Impact: cleanup, no functionality changed
The 'time_adj' local variable is named in a very confusing
way because it almost shadows the 'time_adjust' global
variable - which is used in this same function.
Rename it to 'delta' - to make them stand apart more clearly.
kernel/time/ntp.o:
text data bss dec hex filename
2545 114 144 2803 af3 ntp.o.before
2545 114 144 2803 af3 ntp.o.after
md5:
1bf0b3be564512279ba7cee299d1d2be ntp.o.before.asm
1bf0b3be564512279ba7cee299d1d2be ntp.o.after.asm
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: micro-optimization
Convert the (internal) ntp_tick_adj value we store from unscaled
units to scaled units. This is a constant that we never modify,
so scaling it up once during bootup is enough - we dont have to
do it for every adjustment step.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Further simplify do_adjtimex():
- introduce the ntp_start_leap_timer() helper function
- eliminate the goto adj_done complication
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
do_adjtimex() is currently a monster function with a maze of
branches. Refactor the txc->modes setting aspects of it into
two new helper functions:
process_adj_status()
process_adjtimex_modes()
kernel/time/ntp.o:
text data bss dec hex filename
2512 114 136 2762 aca ntp.o.before
2512 114 136 2762 aca ntp.o.after
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: change (fix) the way the NTP PLL seconds offset is initialized/tracked
Fix a bug and do a micro-optimization:
When PLL is enabled we do not reset time_reftime. If the PLL
was off for a long time (for example after bootup), this is
arguably the wrong thing to do.
We already had a hack for the common boot-time case in
ntp_update_offset(), in form of:
if (unlikely(time_status & STA_FREQHOLD || time_reftime == 0))
secs = 0;
But the update delta should be reset later on too - not just when
the PLL is enabled for the first time after bootup.
So do it on !STA_PLL -> STA_PLL transitions.
This changes behavior, as previously if ntpd was disabled for
a long time and we restarted it, we'd run from that last update,
with a very large delta.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
The time_reftime update in ntp_update_offset() to xtime.tv_sec
is a convoluted way of saying that we want to freeze the frequency
and want the 'secs' delta to be 0. Also make this branch unlikely.
This shaves off 8 bytes from the code size:
text data bss dec hex filename
2504 114 136 2754 ac2 ntp.o.before
2496 114 136 2746 aba ntp.o.after
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Change ntp_update_offset_fll() to delta logic instead of
absolute value logic. This eliminates 'freq_adj' from the
function.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Change ntp_update_frequency() from a hard to follow code
flow that uses global variables as temporaries, to a clean
input+output flow.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
There's an ugly u64 typecase in the MAX_TICKADJ_SCALED definition,
this can be eliminated by making the MAX_TICKADJ constant's type
64-bit (signed).
kernel/time/ntp.o:
text data bss dec hex filename
2504 114 136 2754 ac2 ntp.o.before
2504 114 136 2754 ac2 ntp.o.after
md5:
41f3009debc9b397d7394dd77d912f0a ntp.o.before.asm
41f3009debc9b397d7394dd77d912f0a ntp.o.after.asm
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Instead of a hierarchy of conditions, transform them to clean
gradual conditions and return's.
This makes the flow easier to read and makes the purpose of
the function easier to understand.
kernel/time/ntp.o:
text data bss dec hex filename
2552 170 168 2890 b4a ntp.o.before
2552 170 168 2890 b4a ntp.o.after
md5:
eae1275df0b7d6290c13f6f6f8f05c8c ntp.o.before.asm
eae1275df0b7d6290c13f6f6f8f05c8c ntp.o.after.asm
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Make this file a bit more readable by applying a consistent coding style.
No code changed:
kernel/time/ntp.o:
text data bss dec hex filename
2552 170 168 2890 b4a ntp.o.before
2552 170 168 2890 b4a ntp.o.after
md5:
eae1275df0b7d6290c13f6f6f8f05c8c ntp.o.before.asm
eae1275df0b7d6290c13f6f6f8f05c8c ntp.o.after.asm
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the GENERIC_TIME changes landed, the adjtimex behavior changed
for struct timex.tick and .freq changed. When the tick or freq value
is set, we adjust the tick_length_base in ntp_update_frequency().
However, this new value doesn't get applied to tick_length until the
next second (via second_overflow).
This means some applications that do quick time tweaking do not see the
requested change made as quickly as expected.
I've run a few tests with this change, and ntpd still functions fine.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Mapping from a struct timecounter to a time returned by functions like
ktime_get_real() is implemented. This is sufficient to use this code
in a network device driver which wants to support hardware time
stamping and transformation of hardware time stamps to system time.
The interface could have been made more versatile by not depending on
a time counter, but this wasn't done to avoid writing glue code
elsewhere.
The method implemented here is the one used and analyzed under the name
"assisted PTP" in the LCI PTP paper:
http://www.linuxclustersinstitute.org/conferences/archive/2008/PDF/Ohly_92221.pdf
Acked-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Patrick Ohly <patrick.ohly@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
So far struct clocksource acted as the interface between time/timekeeping.c
and hardware. This patch generalizes the concept so that a similar
interface can also be used in other contexts. For that it introduces
new structures and related functions *without* touching the existing
struct clocksource.
The reasons for adding these new structures to clocksource.[ch] are
* the APIs are clearly related
* struct clocksource could be cleaned up to use the new structs
* avoids proliferation of files with similar names (timesource.h?
timecounter.h?)
