but didn't want the memory
: useless pinned in the huge pages pool.
:
: I suspect that more users rely on THP than hugetlbfs for flexible use of
: huge pages with fallback options so I think that removing the option
: should be ok.

Link: http://lkml.kernel.org/r/20171003072619.8654-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Alexandru Moise <00moses.alexander00@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Alexandru Moise <00moses.alexander00@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:37 -08:00
Roman Gushchin fcb2b0c577 mm: show total hugetlb memory consumption in /proc/meminfo
Currently we display some hugepage statistics (total, free, etc) in
/proc/meminfo, but only for default hugepage size (e.g.  2Mb).

If hugepages of different sizes are used (like 2Mb and 1Gb on x86-64),
/proc/meminfo output can be confusing, as non-default sized hugepages
are not reflected at all, and there are no signs that they are existing
and consuming system memory.

To solve this problem, let's display the total amount of memory,
consumed by hugetlb pages of all sized (both free and used).  Let's call
it "Hugetlb", and display size in kB to match generic /proc/meminfo
style.

For example, (1024 2Mb pages and 2 1Gb pages are pre-allocated):
  $ cat /proc/meminfo
  MemTotal:        8168984 kB
  MemFree:         3789276 kB
  <...>
  CmaFree:               0 kB
  HugePages_Total:    1024
  HugePages_Free:     1024
  HugePages_Rsvd:        0
  HugePages_Surp:        0
  Hugepagesize:       2048 kB
  Hugetlb:         4194304 kB
  DirectMap4k:       32632 kB
  DirectMap2M:     4161536 kB
  DirectMap1G:     6291456 kB

Also, this patch updates corresponding docs to reflect Hugetlb entry
meaning and difference between Hugetlb and HugePages_Total * Hugepagesize.

Link: http://lkml.kernel.org/r/20171115231409.12131-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Kirill A. Shutemov f4f0a3d85b mm/hugetlb: fix NULL-pointer dereference on 5-level paging machine
I made a mistake during converting hugetlb code to 5-level paging: in
huge_pte_alloc() we have to use p4d_alloc(), not p4d_offset().

Otherwise it leads to crash -- NULL-pointer dereference in pud_alloc()
if p4d table is not yet allocated.

It only can happen in 5-level paging mode.  In 4-level paging mode
p4d_offset() always returns pgd, so we are fine.

Link: http://lkml.kernel.org/r/20171122121921.64822-1-kirill.shutemov@linux.intel.com
Fixes: c2febafc67 ("mm: convert generic code to 5-level paging")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>	[4.11+]

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-29 18:40:43 -08:00
Dan Williams 31383c6865 mm, hugetlbfs: introduce ->split() to vm_operations_struct
Patch series "device-dax: fix unaligned munmap handling"

When device-dax is operating in huge-page mode we want it to behave like
hugetlbfs and fail attempts to split vmas into unaligned ranges.  It
would be messy to teach the munmap path about device-dax alignment
constraints in the same (hstate) way that hugetlbfs communicates this
constraint.  Instead, these patches introduce a new ->split() vm
operation.

This patch (of 2):

The device-dax interface has similar constraints as hugetlbfs in that it
requires the munmap path to unmap in huge page aligned units.  Rather
than add more custom vma handling code in __split_vma() introduce a new
vm operation to perform this vma specific check.

Link: http://lkml.kernel.org/r/151130418135.4029.6783191281930729710.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: dee4107924 ("/dev/dax, core: file operations and dax-mmap")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-29 18:40:42 -08:00
Jérôme Glisse 0f10851ea4 mm/mmu_notifier: avoid double notification when it is useless
This patch only affects users of mmu_notifier->invalidate_range callback
which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ...
and it is an optimization for those users.  Everyone else is unaffected
by it.

When clearing a pte/pmd we are given a choice to notify the event under
the page table lock (notify version of *_clear_flush helpers do call the
mmu_notifier_invalidate_range).  But that notification is not necessary
in all cases.

