The block layer call chain from submit_bio will check if the write cache
is enabled for the given queue before submitting the flush. This will
add a code to fail fast if its not.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ updated changelog to reflect current code stat, blkdev_issue_flush is
not used yet ]
Signed-off-by: David Sterba <dsterba@suse.com>
The last consumer of nobarriers is removed by the commit [1] and sync
won't fail with EOPNOTSUPP anymore. Thus, now when write cache is write
through it just return success without actually transpiring such a
request to the block device/lun.
[1]
commit b25de9d6da
block: remove BIO_EOPNOTSUPP
And, as the device/lun write cache state may change dynamically saving
such as state won't help either. So deleting the member nobarriers.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When scrubbing a RAID5 which has recoverable data corruption (only one
data stripe is corrupted), sometimes scrub will report more csum errors
than expected. Sometimes even unrecoverable error will be reported.
The problem can be easily reproduced by the following steps:
1) Create a btrfs with RAID5 data profile with 3 devs
2) Mount it with nospace_cache or space_cache=v2
To avoid extra data space usage.
3) Create a 128K file and sync the fs, unmount it
Now the 128K file lies at the beginning of the data chunk
4) Locate the physical bytenr of data chunk on dev3
Dev3 is the 1st data stripe.
5) Corrupt the first 64K of the data chunk stripe on dev3
6) Mount the fs and scrub it
The correct csum error number should be 16 (assuming using x86_64).
Larger csum error number can be reported in a 1/3 chance.
And unrecoverable error can also be reported in a 1/10 chance.
The root cause of the problem is RAID5/6 recover code has race
condition, due to the fact that full scrub is initiated per device.
While for other mirror based profiles, each mirror is independent with
each other, so race won't cause any big problem.
For example:
Corrupted | Correct | Correct |
| Scrub dev3 (D1) | Scrub dev2 (D2) | Scrub dev1(P) |
------------------------------------------------------------------------
Read out D1 |Read out D2 |Read full stripe |
Check csum |Check csum |Check parity |
Csum mismatch |Csum match, continue |Parity mismatch |
handle_errored_block | |handle_errored_block |
Read out full stripe | | Read out full stripe|
D1 csum error(err++) | | D1 csum error(err++)|
Recover D1 | | Recover D1 |
So D1's csum error is accounted twice, just because
handle_errored_block() doesn't have enough protection, and race can happen.
On even worse case, for example D1's recovery code is re-writing
D1/D2/P, and P's recovery code is just reading out full stripe, then we
can cause unrecoverable error.
This patch will use previously introduced lock_full_stripe() and
unlock_full_stripe() to protect the whole scrub_handle_errored_block()
function for RAID56 recovery.
So no extra csum error nor unrecoverable error.
Reported-by: Goffredo Baroncelli <kreijack@libero.it>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike mirror based profiles, RAID5/6 recovery needs to read out the
whole full stripe.
And if we don't do proper protection, it can easily cause race condition.
Introduce 2 new functions: lock_full_stripe() and unlock_full_stripe()
for RAID5/6.
Which store a rb_tree of mutexes for full stripes, so scrub callers can
use them to lock a full stripe to avoid race.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_root_item maintains the ctime for root updates. This is not part
of vfs_inode.
Since current_time() uses struct inode* as an argument as Linus
suggested, this cannot be used to update root times unless, we modify
the signature to use inode.
Since btrfs uses nanosecond time granularity, it can also use
ktime_get_real_ts directly to obtain timestamp for the root. It is
necessary to use the timespec time api here because the same
btrfs_set_stack_timespec_*() apis are used for vfs inode times as well.
These can be transitioned to using timespec64 when btrfs internally
changes to use timespec64 as well.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_get_extent() never returns NULL pointers, so this code introduces
a static checker warning.
The btrfs_get_extent() is a bit complex, but trust me that it doesn't
return NULLs and also if it did we would trigger the BUG_ON(!em) before
the last return statement.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
[ updated subject ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
The easist way to reproduce the bug is:
------
# mkfs.btrfs -f $dev -n 16K
# mount $dev $mnt -o inode_cache
# btrfs quota enable $mnt
# btrfs quota rescan -w $mnt
# btrfs qgroup show $mnt
qgroupid rfer excl
-------- ---- ----
0/5 32.00KiB 32.00KiB
^^ Twice the correct value
------
And fstests/btrfs qgroup test group can easily detect them with
inode_cache mount option.