As outlined in the discussion with John Stultz, this patch adds
* struct cyclecounter: stateless API to hardware which counts clock cycles
* struct timecounter: stateful utility code built on a cyclecounter which
provides a nanosecond counter
* only the function to read the nanosecond counter; deltas are used internally
and not exposed to users of timecounter
The code does no locking of the shared state. It must be called at least
as often as the cycle counter wraps around to detect these wrap arounds.
Both is the responsibility of the timecounter user.
Acked-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Patrick Ohly <patrick.ohly@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Impact: fix CPU hotplug hang on Power6 testbox
On architectures that support offlining all cpus (at least powerpc/pseries),
hot-unpluging the tick_do_timer_cpu can result in a system hang.
This comes from the fact that if the cpu going down happens to be the
cpu doing the tick, then as the tick_do_timer_cpu handover happens after the
cpu is dead (via the CPU_DEAD notification), we're left without ticks,
jiffies are frozen and any task relying on timers (msleep, ...) is stuck.
That's particularly the case for the cpu looping in __cpu_die() waiting
for the dying cpu to be dead.
This patch addresses this by having the tick_do_timer_cpu handover happen
earlier during the CPU_DYING notification. For this, a new clockevent
notification type is introduced (CLOCK_EVT_NOTIFY_CPU_DYING) which is triggered
in hrtimer_cpu_notify().
Signed-off-by: Sebastien Dugue <sebastien.dugue@bull.net>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Allow the set_mode() clockevent callback to decide and fill in delta
details such as shift, mult, max_delta_ns and min_delta_ns.
With this change the clockevent can be registered without delta details
which allows us to keep the parent clock disabled until the clockevent
gets setup using set_mode().
Letting set_mode() fill in or update delta details allows us to save
power by disabling the parent clock while the clockevent is unused.
This may however make the parent clock rate change, so next time the
clockevent gets enabled we need let set_mode() to update the detla
details accordingly. Doing it at registration time is not enough.
Furthermore, the delta details seem unused in the case of periodic-only
clockevent drivers, so this change also allows registration of such
drivers without the delta details filled in.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: cleanup, reduce kernel size a bit, avoid sparse warning
Fixes sparse warning:
kernel/time/tick-sched.c:137:6: warning: symbol 'tick_nohz_update_jiffies' was not declared. Should it be static?
Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (24 commits)
trivial: chack -> check typo fix in main Makefile
trivial: Add a space (and a comma) to a printk in 8250 driver
trivial: Fix misspelling of "firmware" in docs for ncr53c8xx/sym53c8xx
trivial: Fix misspelling of "firmware" in powerpc Makefile
trivial: Fix misspelling of "firmware" in usb.c
trivial: Fix misspelling of "firmware" in qla1280.c
trivial: Fix misspelling of "firmware" in a100u2w.c
trivial: Fix misspelling of "firmware" in megaraid.c
trivial: Fix misspelling of "firmware" in ql4_mbx.c
trivial: Fix misspelling of "firmware" in acpi_memhotplug.c
trivial: Fix misspelling of "firmware" in ipw2100.c
trivial: Fix misspelling of "firmware" in atmel.c
trivial: Fix misspelled firmware in Kconfig
trivial: fix an -> a typos in documentation and comments
trivial: fix then -> than typos in comments and documentation
trivial: update Jesper Juhl CREDITS entry with new email
trivial: fix singal -> signal typo
trivial: Fix incorrect use of "loose" in event.c
trivial: printk: fix indentation of new_text_line declaration
trivial: rtc-stk17ta8: fix sparse warning
...
* 'cpus4096-for-linus-3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (77 commits)
x86: setup_per_cpu_areas() cleanup
cpumask: fix compile error when CONFIG_NR_CPUS is not defined
cpumask: use alloc_cpumask_var_node where appropriate
cpumask: convert shared_cpu_map in acpi_processor* structs to cpumask_var_t
x86: use cpumask_var_t in acpi/boot.c
x86: cleanup some remaining usages of NR_CPUS where s/b nr_cpu_ids
sched: put back some stack hog changes that were undone in kernel/sched.c
x86: enable cpus display of kernel_max and offlined cpus
ia64: cpumask fix for is_affinity_mask_valid()
cpumask: convert RCU implementations, fix
xtensa: define __fls
mn10300: define __fls
m32r: define __fls
h8300: define __fls
frv: define __fls
cris: define __fls
cpumask: CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS
cpumask: zero extra bits in alloc_cpumask_var_node
cpumask: replace for_each_cpu_mask_nr with for_each_cpu in kernel/time/
cpumask: convert mm/
...
* 'cpus4096-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (66 commits)
x86: export vector_used_by_percpu_irq
x86: use logical apicid in x2apic_cluster's x2apic_cpu_mask_to_apicid_and()
sched: nominate preferred wakeup cpu, fix
x86: fix lguest used_vectors breakage, -v2
x86: fix warning in arch/x86/kernel/io_apic.c
sched: fix warning in kernel/sched.c
sched: move test_sd_parent() to an SMP section of sched.h
sched: add SD_BALANCE_NEWIDLE at MC and CPU level for sched_mc>0
sched: activate active load balancing in new idle cpus
sched: bias task wakeups to preferred semi-idle packages
sched: nominate preferred wakeup cpu
sched: favour lower logical cpu number for sched_mc balance
sched: framework for sched_mc/smt_power_savings=N
sched: convert BALANCE_FOR_xx_POWER to inline functions
x86: use possible_cpus=NUM to extend the possible cpus allowed
x86: fix cpu_mask_to_apicid_and to include cpu_online_mask
x86: update io_apic.c to the new cpumask code
x86: Introduce topology_core_cpumask()/topology_thread_cpumask()
x86: xen: use smp_call_function_many()
x86: use work_on_cpu in x86/kernel/cpu/mcheck/mce_amd_64.c
...