This patch removes almost all cases where it is useless to have a call
to mmu_notifier_invalidate_range before
mmu_notifier_invalidate_range_end.  It also adds documentation in all
those cases explaining why.

Below is a more in depth analysis of why this is fine to do this:

For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when
device use thing like ATS/PASID to get the IOMMU to walk the CPU page
table to access a process virtual address space).  There is only 2 cases
when you need to notify those secondary TLB while holding page table
lock when clearing a pte/pmd:

  A) page backing address is free before mmu_notifier_invalidate_range_end
  B) a page table entry is updated to point to a new page (COW, write fault
     on zero page, __replace_page(), ...)

Case A is obvious you do not want to take the risk for the device to write
to a page that might now be used by something completely different.

Case B is more subtle. For correctness it requires the following sequence
to happen:
  - take page table lock
  - clear page table entry and notify (pmd/pte_huge_clear_flush_notify())
  - set page table entry to point to new page

If clearing the page table entry is not followed by a notify before setting
the new pte/pmd value then you can break memory model like C11 or C++11 for
the device.

Consider the following scenario (device use a feature similar to ATS/
PASID):

Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we
assume they are write protected for COW (other case of B apply too).

[Time N] -----------------------------------------------------------------
CPU-thread-0  {try to write to addrA}
CPU-thread-1  {try to write to addrB}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {read addrA and populate device TLB}
DEV-thread-2  {read addrB and populate device TLB}
[Time N+1] ---------------------------------------------------------------
CPU-thread-0  {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}}
CPU-thread-1  {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+2] ---------------------------------------------------------------
CPU-thread-0  {COW_step1: {update page table point to new page for addrA}}
CPU-thread-1  {COW_step1: {update page table point to new page for addrB}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {preempted}
CPU-thread-2  {write to addrA which is a write to new page}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {preempted}
CPU-thread-2  {}
CPU-thread-3  {write to addrB which is a write to new page}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+4] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+5] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {read addrA from old page}
DEV-thread-2  {read addrB from new page}

So here because at time N+2 the clear page table entry was not pair with a
notification to invalidate the secondary TLB, the device see the new value
for addrB before seing the new value for addrA.  This break total memory
ordering for the device.

When changing a pte to write protect or to point to a new write protected
page with same content (KSM) it is ok to delay invalidate_range callback
to mmu_notifier_invalidate_range_end() outside the page table lock.  This
is true even if the thread doing page table update is preempted right
after releasing page table lock before calling
mmu_notifier_invalidate_range_end

Thanks to Andrea for thinking of a problematic scenario for COW.

[jglisse@redhat.com: v2]
  Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Alistair Popple <alistair@popple.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:03 -08:00
Andrea Arcangeli 1e39214713 userfaultfd: hugetlbfs: prevent UFFDIO_COPY to fill beyond the end of i_size
This oops:

  kernel BUG at fs/hugetlbfs/inode.c:484!
  RIP: remove_inode_hugepages+0x3d0/0x410
  Call Trace:
    hugetlbfs_setattr+0xd9/0x130
    notify_change+0x292/0x410
    do_truncate+0x65/0xa0
    do_sys_ftruncate.constprop.3+0x11a/0x180
    SyS_ftruncate+0xe/0x10
    tracesys+0xd9/0xde

was caused by the lack of i_size check in hugetlb_mcopy_atomic_pte.

mmap() can still succeed beyond the end of the i_size after vmtruncate
zapped vmas in those ranges, but the faults must not succeed, and that
includes UFFDIO_COPY.

We could differentiate the retval to userland to represent a SIGBUS like
a page fault would do (vs SIGSEGV), but it doesn't seem very useful and
we'd need to pick a random retval as there's no meaningful syscall
retval that would differentiate from SIGSEGV and SIGBUS, there's just
-EFAULT.

Link: http://lkml.kernel.org/r/20171016223914.2421-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-03 07:39:19 -07:00
Linus Torvalds bac65d9d87 powerpc updates for 4.14
Nothing really major this release, despite quite a lot of activity. Just lots of
 things all over the place.
 