Although some of them are false alerts since old test cases are using
fixed golden output.
While new test cases will use "btrfs check" to detect qgroup mismatch.
[CAUSE]
Inode_cache mount option will make commit_fs_roots() to call
btrfs_save_ino_cache() to update fs/subvol trees, and generate new
delayed refs.
However we call btrfs_qgroup_prepare_account_extents() too early, before
commit_fs_roots().
This makes the "old_roots" for newly generated extents are always NULL.
For freeing extent case, this makes both new_roots and old_roots to be
empty, while correct old_roots should not be empty.
This causing qgroup numbers not decreased correctly.
[FIX]
Modify the timing of calling btrfs_qgroup_prepare_account_extents() to
just before btrfs_qgroup_account_extents(), and add needed delayed_refs
handler.
So qgroup can handle inode_map mount options correctly.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have already assigned q from bdev_get_queue() so use it.
And rearrange the code for better view.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is fixing code pieces where we use div_u64 when passing a u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 3d8da67817 ("Btrfs: fix divide error upon chunk's stripe_len")
changed stripe_len in struct map_lookup to u64, but didn't update
stripe_len in struct scrub_parity.
This updates the type and switches to div64_u64_rem to match u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that scrub can fix data errors with the help of parity for raid56
profile, repair during read is able to as well.
Although the mirror num in raid56 scenario has different meanings, i.e.
0 or 1: read data directly
> 1: do recover with parity,
it could be fit into how we repair bad block during read.
The trick is to use BTRFS_MAP_READ instead of BTRFS_MAP_WRITE to get the
device and position on it.
Cc: David Sterba <dsterba@suse.cz>
Tested-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a helper to clear whole page, with a arch-specific optimized
code. The replaced cases do not seem to be in performace critical code,
but we still might get some percent gain.
Signed-off-by: David Sterba <dsterba@suse.com>
scrub_setup_recheck_block() calls btrfs_map_sblock() and then accesses
bbio without protection of bio_counter.
This can lead to use-after-free if racing with dev replace cancel.
Fix it by increasing bio_counter before calling btrfs_map_sblock() and
decreasing the bio_counter when corresponding recover is finished.
Cc: Liu Bo <bo.li.liu@oracle.com>
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When raid56 dev-replace is cancelled by running scrub, we will free
target device without waiting for in-flight bios, causing the following
NULL pointer deference or general protection failure.
BUG: unable to handle kernel NULL pointer dereference at 00000000000005e0
IP: generic_make_request_checks+0x4d/0x610
CPU: 1 PID: 11676 Comm: kworker/u4:14 Tainted: G O 4.11.0-rc2 #72
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
Workqueue: btrfs-endio-raid56 btrfs_endio_raid56_helper [btrfs]
task: ffff88002875b4c0 task.stack: ffffc90001334000
RIP: 0010:generic_make_request_checks+0x4d/0x610
Call Trace:
? generic_make_request+0xc7/0x360
generic_make_request+0x24/0x360
? generic_make_request+0xc7/0x360
submit_bio+0x64/0x120
? page_in_rbio+0x4d/0x80 [btrfs]
? rbio_orig_end_io+0x80/0x80 [btrfs]
finish_rmw+0x3f4/0x540 [btrfs]
validate_rbio_for_rmw+0x36/0x40 [btrfs]
raid_rmw_end_io+0x7a/0x90 [btrfs]
bio_endio+0x56/0x60
end_workqueue_fn+0x3c/0x40 [btrfs]
btrfs_scrubparity_helper+0xef/0x620 [btrfs]
btrfs_endio_raid56_helper+0xe/0x10 [btrfs]
process_one_work+0x2af/0x720
? process_one_work+0x22b/0x720
worker_thread+0x4b/0x4f0
kthread+0x10f/0x150
? process_one_work+0x720/0x720
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x2e/0x40
RIP: generic_make_request_checks+0x4d/0x610 RSP: ffffc90001337bb8
In btrfs_dev_replace_finishing(), we will call
btrfs_rm_dev_replace_blocked() to wait bios before destroying the target
device when scrub is finished normally.