Fixed up trivial conflict in kernel/time/tick-sched.c manually
Impact: cleanup
Simple replacement, now the _nr is redundant.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Impact: Use new APIs
Convert kernel/time functions to use struct cpumask *.
Note the ugly bitmap declarations in tick-broadcast.c. These should
be cpumask_var_t, but there was no obvious initialization function to
put the alloc_cpumask_var() calls in. This was safe.
(Eventually 'struct cpumask' will be undefined for CONFIG_CPUMASK_OFFSTACK,
so we use a bitmap here to show we really mean it).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
The cpu time spent by the idle process actually doing something is
currently accounted as idle time. This is plain wrong, the architectures
that support VIRT_CPU_ACCOUNTING=y can do better: distinguish between the
time spent doing nothing and the time spent by idle doing work. The first
is accounted with account_idle_time and the second with account_system_time.
The architectures that use the account_xxx_time interface directly and not
the account_xxx_ticks interface now need to do the check for the idle
process in their arch code. In particular to improve the system vs true
idle time accounting the arch code needs to measure the true idle time
instead of just testing for the idle process.
To improve the tick based accounting as well we would need an architecture
primitive that can tell us if the pt_regs of the interrupted context
points to the magic instruction that halts the cpu.
In addition idle time is no more added to the stime of the idle process.
This field now contains the system time of the idle process as it should
be. On systems without VIRT_CPU_ACCOUNTING this will always be zero as
every tick that occurs while idle is running will be accounted as idle
time.
This patch contains the necessary common code changes to be able to
distinguish idle system time and true idle time. The architectures with
support for VIRT_CPU_ACCOUNTING need some changes to exploit this.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The utimescaled / stimescaled fields in the task structure and the
global cpustat should be set on all architectures. On s390 the calls
to account_user_time_scaled and account_system_time_scaled never have
been added. In addition system time that is accounted as guest time
to the user time of a process is accounted to the scaled system time
instead of the scaled user time.
To fix the bugs and to prevent future forgetfulness this patch merges
account_system_time_scaled into account_system_time and
account_user_time_scaled into account_user_time.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Michael Neuling <mikey@neuling.org>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Redo:
5b7dba4: sched_clock: prevent scd->clock from moving backwards
which had to be reverted due to s2ram hangs:
ca7e716: Revert "sched_clock: prevent scd->clock from moving backwards"
... this time with resume restoring GTOD later in the sequence
taken into account as well.
The "timekeeping_suspended" flag is not very nice but we cannot call into
GTOD before it has been properly resumed and the scheduler will run very
early in the resume sequence.
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix CPU hotplug hang on Power6 testbox
On architectures that support offlining all cpus (at least powerpc/pseries),
hot-unpluging the tick_do_timer_cpu can result in a system hang.
This comes from the fact that if the cpu going down happens to be the
cpu doing the tick, then as the tick_do_timer_cpu handover happens after the
cpu is dead (via the CPU_DEAD notification), we're left without ticks,
jiffies are frozen and any task relying on timers (msleep, ...) is stuck.
That's particularly the case for the cpu looping in __cpu_die() waiting
for the dying cpu to be dead.
This patch addresses this by having the tick_do_timer_cpu handover happen
earlier during the CPU_DYING notification. For this, a new clockevent
notification type is introduced (CLOCK_EVT_NOTIFY_CPU_DYING) which is triggered
in hrtimer_cpu_notify().
Signed-off-by: Sebastien Dugue <sebastien.dugue@bull.net>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: change calling convention of existing clock_event APIs
struct clock_event_timer's cpumask field gets changed to take pointer,
as does the ->broadcast function.
Another single-patch change. For safety, we BUG_ON() in
clockevents_register_device() if it's not set.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@elte.hu>
Impact: change existing irq_chip API
Not much point with gentle transition here: the struct irq_chip's
setaffinity method signature needs to change.
Fortunately, not widely used code, but hits a few architectures.
Note: In irq_select_affinity() I save a temporary in by mangling
irq_desc[irq].affinity directly. Ingo, does this break anything?
(Folded in fix from KOSAKI Motohiro)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Grant Grundler <grundler@parisc-linux.org>
Acked-by: Ingo Molnar <mingo@redhat.com>
Cc: ralf@linux-mips.org
Cc: grundler@parisc-linux.org
Cc: jeremy@xensource.com
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
In my device I get many interrupts from a high speed USB device in a very
short period of time. The system spends a lot of time reprogramming the
hardware timer which is in a slower timing domain as compared to the CPU.
This results in the CPU spending a huge amount of time waiting for the
timer posting to be done. All of this reprogramming is useless as the
wake up time has not changed.
As measured using ETM trace this drops my reprogramming penalty from
almost 60% CPU load down to 15% during high interrupt rate. I can send
traces to show this.
Suppress setting of duplicate timer event when timer already stopped.
Timer programming can be very costly and can result in long cpu stall/wait
times.