 Some things of note include:
 
  - Access via perf to a new type of PMU (IMC) on Power9, which can count both
    core events as well as nest unit events (Memory controller etc).
 
  - Optimisations to the radix MMU TLB flushing, mostly to avoid unnecessary Page
    Walk Cache (PWC) flushes when the structure of the tree is not changing.
 
  - Reworks/cleanups of do_page_fault() to modernise it and bring it closer to
    other architectures where possible.
 
  - Rework of our page table walking so that THP updates only need to send IPIs
    to CPUs where the affected mm has run, rather than all CPUs.
 
  - The size of our vmalloc area is increased to 56T on 64-bit hash MMU systems.
    This avoids problems with the percpu allocator on systems with very sparse
    NUMA layouts.
 
  - STRICT_KERNEL_RWX support on PPC32.
 
  - A new sched domain topology for Power9, to capture the fact that pairs of
    cores may share an L2 cache.
 
  - Power9 support for VAS, which is a new mechanism for accessing coprocessors,
    and initial support for using it with the NX compression accelerator.
 
  - Major work on the instruction emulation support, adding support for many new
    instructions, and reworking it so it can be used to implement the emulation
    needed to fixup alignment faults.
 
  - Support for guests under PowerVM to use the Power9 XIVE interrupt controller.
 
 And probably that many things again that are almost as interesting, but I had to
 keep the list short. Plus the usual fixes and cleanups as always.
 
 Thanks to:
   Alexey Kardashevskiy, Alistair Popple, Andreas Schwab, Aneesh Kumar K.V, Anju
   T Sudhakar, Arvind Yadav, Balbir Singh, Benjamin Herrenschmidt, Bhumika Goyal,
   Breno Leitao, Bryant G. Ly, Christophe Leroy, Cédric Le Goater, Dan Carpenter,
   Dou Liyang, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand,
   Hannes Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall, LABBE
   Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring, Masahiro
   Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo, Nathan Fontenot,
   Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Rashmica
   Gupta, Rob Herring, Rui Teng, Sam Bobroff, Santosh Sivaraj, Scott Wood,
   Shilpasri G Bhat, Sukadev Bhattiprolu, Suraj Jitindar Singh, Tobin C. Harding,
   Victor Aoqui.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJZr83SAAoJEFHr6jzI4aWA6pUP/3CEaj2bSxNzWIwidqyYjuoS
 O1moEsP0oYH7eBEWVHalYxvo0QPIIAhbFPaFyrOrgtfDH01Szwu9LcCALGb8orC5
 Hg3IY8mpNG3Q1T8wEtTa56Ik4b5ZFty35S5+X9qLNSFoDUqSvGlSsLzhPNN7f2tl
 XFm2hWqd8wXCwDsuVSFBCF61M3SAm+g6NMVNJ+VL2KIDCwBrOZLhKDPRoxLTAuMa
 jjSdjVIozWyXjUrBFi8HVcoOWLxcT1HsNF0tRs51LwY/+Mlj2jAtFtsx+a06HZa6
 f2p/Kcp/MEispSTk064Ap9cC1seXWI18zwZKpCUFqu0Ec2yTAiGdjOWDyYQldIp+
 ttVPSHQ01YrVKwDFTtM9CiA0EET6fVPhWgAPkPfvH5TvtKwGkNdy0b+nQLuWrYip
 BUmOXmjdIG3nujCzA9sv6/uNNhjhj2y+HWwuV7Qo002VFkhgZFL67u2SSUQLpYPj
 PxdkY8pPVq+O+in94oDV3c36dYFF6+g6A6505Vn6eKUm/TLpszRFGkS3bKKA5vtn
 74FR+guV/5RwYJcdZbfm04DgAocl7AfUDxpwRxibt6KtAK2VZKQuw4ugUTgYEd7W
 mL2+AMmPKuajWXAMTHjCZPbUp9gFNyYyBQTFfGVX/XLiM8erKBnGfoa1/KzUJkhr
 fVZLYIO/gzl34PiTIfgD
 =UJtt
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "Nothing really major this release, despite quite a lot of activity.
  Just lots of things all over the place.