However when dev-replace is aborted, either due to error or cancelled by
scrub, we didn't wait for bios, this can lead to use-after-free if there
are bios holding the target device.
Furthermore, for raid56 scrub, at least 2 places are calling
btrfs_map_sblock() without protection of bio_counter, leading to the
problem.
This patch fixes the problem:
1) Wait for bio_counter before freeing target device when canceling
replace
2) When calling btrfs_map_sblock() for raid56, use bio_counter to
protect the call.
Cc: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the following situation, scrub will calculate wrong parity to
overwrite the correct one:
RAID5 full stripe:
Before
| Dev 1 | Dev 2 | Dev 3 |
| Data stripe 1 | Data stripe 2 | Parity Stripe |
--------------------------------------------------- 0
| 0x0000 (Bad) | 0xcdcd | 0x0000 |
--------------------------------------------------- 4K
| 0xcdcd | 0xcdcd | 0x0000 |
...
| 0xcdcd | 0xcdcd | 0x0000 |
--------------------------------------------------- 64K
After scrubbing dev3 only:
| Dev 1 | Dev 2 | Dev 3 |
| Data stripe 1 | Data stripe 2 | Parity Stripe |
--------------------------------------------------- 0
| 0xcdcd (Good) | 0xcdcd | 0xcdcd (Bad) |
--------------------------------------------------- 4K
| 0xcdcd | 0xcdcd | 0x0000 |
...
| 0xcdcd | 0xcdcd | 0x0000 |
--------------------------------------------------- 64K
The reason is that after raid56 read rebuild rbio->stripe_pages are all
correctly recovered (0xcd for data stripes).
However when we check and repair parity in
scrub_parity_check_and_repair(), we will append pages in sparity->spages
list to rbio->bio_pages[], which contains old on-disk data.
And when we submit parity data to disk, we calculate parity using
rbio->bio_pages[] first, if rbio->bio_pages[] not found, then fallback
to rbio->stripe_pages[].
The patch fix it by not appending pages from sparity->spages.
So finish_parity_scrub() will use rbio->stripe_pages[] which is correct.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Newly introduced qgroup reserved space trace points are normally nested
into several common qgroup operations.
While some other trace points are not well placed to co-operate with
them, causing confusing output.
This patch re-arrange trace_btrfs_qgroup_release_data() and
trace_btrfs_qgroup_free_delayed_ref() trace points so they are triggered
before reserved space ones.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce the following trace points:
qgroup_update_reserve
qgroup_meta_reserve
These trace points are handy to trace qgroup reserve space related
problems.
Also export btrfs_qgroup structure, as now we directly pass btrfs_qgroup
structure to trace points, so that structure needs to be exported.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In raid56 scenario, after trying parity recovery, we didn't set
mirror_num for btrfs_bio with failed mirror_num, hence
end_bio_extent_readpage() will report a random mirror_num in dmesg
log.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Scrub repairs data by the unit called scrub_block, which may contain
several pages. Scrub always tries to look up a good copy of a whole
block, but if there's no such copy, it tries to do repair page by page.
If we don't set page's io_error when checking this bad copy, in the last
step, we may skip this page when repairing bad copy from good copy.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several operations, usually started from ioctls, that cannot
run concurrently. The status is tracked in
mutually_exclusive_operation_running as an atomic_t. We can easily track
the status as one of the per-filesystem flag bits with same
synchronization guarantees.
The conversion replaces:
* atomic_xchg(..., 1) -> test_and_set_bit(FLAG, ...)
* atomic_set(..., 0) -> clear_bit(FLAG, ...)
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are facing the same problem with EDQUOT which was experienced with
ENOSPC. Not sure if we require a full ticketing system such as ENOSPC, but
here is a quick fix, which may be too big a hammer.
Quotas are reserved during the start of an operation, incrementing
qg->reserved. However, it is written to disk in a commit_transaction
which could take as long as commit_interval. In the meantime there
could be deletions which are not accounted for because deletions are
accounted for only while committed (free_refroot). So, when we get
a EDQUOT flush the data to disk and try again.