[akpm@linux-foundation.org: coding-style fixes]
[tglx@linutronix.de: move the check to the right place and avoid raising
the softirq for nothing]
Signed-off-by: Richard Woodruff <r-woodruff2@ti.com>
Cc: johnstul@us.ibm.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: remove false positive warning
After a cpu was taken down during cpu hotplug (read: disabled for interrupts)
it still might have pending softirqs. However take_cpu_down makes sure
that the idle task will run next instead of ksoftirqd on the taken down cpu.
The idle task will call tick_nohz_stop_sched_tick which might warn about
pending softirqs just before the cpu kills itself completely.
However the pending softirqs on the dead cpu aren't a problem because they
will be moved to an online cpu during CPU_DEAD handling.
So make sure we warn only for online cpus.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix time warp bug
Alex Shi, along with Yanmin Zhang have been noticing occasional time
inconsistencies recently. Through their great diagnosis, they found that
the xtime_nsec value used in update_wall_time was occasionally going
negative. After looking through the code for awhile, I realized we have
the possibility for an underflow when three conditions are met in
update_wall_time():
1) We have accumulated a second's worth of nanoseconds, so we
incremented xtime.tv_sec and appropriately decrement xtime_nsec.
(This doesn't cause xtime_nsec to go negative, but it can cause it
to be small).
2) The remaining offset value is large, but just slightly less then
cycle_interval.
3) clocksource_adjust() is speeding up the clock, causing a
corrective amount (compensating for the increase in the multiplier
being multiplied against the unaccumulated offset value) to be
subtracted from xtime_nsec.
This can cause xtime_nsec to underflow.
Unfortunately, since we notify the NTP subsystem via second_overflow()
whenever we accumulate a full second, and this effects the error
accumulation that has already occured, we cannot simply revert the
accumulated second from xtime nor move the second accumulation to after
the clocksource_adjust call without a change in behavior.
This leaves us with (at least) two options:
1) Simply return from clocksource_adjust() without making a change if we
notice the adjustment would cause xtime_nsec to go negative.
This would work, but I'm concerned that if a large adjustment was needed
(due to the error being large), it may be possible to get stuck with an
ever increasing error that becomes too large to correct (since it may
always force xtime_nsec negative). This may just be paranoia on my part.
2) Catch xtime_nsec if it is negative, then add back the amount its
negative to both xtime_nsec and the error.
This second method is consistent with how we've handled earlier rounding
issues, and also has the benefit that the error being added is always in
the oposite direction also always equal or smaller then the correction
being applied. So the risk of a corner case where things get out of
control is lessened.
This patch fixes bug 11970, as tested by Yanmin Zhang
http://bugzilla.kernel.org/show_bug.cgi?id=11970
Reported-by: alex.shi@intel.com
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Acked-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Tested-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, move all hrtimer processing into hardirq context
This is an attempt at removing some of the hrtimer complexity by
reducing the number of callback modes to 1.
This means that all hrtimer callback functions will be ran from HARD-irq
context.
I went through all the 30 odd hrtimer callback functions in the kernel
and saw only one that I'm not quite sure of, which is the one in
net/can/bcm.c - hence I'm CC-ing the folks responsible for that code.
Furthermore, the hrtimer core now calls callbacks directly with IRQs
disabled in case you try to enqueue an expired timer. If this timer is a
periodic timer (which should use hrtimer_forward() to advance its time)
then it might be possible to end up in an inf. recursive loop due to the
fact that hrtimer_forward() doesn't round up to the next timer
granularity, and therefore keeps on calling the callback - obviously
this needs a fix.
Aside from that, this seems to compile and actually boot on my dual core
test box - although I'm sure there are some bugs in, me not hitting any
makes me certain :-)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: (future) size reduction for large NR_CPUS.
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t
is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: nohz powersavings and wakeup regression
commit fb02fbc14d (NOHZ: restart tick
device from irq_enter()) causes a serious wakeup regression.
While the patch is correct it does not take into account that spurious
wakeups happen on x86. A fix for this issue is available, but we just
revert to the .27 behaviour and let long running softirqs screw
themself.
Disable it for now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit fb02fbc14d (NOHZ: restart tick
device from irq_enter())
solves the problem of stale jiffies when long running softirqs happen
in a long idle sleep period, but it has a major thinko in it:
When the interrupt which came in _is_ the timer interrupt which should
expire ts->sched_timer then we cancel and rearm the timer _before_ it
gets expired in hrtimer_interrupt() to the next period. That means the
call back function is not called. This game can go on for ever :(
Prevent this by making sure to only rearm the timer when the expiry
time is more than one tick_period away. Otherwise keep it running as
it is either already expired or will expiry at the right point to
update jiffies.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Venkatesch Pallipadi <venkatesh.pallipadi@intel.com>
The base address of a (per cpu) clock base is a useful debug info.
Add it and bump the version number of timer_lists.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The per cpu clock events device output of timer_list lacks an
association of the device to the cpu which is annoying when looking at
the output of /proc/timer_list from a 128 way system.
Add the CPU number info and mark the broadcast device in the device
list printout.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The current timer_list output prints the address of the on stack copy
of the active hrtimer instead of the hrtimer itself.
Print the address of the real timer instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We did not restart the tick device from irq_enter() to avoid double
reprogramming and extra events in the return immediate to idle case.
But long lasting softirqs can lead to a situation where jiffies become
stale:
idle()
tick stopped (reprogrammed to next pending timer)
halt()
interrupt
jiffies updated from irq_enter()
interrupt handler
softirq function 1 runs 20ms
softirq function 2 arms a 10ms timer with a stale jiffies value
jiffies updated from irq_exit()
timer wheel has now an already expired timer
(the one added in function 2)
timer fires and timer softirq runs
This was discovered when debugging a timer problem which happend only
when the ath5k driver is active. The debugging proved that there is a
softirq function running for more than 20ms, which is a bug by itself.