  Some things of note include:

   - Access via perf to a new type of PMU (IMC) on Power9, which can
     count both core events as well as nest unit events (Memory
     controller etc).

   - Optimisations to the radix MMU TLB flushing, mostly to avoid
     unnecessary Page Walk Cache (PWC) flushes when the structure of the
     tree is not changing.

   - Reworks/cleanups of do_page_fault() to modernise it and bring it
     closer to other architectures where possible.

   - Rework of our page table walking so that THP updates only need to
     send IPIs to CPUs where the affected mm has run, rather than all
     CPUs.

   - The size of our vmalloc area is increased to 56T on 64-bit hash MMU
     systems. This avoids problems with the percpu allocator on systems
     with very sparse NUMA layouts.

   - STRICT_KERNEL_RWX support on PPC32.

   - A new sched domain topology for Power9, to capture the fact that
     pairs of cores may share an L2 cache.

   - Power9 support for VAS, which is a new mechanism for accessing
     coprocessors, and initial support for using it with the NX
     compression accelerator.

   - Major work on the instruction emulation support, adding support for
     many new instructions, and reworking it so it can be used to
     implement the emulation needed to fixup alignment faults.

   - Support for guests under PowerVM to use the Power9 XIVE interrupt
     controller.

  And probably that many things again that are almost as interesting,
  but I had to keep the list short. Plus the usual fixes and cleanups as
  always.

  Thanks to: Alexey Kardashevskiy, Alistair Popple, Andreas Schwab,
  Aneesh Kumar K.V, Anju T Sudhakar, Arvind Yadav, Balbir Singh,
  Benjamin Herrenschmidt, Bhumika Goyal, Breno Leitao, Bryant G. Ly,
  Christophe Leroy, Cédric Le Goater, Dan Carpenter, Dou Liyang,
  Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand, Hannes
  Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall,
  LABBE Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring,
  Masahiro Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo,
  Nathan Fontenot, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
  Paul Mackerras, Rashmica Gupta, Rob Herring, Rui Teng, Sam Bobroff,
  Santosh Sivaraj, Scott Wood, Shilpasri G Bhat, Sukadev Bhattiprolu,
  Suraj Jitindar Singh, Tobin C. Harding, Victor Aoqui"

* tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (321 commits)
  powerpc/xive: Fix section __init warning
  powerpc: Fix kernel crash in emulation of vector loads and stores
  powerpc/xive: improve debugging macros
  powerpc/xive: add XIVE Exploitation Mode to CAS
  powerpc/xive: introduce H_INT_ESB hcall
  powerpc/xive: add the HW IRQ number under xive_irq_data
  powerpc/xive: introduce xive_esb_write()
  powerpc/xive: rename xive_poke_esb() in xive_esb_read()
  powerpc/xive: guest exploitation of the XIVE interrupt controller
  powerpc/xive: introduce a common routine xive_queue_page_alloc()
  powerpc/sstep: Avoid used uninitialized error
  axonram: Return directly after a failed kzalloc() in axon_ram_probe()
  axonram: Improve a size determination in axon_ram_probe()
  axonram: Delete an error message for a failed memory allocation in axon_ram_probe()
  powerpc/powernv/npu: Move tlb flush before launching ATSD
  powerpc/macintosh: constify wf_sensor_ops structures
  powerpc/iommu: Use permission-specific DEVICE_ATTR variants
  powerpc/eeh: Delete an error out of memory message at init time
  powerpc/mm: Use seq_putc() in two functions
  macintosh: Convert to using %pOF instead of full_name
  ...
2017-09-07 10:15:40 -07:00
Michal Hocko 79b63f12ab mm, hugetlb: do not allocate non-migrateable gigantic pages from movable zones
alloc_gigantic_page doesn't consider movability of the gigantic hugetlb
when scanning eligible ranges for the allocation.  As 1GB hugetlb pages
are not movable currently this can break the movable zone assumption
that all allocations are migrateable and as such break memory hotplug.