This fixes fstests btrfs/139.
Here is a sample script which shows this issue.
DEVICE=/dev/vdb
MOUNTPOINT=/mnt
TESTVOL=$MOUNTPOINT/tmp
QUOTA=5
PROG=btrfs
DD_BS="4k"
DD_COUNT="256"
RUN_TIMES=5000
mkfs.btrfs -f $DEVICE
mount -o commit=240 $DEVICE $MOUNTPOINT
$PROG subvolume create $TESTVOL
$PROG quota enable $TESTVOL
$PROG qgroup limit ${QUOTA}G $TESTVOL
typeset -i DD_RUN_GOOD
typeset -i QUOTA
function _check_cmd() {
if [[ ${?} > 0 ]]; then
echo -n "$(date) E: Running previous command"
echo ${*}
echo "Without sync"
$PROG qgroup show -pcreFf ${TESTVOL}
echo "With sync"
$PROG qgroup show -pcreFf --sync ${TESTVOL}
exit 1
fi
}
while true; do
DD_RUN_GOOD=$RUN_TIMES
while (( ${DD_RUN_GOOD} != 0 )); do
dd if=/dev/zero of=${TESTVOL}/quotatest${DD_RUN_GOOD} bs=${DD_BS} count=${DD_COUNT}
_check_cmd "dd if=/dev/zero of=${TESTVOL}/quotatest${DD_RUN_GOOD} bs=${DD_BS} count=${DD_COUNT}"
DD_RUN_GOOD=(${DD_RUN_GOOD}-1)
done
$PROG qgroup show -pcref $TESTVOL
echo "----------- Cleanup ---------- "
rm $TESTVOL/quotatest*
done
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Define the SEQ_LAST macro to replace (u64)-1 in places where said
value triggers a special-case ref search behavior.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace hardcoded numeric values for __merge_refs 'mode' argument
with descriptive constants.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The members have been effectively unused since "Btrfs: rework qgroup
accounting" (fcebe4562d), there's no substitute for
assert_qgroups_uptodate so it's removed as well.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name is misleading and the local variable serves no purpose.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can preallocate the node so insertion does not have to do that under
the lock. The GFP flags for the global radix tree are initialized to
GFP_NOFS & ~__GFP_DIRECT_RECLAIM
but we can use GFP_KERNEL, because readahead is optional and not on any
critical writeout path.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can preallocate the node so insertion does not have to do that under
the lock. The GFP flags for the per-device radix tree are initialized to
GFP_NOFS & ~__GFP_DIRECT_RECLAIM
but we can use GFP_KERNEL, same as an allocation above anyway, but also
because readahead is optional and not on any critical writeout path.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs_balance_args are only used for the balance ioctl, so use __u
instead of __le here for consistency. The __le usage was introduced in
bc3094673f and dee32d0ac3 and was probably a result of
copy/pasting when the code was written.
The usage of __le did not break anything, but it's unnecessary. Also,
this change makes the code less confusing for the careful reader.
Signed-off-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Code cleanup.
The code block is for !(*flags & MS_RDONLY). We don't need
to check it again.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We also don't bother to flush free space cache while with free space
tree.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These two BUG_ON()s would never be true, ensured by callers' logic.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds a helper to show directly whether ops require full stripe.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With this, we can avoid allocating memory for dev replace copies if the
target dev is not available.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since this part is mostly independent, this moves it to a separate
function.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As the part of getting extra mirror in __btrfs_map_block is
independent, this puts it into a separate function.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since DISCARD is not as important as an operation like write, we don't
copy it to target device during replace, and it makes __btrfs_map_block
less complex.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have similar code here and there, this merges them into a helper.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While debugging truncate problems, I found that these tracepoints could
help us quickly know what went wrong.
Two sets of tracepoints are created to track regular/prealloc file item
and inline file item respectively, I put inline as a separate one since
what inline file items cares about are way less than the regular one.
This adds four tracepoints:
- btrfs_get_extent_show_fi_regular
- btrfs_get_extent_show_fi_inline
- btrfs_truncate_show_fi_regular
- btrfs_truncate_show_fi_inline
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ formatting adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>