To solve this we restart the tick timer right from irq_enter(), but do
not go through the other functions which are necessary to return from
idle when need_resched() is set.
Reported-by: Elias Oltmanns <eo@nebensachen.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Elias Oltmanns <eo@nebensachen.de>
We have two separate nohz function calls in irq_enter() for no good
reason. Just call a single NOHZ function from irq_enter() and call
the bits in the tick code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Using "def_bool n" is pointless, simply using bool here appears more
appropriate.
Further, retaining such options that don't have a prompt and aren't
selected by anything seems also at least questionable.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
export get_cpu_idle_time_us() for it to be used in ondemand governor.
Last update time can be current time when the CPU is currently non-idle,
accounting for the busy time since last idle.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Impact: jiffies increment too fast.
Hugh Dickins noted that with NOHZ=n and HIGHRES=n jiffies get
incremented too fast. The reason is a wrong check in the broadcast
enter/exit code, which keeps the local apic timer in periodic mode
when the switch happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: per CPU hrtimers can be migrated from a dead CPU
The hrtimer code has no knowledge about per CPU timers, but we need to
prevent the migration of such timers and warn when such a timer is
active at migration time.
Explicitely mark the timers as per CPU and use a more understandable
mode descriptor for the interrupts safe unlocked callback mode, which
is used by hrtimer_sleeper and the scheduler code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Change PPM_SCALE_INV_SHIFT so that it doesn't throw away any input bits
(19 is the amount of the factor 2 in PPM_SCALE), the output frequency
can then be calculated back to its input value, as the inverse divide
produce a slightly larger value, which is then correctly rounded by the
final shift.
Reported-by: Martin Ziegler <ziegler@uni-freiburg.de>
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Due to a rounding problem during a clock update it's possible for readers
to observe the clock jumping back by 1nsec. The following simplified
example demonstrates the problem:
cycle xtime
0 0
1000 999999.6
2000 1999999.2
3000 2999998.8
...
1500 = 1499999.4
= 0.0 + 1499999.4
= 999999.6 + 499999.8
When reading the clock only the full nanosecond part is used, while
timekeeping internally keeps nanosecond fractions. If the clock is now
updated at cycle 1500 here, a nanosecond is missing due to the truncation.
The simple fix is to round up the xtime value during the update, this also
changes the distance to the reference time, but the adjustment will
automatically take care that it stays under control.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This is a change that makes the 11-minute RTC update be run in the process
context. This is so that update_persistent_clock() can sleep, which may
be required for certain types of RTC hardware -- most notably I2C devices.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Brownell <david-b@pacbell.net>
Acked-by: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
kernel/time/tick-common.c: In function ‘tick_setup_periodic’:
kernel/time/tick-common.c:113: error: implicit declaration of function ‘tick_broadcast_oneshot_active’
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: timer hang on CPU online observed on AMD C1E systems
When a CPU is brought online then the broadcast machinery can
be in the one shot state already. Check this and setup the timer
device of the new CPU in one shot mode so the broadcast code
can pick up the next_event value correctly.
Another AMD C1E oddity, as we switch to broadcast immediately and
not after the full bring up via the ACPI cpu idle code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: Possible hang on CPU online observed on AMD C1E machines.
The broadcast setup code looks at the mode of the tick device to
determine whether it needs to be shut down or setup. This is wrong
when the broadcast mode is set to one shot already. This can happen
when a CPU is brought online as it goes through the periodic setup
first.
The problem went unnoticed as sane systems do not call into that code
before the switch to one shot for the clock event device happens.
The AMD C1E idle routine switches over immediately and thereby shuts
down the just setup device before the first interrupt happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: possible hang on CPU onlining in timer one shot mode.
The tick_next_period variable is only used during boot on nohz/highres
enabled systems, but for CPU onlining it needs to be maintained when
the per cpu clock events device operates in one shot mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: rare hang which can be triggered on CPU online.
tick_do_timer_cpu keeps track of the CPU which updates jiffies
via do_timer. The value -1 is used to signal, that currently no
CPU is doing this. There are two cases, where the variable can
have this state:
boot:
necessary for systems where the boot cpu id can be != 0
nohz long idle sleep:
When the CPU which did the jiffies update last goes into
a long idle sleep it drops the update jiffies duty so
another CPU which is not idle can pick it up and keep
jiffies going.
Using the same value for both situations is wrong, as the CPU online
code can see the -1 state when the timer of the newly onlined CPU is
setup. The setup for a newly onlined CPU goes through periodic mode
and can pick up the do_timer duty without being aware of the nohz /
highres mode of the already running system.
Use two separate states and make them constants to avoid magic
numbers confusion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The device shut down does not cleanup the next_event variable of the
clock event device. So when the device is reactivated the possible
stale next_event value can prevent the device to be reprogrammed as it
claims to wait on a event already.
This is the root cause of the resurfacing suspend/resume problem,
where systems need key press to come back to life.
Fix this by setting next_event to KTIME_MAX when the device is shut
down. Use a separate function for shutdown which takes care of that
and only keep the direct set mode call in the broadcast code, where we
can not touch the next_event value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The issue of the endless reprogramming loop due to a too small
min_delta_ns was fixed with the previous updates of the clock events
code, but we had no information about the spread of this problem. I
added a WARN_ON to get automated information via kerneloops.org and to
get some direct reports, which allowed me to analyse the affected
machines.
