Track mismatches in the cache type register (CTR_EL0), other
than the D/I min line sizes and trap user accesses if there are any.
Fixes: be68a8aaf9 ("arm64: cpufeature: Fix CTR_EL0 field definitions")
Cc: <stable@vger.kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
As for Spectre variant-2, we rely on SMCCC 1.1 to provide the
discovery mechanism for detecting the SSBD mitigation.
A new capability is also allocated for that purpose, and a
config option.
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC
V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses
the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead
of Silicon provider service ID 0xC2001700.
Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[maz: reworked errata framework integration]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past invalid
privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as of now)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
=bPlD
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...
Creates far too many conflicts with arm64/for-next/core, to be
resent post -rc1.
This reverts commit f9f5dc1950.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We enable hardware DBM bit in a capable CPU, very early in the
boot via __cpu_setup. This doesn't give us a flexibility of
optionally disable the feature, as the clearing the bit
is a bit costly as the TLB can cache the settings. Instead,
we delay enabling the feature until the CPU is brought up
into the kernel. We use the feature capability mechanism
to handle it.
The hardware DBM is a non-conflicting feature. i.e, the kernel
can safely run with a mix of CPUs with some using the feature
and the others don't. So, it is safe for a late CPU to have
this capability and enable it, even if the active CPUs don't.
To get this handled properly by the infrastructure, we
unconditionally set the capability and only enable it
on CPUs which really have the feature. Also, we print the
feature detection from the "matches" call back to make sure
we don't mislead the user when none of the CPUs could use the
feature.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC
V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses
the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead
of Silicon provider service ID 0xC2001700.
Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far, the branch from the vector slots to the main vectors can at
most be 4GB from the main vectors (the reach of ADRP), and this
distance is known at compile time. If we were to remap the slots
to an unrelated VA, things would break badly.
A way to achieve VA independence would be to load the absolute
address of the vectors (__kvm_hyp_vector), either using a constant
pool or a series of movs, followed by an indirect branch.
This patches implements the latter solution, using another instance
of a patching callback. Note that since we have to save a register
pair on the stack, we branch to the *second* instruction in the
vectors in order to compensate for it. This also results in having
to adjust this balance in the invalid vector entry point.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that we can dynamically compute the kernek/hyp VA mask, there
is no need for a feature flag to trigger the alternative patching.
Let's drop the flag and everything that depends on it.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The DCache clean & ICache invalidation requirements for instructions
to be data coherence are discoverable through new fields in CTR_EL0.
The following two control bits DIC and IDC were defined for this
purpose. No need to perform point of unification cache maintenance
operations from software on systems where CPU caches are transparent.
This patch optimize the three functions __flush_cache_user_range(),
clean_dcache_area_pou() and invalidate_icache_range() if the hardware
reports CTR_EL0.IDC and/or CTR_EL0.IDC. Basically it skips the two
instructions 'DC CVAU' and 'IC IVAU', and the associated loop logic
in order to avoid the unnecessary overhead.
CTR_EL0.DIC: Instruction cache invalidation requirements for
instruction to data coherence. The meaning of this bit[29].
0: Instruction cache invalidation to the point of unification
is required for instruction to data coherence.
1: Instruction cache cleaning to the point of unification is
not required for instruction to data coherence.
CTR_EL0.IDC: Data cache clean requirements for instruction to data
coherence. The meaning of this bit[28].
0: Data cache clean to the point of unification is required for
instruction to data coherence, unless CLIDR_EL1.LoC == 0b000
or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU == 0b000).
1: Data cache clean to the point of unification is not required
for instruction to data coherence.
Co-authored-by: Philip Elcan <pelcan@codeaurora.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Omit patching of ADRP instruction at module load time if the current
CPUs are not susceptible to the erratum.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: Drop duplicate initialisation of .def_scope field]
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARM's v8.2 Extentions add support for Reliability, Availability and
Serviceability (RAS). On CPUs with these extensions system software
can use additional barriers to isolate errors and determine if faults
are pending. Add cpufeature detection.
Platform level RAS support may require additional firmware support.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
[Rebased added config option, reworded commit message]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Falkor is susceptible to branch predictor aliasing and can
theoretically be attacked by malicious code. This patch
implements a mitigation for these attacks, preventing any
malicious entries from affecting other victim contexts.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[will: fix label name when !CONFIG_KVM and remove references to MIDR_FALKOR]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Aliasing attacks against CPU branch predictors can allow an attacker to
redirect speculative control flow on some CPUs and potentially divulge
information from one context to another.
This patch adds initial skeleton code behind a new Kconfig option to
enable implementation-specific mitigations against these attacks for
CPUs that are affected.
Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Allow explicit disabling of the entry trampoline on the kernel command
line (kpti=off) by adding a fake CPU feature (ARM64_UNMAP_KERNEL_AT_EL0)
that can be used to toggle the alternative sequences in our entry code and
avoid use of the trampoline altogether if desired. This also allows us to
make use of a static key in arm64_kernel_unmapped_at_el0().
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch enables detection of hardware SVE support via the
cpufeatures framework, and reports its presence to the kernel and
userspace via the new ARM64_SVE cpucap and HWCAP_SVE hwcap
respectively.
Userspace can also detect SVE using ID_AA64PFR0_EL1, using the
cpufeatures MRS emulation.
When running on hardware that supports SVE, this enables runtime
kernel support for SVE, and allows user tasks to execute SVE
instructions and make of the of the SVE-specific user/kernel
interface extensions implemented by this series.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add a clean-to-point-of-persistence cache maintenance helper, and wire
up the basic architectural support for the pmem driver based on it.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
[catalin.marinas@arm.com: move arch_*_pmem() functions to arch/arm64/mm/flush.c]
[catalin.marinas@arm.com: change dmb(sy) to dmb(osh)]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Some Cavium Thunder CPUs suffer a problem where a KVM guest may
inadvertently cause the host kernel to quit receiving interrupts.
Use the Group-0/1 trapping in order to deal with it.
[maz]: Adapted patch to the Group-0/1 trapping, reworked commit log
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In order to work around Cortex-A73 erratum 858921 in a subsequent
patch, add the required capability that advertise the erratum.
As the configuration option it depends on is not present yet,
this has no immediate effect.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The Qualcomm Datacenter Technologies Falkor v1 CPU may allocate TLB entries
using an incorrect ASID when TTBRx_EL1 is being updated. When the erratum
is triggered, page table entries using the new translation table base
address (BADDR) will be allocated into the TLB using the old ASID. All
circumstances leading to the incorrect ASID being cached in the TLB arise
when software writes TTBRx_EL1[ASID] and TTBRx_EL1[BADDR], a memory
operation is in the process of performing a translation using the specific
TTBRx_EL1 being written, and the memory operation uses a translation table
descriptor designated as non-global. EL2 and EL3 code changing the EL1&0
ASID is not subject to this erratum because hardware is prohibited from
performing translations from an out-of-context translation regime.
Consider the following pseudo code.
write new BADDR and ASID values to TTBRx_EL1
Replacing the above sequence with the one below will ensure that no TLB
entries with an incorrect ASID are used by software.
write reserved value to TTBRx_EL1[ASID]
ISB
write new value to TTBRx_EL1[BADDR]
ISB
write new value to TTBRx_EL1[ASID]
ISB
When the above sequence is used, page table entries using the new BADDR
value may still be incorrectly allocated into the TLB using the reserved
ASID. Yet this will not reduce functionality, since TLB entries incorrectly
tagged with the reserved ASID will never be hit by a later instruction.
Based on work by Shanker Donthineni <shankerd@codeaurora.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
During a TLB invalidate sequence targeting the inner shareable domain,
Falkor may prematurely complete the DSB before all loads and stores using
the old translation are observed. Instruction fetches are not subject to
the conditions of this erratum. If the original code sequence includes
multiple TLB invalidate instructions followed by a single DSB, onle one of
the TLB instructions needs to be repeated to work around this erratum.
While the erratum only applies to cases in which the TLBI specifies the
inner-shareable domain (*IS form of TLBI) and the DSB is ISH form or
stronger (OSH, SYS), this changes applies the workaround overabundantly--
to local TLBI, DSB NSH sequences as well--for simplicity.