Reorganize the code and use the standard zonelist allocations scheme
that we use for standard hugetbl pages.  htlb_alloc_mask will ensure
that only migratable hugetlb pages will ever see a movable zone.

Link: http://lkml.kernel.org/r/20170803083549.21407-1-mhocko@kernel.org
Fixes: 944d9fec8d ("hugetlb: add support for gigantic page allocation at runtime")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Arvind Yadav 67e5ed9699 mm/hugetlb.c: constify attribute_group structures
attribute_group are not supposed to change at runtime.  All functions
working with attribute_group provided by <linux/sysfs.h> work with const
attribute_group.  So mark the non-const structs as const.

Link: http://lkml.kernel.org/r/1501157260-3922-1-git-send-email-arvind.yadav.cs@gmail.com
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Punit Agrawal 9b19df292c mm/hugetlb.c: make huge_pte_offset() consistent and document behaviour
When walking the page tables to resolve an address that points to
!p*d_present() entry, huge_pte_offset() returns inconsistent values
depending on the level of page table (PUD or PMD).

It returns NULL in the case of a PUD entry while in the case of a PMD
entry, it returns a pointer to the page table entry.

A similar inconsitency exists when handling swap entries - returns NULL
for a PUD entry while a pointer to the pte_t is retured for the PMD
entry.

Update huge_pte_offset() to make the behaviour consistent - return a
pointer to the pte_t for hugepage or swap entries.  Only return NULL in
instances where we have a p*d_none() entry and the size parameter
doesn't match the hugepage size at this level of the page table.

Document the behaviour to clarify the expected behaviour of this
function.  This is to set clear semantics for architecture specific
implementations of huge_pte_offset().

Discussions on the arm64 implementation of huge_pte_offset()
(http://www.spinics.net/lists/linux-mm/msg133699.html) showed that there
is benefit from returning a pte_t* in the case of p*d_none().

The fault handling code in hugetlb_fault() can handle p*d_none() entries
and saves an extra round trip to huge_pte_alloc().  Other callers of
huge_pte_offset() should be ok as well.

[punit.agrawal@arm.com: v2]
Link: http://lkml.kernel.org/r/20170725154114.24131-2-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:26 -07:00
Aneesh Kumar K.V e24a1307ba mm/hugetlb: Allow arch to override and call the weak function
When running in guest mode ppc64 supports a different mechanism for hugetlb
allocation/reservation. The LPAR management application called HMC can
be used to reserve a set of hugepages and we pass the details of
reserved pages via device tree to the guest. (more details in
htab_dt_scan_hugepage_blocks()) . We do the memblock_reserve of the range
and later in the boot sequence, we add the reserved range to huge_boot_pages.

But to enable 16G hugetlb on baremetal config (when we are not running as guest)
we want to do memblock reservation during boot. Generic code already does this

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-08-15 23:20:30 +10:00
Andrea Arcangeli 5af10dfd0a userfaultfd: hugetlbfs: remove superfluous page unlock in VM_SHARED case
huge_add_to_page_cache->add_to_page_cache implicitly unlocks the page
before returning in case of errors.

The error returned was -EEXIST by running UFFDIO_COPY on a non-hole
offset of a VM_SHARED hugetlbfs mapping.  It was an userland bug that
triggered it and the kernel must cope with it returning -EEXIST from
ioctl(UFFDIO_COPY) as expected.

  page dumped because: VM_BUG_ON_PAGE(!PageLocked(page))
  kernel BUG at mm/filemap.c:964!
  invalid opcode: 0000 [#1] SMP
  CPU: 1 PID: 22582 Comm: qemu-system-x86 Not tainted 4.11.11-300.fc26.x86_64 #1
  RIP: unlock_page+0x4a/0x50
  Call Trace:
    hugetlb_mcopy_atomic_pte+0xc0/0x320
    mcopy_atomic+0x96f/0xbe0
    userfaultfd_ioctl+0x218/0xe90
    do_vfs_ioctl+0xa5/0x600
    SyS_ioctl+0x79/0x90
    entry_SYSCALL_64_fastpath+0x1a/0xa9