The WARN_ON has served its purpose and would be annoying for a release
kernel. Remove it and just keep the information about the increase of
the min_delta_ns value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
to help debugging and visibility of timer ranges, show them
in the existing timer list in /proc/timer_list
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
We have a bug in the calculation of the next jiffie to trigger the RTC
synchronisation. The aim here is to run sync_cmos_clock() as close as
possible to the middle of a second. Which means we want this function to
be called less than or equal to half a jiffie away from when now.tv_nsec
equals 5e8 (500000000).
If this is not the case for a given call to the function, for this purpose
instead of updating the RTC we calculate the offset in nanoseconds to the
next point in time where now.tv_nsec will be equal 5e8. The calculated
offset is then converted to jiffies as these are the unit used by the
timer.
Hovewer timespec_to_jiffies() used here uses a ceil()-type rounding mode,
where the resulting value is rounded up. As a result the range of
now.tv_nsec when the timer will trigger is from 5e8 to 5e8 + TICK_NSEC
rather than the desired 5e8 - TICK_NSEC / 2 to 5e8 + TICK_NSEC / 2.
As a result if for example sync_cmos_clock() happens to be called at the
time when now.tv_nsec is between 5e8 + TICK_NSEC / 2 and 5e8 to 5e8 +
TICK_NSEC, it will simply be rescheduled HZ jiffies later, falling in the
same range of now.tv_nsec again. Similarly for cases offsetted by an
integer multiple of TICK_NSEC.
This change addresses the problem by subtracting TICK_NSEC / 2 from the
nanosecond offset to the next point in time where now.tv_nsec will be
equal 5e8, effectively shifting the following rounding in
timespec_to_jiffies() so that it produces a rounded-to-nearest result.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Until the C1E patches arrived there where no users of periodic broadcast
before switching to oneshot mode. Now we need to trigger a possible
waiter for a periodic broadcast when switching to oneshot mode.
Otherwise we can starve them for ever.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In order to be able to do range hrtimers we need to use accessor functions
to the "expire" member of the hrtimer struct.
This patch converts kernel/* to these accessors.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
If HLT stops the TSC, we'll fail to account idle time, thereby inflating the
actual process times. Fix this by re-calibrating the clock against GTOD when
leaving nohz mode.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Avi Kivity <avi@qumranet.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The C1E/HPET bug reports on AMDX2/RS690 systems where tracked down to a
too small value of the HPET minumum delta for programming an event.
The clockevents code needs to enforce an interrupt event on the clock event
device in some cases. The enforcement code was stupid and naive, as it just
added the minimum delta to the current time and tried to reprogram the device.
When the minimum delta is too small, then this loops forever.
Add a sanity check. Allow reprogramming to fail 3 times, then print a warning
and double the minimum delta value to make sure, that this does not happen again.
Use the same function for both tick-oneshot and tick-broadcast code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While chasing the C1E/HPET bugreports I went through the clock events
code inch by inch and found that the broadcast device can be initialized
and shutdown multiple times. Multiple shutdowns are not critical, but
useless waste of time. Multiple initializations are simply broken. Another
CPU might have the device in use already after the first initialization and
the second init could just render it unusable again.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In tick_oneshot_setup we program the device to the given next_event,
but we do not check the return value. We need to make sure that the
device is programmed enforced so the interrupt handler engine starts
working. Split out the reprogramming function from tick_program_event()
and call it with the device, which was handed in to tick_setup_oneshot().
Set the force argument, so the devices is firing an interrupt.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The reprogramming of the periodic broadcast handler was broken,
when the first programming returned -ETIME. The clockevents code
stores the new expiry value in the clock events device next_event field
only when the programming time has not been elapsed yet. The loop in
question calculates the new expiry value from the next_event value
and therefor never increases.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a ordering related problem with clockevents code, due to which
clockevents_register_device() called after tickless/highres switch
will not work. The new clockevent ends up with clockevents_handle_noop as
event handler, resulting in no timer activity.
The problematic path seems to be
* old device already has hrtimer_interrupt as the event_handler
* new clockevent device registers with a higher rating
* tick_check_new_device() is called
* clockevents_exchange_device() gets called
* old->event_handler is set to clockevents_handle_noop
* tick_setup_device() is called for the new device
* which sets new->event_handler using the old->event_handler which is noop.
Change the ordering so that new device inherits the proper handler.
This does not have any issue in normal case as most likely all the clockevent
devices are setup before the highres switch. But, can potentially be affecting
some corner case where HPET force detect happens after the highres switch.
This was a problem with HPET in MSI mode code that we have been experimenting
with.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Thanks to the review by Michael Kerrisk a bug in the recent
ADJ_OFFSET_SS_READ option was discovered, where the ntp time_offset was
inadvertently set by it. This fixes this by making the adjtime code
more separate from the ntp_adjtime code (both of which really want to
be separate syscalls).
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On the tickless system(CONFIG_NO_HZ=y and CONFIG_HIGH_RES_TIMERS=n), after
I made an offlined cpu online, I found this cpu's event handler was
tick_handle_periodic, not tick_nohz_handler.
After debuging, I found this bug was caused by the wrong tick mode. the
tick mode is not changed to NOHZ_MODE_INACTIVE when the cpu is offline.