Based on work by Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- struct thread_info moved off-stack (also touching
include/linux/thread_info.h and include/linux/restart_block.h)
- cpus_have_cap() reworked to avoid __builtin_constant_p() for static
key use (also touching drivers/irqchip/irq-gic-v3.c)
- Uprobes support (currently only for native 64-bit tasks)
- Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1
switching to a reserved page table
- CPU capacity information passing via DT or sysfs (used by the
scheduler)
- Support for systems without FP/SIMD (IOW, kernel avoids touching these
registers; there is no soft-float ABI, nor kernel emulation for
AArch64 FP/SIMD)
- Handling of hardware watchpoint with unaligned addresses, varied
lengths and offsets from base
- Use of the page table contiguous hint for kernel mappings
- Hugetlb fixes for sizes involving the contiguous hint
- Remove unnecessary I-cache invalidation in flush_cache_range()
- CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1)
- Boot-time checks for writable+executable kernel mappings
- Simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart
and make the arm64 kernel headers self-consistent (Xen headers patch
merged separately)
- Workaround for broken .inst support in certain binutils versions
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYUEd0AAoJEGvWsS0AyF7xLpIP/AvSZgtz6/N+UcJ70r1oPwZ/
wIZl5OJ1hpfIEs+9XPU71TJbfETOusyOYwDUQmp8lXFDICk3snB4PvXFpLHOSytL
N05eYnV2de+gyKstC3ysg0mZdpIrazjKQbmHPc1KeNHuf6ZPSuIqRFINr3rnpziY
TeOVmFplgKnbDYcF4ejqcaEFEn5BkkpNNfqhX4mOHJIC4BMmglT/KefzHtK/39AT
EdZWrsA9UTEA+ccgolYtq55YcZD9kQFmEy2BRhZLbOamH5UrsUOVl9sS6fRvA3Qs
eSbnHBsdJ7n/ym6w/CK+KXKo3M/02H0JNXqhPlHaAqb+djlp7N74wyiERISR6GL9
s+7Fh/uNhfMg7vYtWkN3TlXth9HmNXdpaouNe/m8seBvwdKH+KfC0IBhXCl0NziB
hxwMI+OtV4wxzPgXTSkYlbqVEC49dAq9GnRtR+Bi5tY4a9+jeNwG/uIRcFMaRHJe
Wq48050mHMlmOjnmr3N+0l7dNhda8/ZO03ZlPfqrccBccX0idqVypkG6Wj75ZK1b
TTBvQ2A2Hqi7YtSqZNrUnTDx5O4IlywQpXLzIsDJPph8mrZ4h06lRr2fkh4FcKgH
NQrr9tjTD9XLOJfl3u0VwSbWYucWrgMHYI1r5SA5xl1Xqp6YJ8Kfod3sdA+uxS3P
SK03zJP1LM+e1HidQhKN
=8Uk9
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- struct thread_info moved off-stack (also touching
include/linux/thread_info.h and include/linux/restart_block.h)
- cpus_have_cap() reworked to avoid __builtin_constant_p() for static
key use (also touching drivers/irqchip/irq-gic-v3.c)
- uprobes support (currently only for native 64-bit tasks)
- Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1
switching to a reserved page table
- CPU capacity information passing via DT or sysfs (used by the
scheduler)
- support for systems without FP/SIMD (IOW, kernel avoids touching
these registers; there is no soft-float ABI, nor kernel emulation for
AArch64 FP/SIMD)
- handling of hardware watchpoint with unaligned addresses, varied
lengths and offsets from base
- use of the page table contiguous hint for kernel mappings
- hugetlb fixes for sizes involving the contiguous hint
- remove unnecessary I-cache invalidation in flush_cache_range()
- CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1)
- boot-time checks for writable+executable kernel mappings
- simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart
and make the arm64 kernel headers self-consistent (Xen headers patch
merged separately)
- Workaround for broken .inst support in certain binutils versions
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (60 commits)
arm64: Disable PAN on uaccess_enable()
arm64: Work around broken .inst when defective gas is detected
arm64: Add detection code for broken .inst support in binutils
arm64: Remove reference to asm/opcodes.h
arm64: Get rid of asm/opcodes.h
arm64: smp: Prevent raw_smp_processor_id() recursion
arm64: head.S: Fix CNTHCTL_EL2 access on VHE system
arm64: Remove I-cache invalidation from flush_cache_range()
arm64: Enable HIBERNATION in defconfig
arm64: Enable CONFIG_ARM64_SW_TTBR0_PAN
arm64: xen: Enable user access before a privcmd hvc call
arm64: Handle faults caused by inadvertent user access with PAN enabled
arm64: Disable TTBR0_EL1 during normal kernel execution
arm64: Introduce uaccess_{disable,enable} functionality based on TTBR0_EL1
arm64: Factor out TTBR0_EL1 post-update workaround into a specific asm macro
arm64: Factor out PAN enabling/disabling into separate uaccess_* macros
arm64: Update the synchronous external abort fault description
selftests: arm64: add test for unaligned/inexact watchpoint handling
arm64: Allow hw watchpoint of length 3,5,6 and 7
arm64: hw_breakpoint: Handle inexact watchpoint addresses
...
Commit efd9e03fac ("arm64: Use static keys for CPU features")
introduced support for static keys in asm/cpufeature.h, including
linux/jump_label.h. When CC_HAVE_ASM_GOTO is not defined, this causes a
circular dependency via linux/atomic.h, asm/lse.h and asm/cpufeature.h.
This patch moves the capability macros out out of asm/cpufeature.h into
a separate asm/cpucaps.h and modifies some of the #includes accordingly.
Fixes: efd9e03fac ("arm64: Use static keys for CPU features")
Reported-by: Artem Savkov <asavkov@redhat.com>
Tested-by: Artem Savkov <asavkov@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>