Link: http://lkml.kernel.org/r/20170802165145.22628-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alexey Perevalov <a.perevalov@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10 15:54:06 -07:00
Daniel Jordan 2be7cfed99 mm/hugetlb.c: __get_user_pages ignores certain follow_hugetlb_page errors
Commit 9a291a7c94 ("mm/hugetlb: report -EHWPOISON not -EFAULT when
FOLL_HWPOISON is specified") causes __get_user_pages to ignore certain
errors from follow_hugetlb_page.  After such error, __get_user_pages
subsequently calls faultin_page on the same VMA and start address that
follow_hugetlb_page failed on instead of returning the error immediately
as it should.

In follow_hugetlb_page, when hugetlb_fault returns a value covered under
VM_FAULT_ERROR, follow_hugetlb_page returns it without setting nr_pages
to 0 as __get_user_pages expects in this case, which causes the
following to happen in __get_user_pages: the "while (nr_pages)" check
succeeds, we skip the "if (!vma..." check because we got a VMA the last
time around, we find no page with follow_page_mask, and we call
faultin_page, which calls hugetlb_fault for the second time.

This issue also slightly changes how __get_user_pages works.  Before, it
only returned error if it had made no progress (i = 0).  But now,
follow_hugetlb_page can clobber "i" with an error code since its new
return path doesn't check for progress.  So if "i" is nonzero before a
failing call to follow_hugetlb_page, that indication of progress is lost
and __get_user_pages can return error even if some pages were
successfully pinned.

To fix this, change follow_hugetlb_page so that it updates nr_pages,
allowing __get_user_pages to fail immediately and restoring the "error
only if no progress" behavior to __get_user_pages.

Tested that __get_user_pages returns when expected on error from
hugetlb_fault in follow_hugetlb_page.

Fixes: 9a291a7c94 ("mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified")
Link: http://lkml.kernel.org/r/1500406795-58462-1-git-send-email-daniel.m.jordan@oracle.com
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: James Morse <james.morse@arm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: <stable@vger.kernel.org>	[4.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-02 16:34:46 -07:00
Michal Hocko dcda9b0471 mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator.  This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER.  It has been always
ignored for smaller sizes.  This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.

Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic.  Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success.  This will work independent of the order and overrides the
default allocator behavior.  Page allocator users have several levels of
guarantee vs.  cost options (take GFP_KERNEL as an example)

 - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
   attempt to free memory at all. The most light weight mode which even
   doesn't kick the background reclaim. Should be used carefully because
   it might deplete the memory and the next user might hit the more
   aggressive reclaim

 - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
   allocation without any attempt to free memory from the current
   context but can wake kswapd to reclaim memory if the zone is below
   the low watermark. Can be used from either atomic contexts or when
   the request is a performance optimization and there is another
   fallback for a slow path.

 - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
   non sleeping allocation with an expensive fallback so it can access
   some portion of memory reserves. Usually used from interrupt/bh
   context with an expensive slow path fallback.

 - GFP_KERNEL - both background and direct reclaim are allowed and the
   _default_ page allocator behavior is used. That means that !costly
   allocation requests are basically nofail but there is no guarantee of
   that behavior so failures have to be checked properly by callers
   (e.g. OOM killer victim is allowed to fail currently).

 - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
   and all allocation requests fail early rather than cause disruptive
   reclaim (one round of reclaim in this implementation). The OOM killer
   is not invoked.

 - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
   behavior and all allocation requests try really hard. The request
   will fail if the reclaim cannot make any progress. The OOM killer
   won't be triggered.

 - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
   and all allocation requests will loop endlessly until they succeed.
   This might be really dangerous especially for larger orders.

Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic.  No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.

This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.

[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
  Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
  Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00
Michal Hocko 3e59fcb0e8 hugetlb: add support for preferred node to alloc_huge_page_nodemask
alloc_huge_page_nodemask tries to allocate from any numa node in the
allowed node mask starting from lower numa nodes.  This might lead to
filling up those low NUMA nodes while others are not used.  We can
reduce this risk by introducing a concept of the preferred node similar
to what we have in the regular page allocator.  We will start allocating
from the preferred nid and then iterate over all allowed nodes in the
zonelist order until we try them all.

