The flush_tlb hook in cpu_spec was introduced as a generic function hook
to invalidate TLBs. But the current implementation of flush_tlb hook
takes IS (invalidation selector) as an argument which is architecture
dependent. Hence, It is not right to have a generic routine where caller
has to pass non-generic argument.
This patch fixes this and makes flush_tlb hook as high level API.
Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The existing MCE code calls flush_tlb hook with IS=0 (single page) resulting
in partial invalidation of TLBs which is not right. This patch fixes
that by passing IS=0xc00 to invalidate whole TLB for successful recovery
from TLB and ERAT errors.
Cc: stable@vger.kernel.org
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Detect and recover from machine check when inside opal on a special
scom load instructions. On specific SCOM read via MMIO we may get a machine
check exception with SRR0 pointing inside opal. To recover from MC
in this scenario, get a recovery instruction address and return to it from
MC.
OPAL will export the machine check recoverable ranges through
device tree node mcheck-recoverable-ranges under ibm,opal:
# hexdump /proc/device-tree/ibm,opal/mcheck-recoverable-ranges
0000000 0000 0000 3000 2804 0000 000c 0000 0000
0000010 3000 2814 0000 0000 3000 27f0 0000 000c
0000020 0000 0000 3000 2814 xxxx xxxx xxxx xxxx
0000030 llll llll yyyy yyyy yyyy yyyy
...
...
#
where:
xxxx xxxx xxxx xxxx = Starting instruction address
llll llll = Length of the address range.
yyyy yyyy yyyy yyyy = recovery address
Each recoverable address range entry is (start address, len,
recovery address), 2 cells each for start and recovery address, 1 cell for
len, totalling 5 cells per entry. During kernel boot time, build up the
recovery table with the list of recovery ranges from device-tree node which
will be used during machine check exception to recover from MMIO SCOM UE.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The SLB save area is shared with the hypervisor and is defined
as big endian, so we need to byte swap on little endian builds.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Now that we handle machine check in linux, the MCE decoding should also
take place in linux host. This info is crucial to log before we go down
in case we can not handle the machine check errors. This patch decodes
and populates a machine check event which contain high level meaning full
MCE information.
We do this in real mode C code with ME bit on. The MCE information is still
available on emergency stack (in pt_regs structure format). Even if we take
another exception at this point the MCE early handler will allocate a new
stack frame on top of current one. So when we return back here we still have
our MCE information safe on current stack.
We use per cpu buffer to save high level MCE information. Each per cpu buffer
is an array of machine check event structure indexed by per cpu counter
mce_nest_count. The mce_nest_count is incremented every time we enter
machine check early handler in real mode to get the current free slot
(index = mce_nest_count - 1). The mce_nest_count is decremented once the
MCE info is consumed by virtual mode machine exception handler.
This patch provides save_mce_event(), get_mce_event() and release_mce_event()
generic routines that can be used by machine check handlers to populate and
retrieve the event. The routine release_mce_event() will free the event slot so
that it can be reused. Caller can invoke get_mce_event() with a release flag
either to release the event slot immediately OR keep it so that it can be
fetched again. The event slot can be also released anytime by invoking
release_mce_event().
This patch also updates kvm code to invoke get_mce_event to retrieve generic
mce event rather than paca->opal_mce_evt.
The KVM code always calls get_mce_event() with release flags set to false so
that event is available for linus host machine
If machine check occurs while we are in guest, KVM tries to handle the error.
If KVM is able to handle MC error successfully, it enters the guest and
delivers the machine check to guest. If KVM is not able to handle MC error, it
exists the guest and passes the control to linux host machine check handler
which then logs MC event and decides how to handle it in linux host. In failure
case, KVM needs to make sure that the MC event is available for linux host to
consume. Hence KVM always calls get_mce_event() with release flags set to false
and later it invokes release_mce_event() only if it succeeds to handle error.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch handles the memory errors on power8. If we get a machine check
exception due to SLB or TLB errors, then flush SLBs/TLBs and reload SLBs to
recover.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
If we get a machine check exception due to SLB or TLB errors, then flush
SLBs/TLBs and reload SLBs to recover. We do this in real mode before turning
on MMU. Otherwise we would run into nested machine checks.
If we get a machine check when we are in guest, then just flush the
SLBs and continue. This patch handles errors for power7. The next
patch will handle errors for power8
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>