This patch fixes this bug.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In talking with Josip Loncaric, and his work on clock synchronization (see
btime.sf.net), he mentioned that for really close synchronization, it is
useful to have access to "hardware time", that is a notion of time that is
not in any way adjusted by the clock slewing done to keep close time sync.
Part of the issue is if we are using the kernel's ntp adjusted
representation of time in order to measure how we should correct time, we
can run into what Paul McKenney aptly described as "Painting a road using
the lines we're painting as the guide".
I had been thinking of a similar problem, and was trying to come up with a
way to give users access to a purely hardware based time representation
that avoided users having to know the underlying frequency and mask values
needed to deal with the wide variety of possible underlying hardware
counters.
My solution is to introduce CLOCK_MONOTONIC_RAW. This exposes a
nanosecond based time value, that increments starting at bootup and has no
frequency adjustments made to it what so ever.
The time is accessed from userspace via the posix_clock_gettime() syscall,
passing CLOCK_MONOTONIC_RAW as the clock_id.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
To keep the raw monotonic patch simple first introduce
clocksource_forward_now(), which takes care of the offset since the last
update_wall_time() call and adds it to the clock, so there is no need
anymore to deal with it explicitly at various places, which need to make
significant changes to the clock.
This is also gets rid of the timekeeping_suspend_nsecs, instead of
waiting until resume, the value is accumulated during suspend. In the end
there is only a single user of __get_nsec_offset() left, so I integrated
it back to getnstimeofday().
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The clocksource frequency is represented by
clocksource->mult/2^(clocksource->shift). Currently, when NTP makes
adjustments to the clock frequency, they are made directly to the mult
value.
This has the drawback that once changed, we cannot know what the orignal
mult value was, or how much adjustment has been applied.
This property causes problems in calculating proper ntp intervals when
switching back and forth between clocksources.
This patch separates the current mult value into a mult and mult_orig
pair. The mult_orig value stays constant, while the ntp clocksource
adjustments are done only to the mult value.
This allows for correct ntp interval calculation and additionally lays the
groundwork for a new notion of time, what I'm calling the monotonic-raw
time, which is introduced in a following patch.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Avoid deadlocks against rq->lock and xtime_lock by deferring the klogd
wakeup by polling from the timer tick.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Found an interactivity problem on a quad core test-system - simple
CPU loops would occasionally delay the system un an unacceptable way.
After much debugging with Peter Zijlstra it turned out that the problem
is caused by the string of sched_clock() changes - they caused the CPU
clock to jump backwards a bit - which confuses the scheduler arithmetics.
(which is unsigned for performance reasons)
So revert:
# c300ba2: sched_clock: and multiplier for TSC to gtod drift
# c0c8773: sched_clock: only update deltas with local reads.
# af52a90: sched_clock: stop maximum check on NO HZ
# f7cce27: sched_clock: widen the max and min time
This solves the interactivity problems.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mike Galbraith <efault@gmx.de>
* Replace previous instances of the cpumask_of_cpu_ptr* macros
with a the new (lvalue capable) generic cpumask_of_cpu().
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
nohz: adjust tick_nohz_stop_sched_tick() call of s390 as well
nohz: prevent tick stop outside of the idle loop
* 'cpus4096-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (31 commits)
NR_CPUS: Replace NR_CPUS in speedstep-centrino.c
cpumask: Provide a generic set of CPUMASK_ALLOC macros, FIXUP
NR_CPUS: Replace NR_CPUS in cpufreq userspace routines
NR_CPUS: Replace per_cpu(..., smp_processor_id()) with __get_cpu_var
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genapic_flat_64.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genx2apic_uv_x.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/proc.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/mcheck/mce_64.c
cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c, fix
cpumask: Use optimized CPUMASK_ALLOC macros in the centrino_target
cpumask: Provide a generic set of CPUMASK_ALLOC macros
cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c
cpumask: Optimize cpumask_of_cpu in kernel/time/tick-common.c
cpumask: Optimize cpumask_of_cpu in drivers/misc/sgi-xp/xpc_main.c
cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/ldt.c
cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/io_apic_64.c
cpumask: Replace cpumask_of_cpu with cpumask_of_cpu_ptr
Revert "cpumask: introduce new APIs"
cpumask: make for_each_cpu_mask a bit smaller
net: Pass reference to cpumask variable in net/sunrpc/svc.c
...
Fix up trivial conflicts in drivers/cpufreq/cpufreq.c manually
* 'core/softlockup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
softlockup: fix invalid proc_handler for softlockup_panic
softlockup: fix watchdog task wakeup frequency
softlockup: fix watchdog task wakeup frequency
softlockup: show irqtrace
softlockup: print a module list on being stuck
softlockup: fix NMI hangs due to lock race - 2.6.26-rc regression
softlockup: fix false positives on nohz if CPU is 100% idle for more than 60 seconds
softlockup: fix softlockup_thresh fix
softlockup: fix softlockup_thresh unaligned access and disable detection at runtime
softlockup: allow panic on lockup
This allow to dynamically generate attributes and share show/store
functions between attributes. Right now most attributes are generated
by special macros and lots of duplicated code. With the attribute
passed it's instead possible to attach some data to the attribute
and then use that in shared low level functions to do different things.
I need this for the dynamically generated bank attributes in the x86
machine check code, but it'll allow some further cleanups.
I converted all users in tree to the new show/store prototype. It's a single
huge patch to avoid unbisectable sections.
Runtime tested: x86-32, x86-64
Compiled only: ia64, powerpc
Not compile tested/only grep converted: sh, arm, avr32
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* Optimize various places where a pointer to the cpumask_of_cpu value
will result in reducing stack pressure.