This is mimicing the page allocator logic except it operates on per-node
mempools.  dequeue_huge_page_vma already does this so distill the
zonelist logic into a more generic dequeue_huge_page_nodemask and use it
in alloc_huge_page_nodemask.

This will allow us to use proper per numa distance fallback also for
alloc_huge_page_node which can use alloc_huge_page_nodemask now and we
can get rid of alloc_huge_page_node helper which doesn't have any user
anymore.

Link: http://lkml.kernel.org/r/20170622193034.28972-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
Michal Hocko aaf14e40a3 mm, hugetlb: unclutter hugetlb allocation layers
Patch series "mm, hugetlb: allow proper node fallback dequeue".

While working on a hugetlb migration issue addressed in a separate
patchset[1] I have noticed that the hugetlb allocations from the
preallocated pool are quite subotimal.

 [1] //lkml.kernel.org/r/20170608074553.22152-1-mhocko@kernel.org

There is no fallback mechanism implemented and no notion of preferred
node.  I have tried to work around it but Vlastimil was right to push
back for a more robust solution.  It seems that such a solution is to
reuse zonelist approach we use for the page alloctor.

This series has 3 patches.  The first one tries to make hugetlb
allocation layers more clear.  The second one implements the zonelist
hugetlb pool allocation and introduces a preferred node semantic which
is used by the migration callbacks.  The last patch is a clean up.

This patch (of 3):

Hugetlb allocation path for fresh huge pages is unnecessarily complex
and it mixes different interfaces between layers.

__alloc_buddy_huge_page is the central place to perform a new
allocation.  It checks for the hugetlb overcommit and then relies on
__hugetlb_alloc_buddy_huge_page to invoke the page allocator.  This is
all good except that __alloc_buddy_huge_page pushes vma and address down
the callchain and so __hugetlb_alloc_buddy_huge_page has to deal with
two different allocation modes - one for memory policy and other node
specific (or to make it more obscure node non-specific) requests.

This just screams for a reorganization.

This patch pulls out all the vma specific handling up to
__alloc_buddy_huge_page_with_mpol where it belongs.
__alloc_buddy_huge_page will get nodemask argument and
__hugetlb_alloc_buddy_huge_page will become a trivial wrapper over the
page allocator.

In short:
__alloc_buddy_huge_page_with_mpol - memory policy handling
  __alloc_buddy_huge_page - overcommit handling and accounting
    __hugetlb_alloc_buddy_huge_page - page allocator layer

Also note that __hugetlb_alloc_buddy_huge_page and its cpuset retry loop
is not really needed because the page allocator already handles the
cpusets update.

Finally __hugetlb_alloc_buddy_huge_page had a special case for node
specific allocations (when no policy is applied and there is a node
given).  This has relied on __GFP_THISNODE to not fallback to a different
node.  alloc_huge_page_node is the only caller which relies on this
behavior so move the __GFP_THISNODE there.

Not only does this remove quite some code it also should make those
layers easier to follow and clear wrt responsibilities.

Link: http://lkml.kernel.org/r/20170622193034.28972-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
Matthew Wilcox c6247f72d4 mm/hugetlb.c: replace memfmt with string_get_size
The hugetlb code has its own function to report human-readable sizes.
Convert it to use the shared string_get_size() function.  This will lead
to a minor difference in user visible output (MiB/GiB instead of MB/GB),
but some would argue that's desirable anyway.

Link: http://lkml.kernel.org/r/20170606190350.GA20010@bombadil.infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
David Rientjes 69ed779a14 mm, hugetlb: schedule when potentially allocating many hugepages
A few hugetlb allocators loop while calling the page allocator and can
potentially prevent rescheduling if the page allocator slowpath is not
utilized.

Conditionally schedule when large numbers of hugepages can be allocated.

Anshuman:
 "Fixes a task which was getting hung while writing like 10000 hugepages
  (16MB on POWER8) into /proc/sys/vm/nr_hugepages."

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1706091535300.66176@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Michal Hocko 4db9b2efe9 hugetlb, memory_hotplug: prefer to use reserved pages for migration
new_node_page will try to use the origin's next NUMA node as the
migration destination for hugetlb pages.  If such a node doesn't have
any preallocated pool it falls back to __alloc_buddy_huge_page_no_mpol
to allocate a surplus page instead.  This is quite subotpimal for any
configuration when hugetlb pages are no distributed to all NUMA nodes
evenly.  Say we have a hotplugable node 4 and spare hugetlb pages are
node 0

  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:10000
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node3/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node4/hugepages/hugepages-2048kB/nr_hugepages:10000
  /sys/devices/system/node/node5/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node6/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node7/hugepages/hugepages-2048kB/nr_hugepages:0

Now we consume the whole pool on node 4 and try to offline this node.
All the allocated pages should be moved to node0 which has enough
preallocated pages to hold them.  With the current implementation
offlining very likely fails because hugetlb allocations during runtime
are much less reliable.

Fix this by reusing the nodemask which excludes migration source and try
to find a first node which has a page in the preallocated pool first and
fall back to __alloc_buddy_huge_page_no_mpol only when the whole pool is
consumed.

[akpm@linux-foundation.org: remove bogus arg from alloc_huge_page_nodemask() stub]
Link: http://lkml.kernel.org/r/20170608074553.22152-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Liam R. Howlett d715cf804a mm/hugetlb.c: warn the user when issues arise on boot due to hugepages
When the user specifies too many hugepages or an invalid
default_hugepagesz the communication to the user is implicit in the
allocation message.  This patch adds a warning when the desired page
count is not allocated and prints an error when the default_hugepagesz
is invalid on boot.

During boot hugepages will allocate until there is a fraction of the
hugepage size left.  That is, we allocate until either the request is
satisfied or memory for the pages is exhausted.  When memory for the
pages is exhausted, it will most likely lead to the system failing with
the OOM manager not finding enough (or anything) to kill (unless you're
using really big hugepages in the order of 100s of MB or in the GBs).
The user will most likely see the OOM messages much later in the boot
sequence than the implicitly stated message.  Worse yet, you may even
get an OOM for each processor which causes many pages of OOMs on modern
systems.  Although these messages will be printed earlier than the OOM
messages, at least giving the user errors and warnings will highlight
the configuration as an issue.  I'm trying to point the user in the
right direction by providing a more robust statement of what is failing.

During the sysctl or echo command, the user can check the results much
easier than if the system hangs during boot and the scenario of having
nothing to OOM for kernel memory is highly unlikely.

Mike said:
 "Before sending out this patch, I asked Liam off list why he was doing
  it. Was it something he just thought would be useful? Or, was there
  some type of user situation/need. He said that he had been called in
  to assist on several occasions when a system OOMed during boot. In
  almost all of these situations, the user had grossly misconfigured
  huge pages.

  DB users want to pre-allocate just the right amount of huge pages, but
  sometimes they can be really off. In such situations, the huge page
  init code just allocates as many huge pages as it can and reports the
  number allocated. There is no indication that it quit allocating
  because it ran out of memory. Of course, a user could compare the
  number in the message to what they requested on the command line to
  determine if they got all the huge pages they requested. The thought
  was that it would be useful to at least flag this situation. That way,
  the user might be able to better relate the huge page allocation
  failure to the OOM.

  I'm not sure if the e-mail discussion made it obvious that this is
  something he has seen on several occasions.

  I see Michal's point that this will only flag the situation where
  someone configures huge pages very badly. And, a more extensive look
  at the situation of misconfiguring huge pages might be in order. But,
  this has happened on several occasions which led to the creation of
  this patch"

[akpm@linux-foundation.org: reposition memfmt() to avoid forward declaration]
Link: http://lkml.kernel.org/r/20170603005413.10380-1-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: zhongjiang <zhongjiang@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00