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Jack Ren and Eric Miao tracked down the following long standing
problem in the NOHZ code:
scheduler switch to idle task
enable interrupts
Window starts here
----> interrupt happens (does not set NEED_RESCHED)
irq_exit() stops the tick
----> interrupt happens (does set NEED_RESCHED)
return from schedule()
cpu_idle(): preempt_disable();
Window ends here
The interrupts can happen at any point inside the race window. The
first interrupt stops the tick, the second one causes the scheduler to
rerun and switch away from idle again and we end up with the tick
disabled.
The fact that it needs two interrupts where the first one does not set
NEED_RESCHED and the second one does made the bug obscure and extremly
hard to reproduce and analyse. Kudos to Jack and Eric.
Solution: Limit the NOHZ functionality to the idle loop to make sure
that we can not run into such a situation ever again.
cpu_idle()
{
preempt_disable();
while(1) {
tick_nohz_stop_sched_tick(1); <- tell NOHZ code that we
are in the idle loop
while (!need_resched())
halt();
tick_nohz_restart_sched_tick(); <- disables NOHZ mode
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
In hindsight we should have done this forever, but ...
/me grabs a large brown paperbag.
Debugged-by: Jack Ren <jack.ren@marvell.com>,
Debugged-by: eric miao <eric.y.miao@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* 'timers/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: add PCI ID for 6300ESB force hpet
x86: add another PCI ID for ICH6 force-hpet
kernel-paramaters: document pmtmr= command line option
acpi_pm clccksource: fix printk format warning
nohz: don't stop idle tick if softirqs are pending.
pmtmr: allow command line override of ioport
nohz: reduce jiffies polling overhead
hrtimer: Remove unused variables in ktime_divns()
hrtimer: remove warning in hres_timers_resume
posix-timers: print RT watchdog message
* 'sched/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (76 commits)
sched_clock: and multiplier for TSC to gtod drift
sched_clock: record TSC after gtod
sched_clock: only update deltas with local reads.
sched_clock: fix calculation of other CPU
sched_clock: stop maximum check on NO HZ
sched_clock: widen the max and min time
sched_clock: record from last tick
sched: fix accounting in task delay accounting & migration
sched: add avg-overlap support to RT tasks
sched: terminate newidle balancing once at least one task has moved over
sched: fix warning
sched: build fix
sched: sched_clock_cpu() based cpu_clock(), lockdep fix
sched: export cpu_clock
sched: make sched_{rt,fair}.c ifdefs more readable
sched: bias effective_load() error towards failing wake_affine().
sched: incremental effective_load()
sched: correct wakeup weight calculations
sched: fix mult overflow
sched: update shares on wakeup
...
Working with ftrace I would get large jumps of 11 millisecs or more with
the clock tracer. This killed the latencing timings of ftrace and also
caused the irqoff self tests to fail.
What was happening is with NO_HZ the idle would stop the jiffy counter and
before the jiffy counter was updated the sched_clock would have a bad
delta jiffies to compare with the gtod with the maximum.
The jiffies would stop and the last sched_tick would record the last gtod.
On wakeup, the sched clock update would compare the gtod + delta jiffies
(which would be zero) and compare it to the TSC. The TSC would have
correctly (with a stable TSC) moved forward several jiffies. But because the
jiffies has not been updated yet the clock would be prevented from moving
forward because it would appear that the TSC jumped too far ahead.
The clock would then virtually stop, until the jiffies are updated. Then
the next sched clock update would see that the clock was very much behind
since the delta jiffies is now correct. This would then jump the clock
forward by several jiffies.
This caused ftrace to report several milliseconds of interrupts off
latency at every resume from NO_HZ idle.
This patch adds hooks into the nohz code to disable the checking of the
maximum clock update when nohz is in effect. It resumes the max check
when nohz has updated the jiffies again.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In case a cpu goes idle but softirqs are pending only an error message is
printed to the console. It may take a very long time until the pending
softirqs will finally be executed. Worst case would be a hanging system.
With this patch the timer tick just continues and the softirqs will be
executed after the next interrupt. Still a delay but better than a
hanging system.
Currently we have at least two device drivers on s390 which under certain
circumstances schedule a tasklet from process context. This is a reason
why we can end up with pending softirqs when going idle. Fixing these
drivers seems to be non-trivial.
However there is no question that the drivers should be fixed.
This patch shouldn't be considered as a bug fix. It just is intended to
keep a system running even if device drivers are buggy.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jan Glauber <jan.glauber@de.ibm.com>
Cc: Stefan Weinhuber <wein@de.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
C1E on AMD machines is like C3 but without control from the OS. Up to
now we disabled the local apic timer for those machines as it stops
when the CPU goes into C1E. This excludes those machines from high
resolution timers / dynamic ticks, which hurts especially X2 based
laptops.
The current boot time C1E detection has another, more serious flaw
as well: some BIOSes do not enable C1E until the ACPI processor module
is loaded. This causes systems to stop working after that point.
To work nicely with C1E enabled machines we use a separate idle
function, which checks on idle entry whether C1E was enabled in the
Interrupt Pending Message MSR. This allows us to do timer broadcasting
for C1E and covers the late enablement of C1E as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's never used and the comments refer to nonatomic and retry
interchangably. So get rid of it.
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Fix (probably theoretical only) rq->clock update bug:
in tick_nohz_update_jiffies() [which is called on all irq
entry on all cpus where the irq entry hits an idle cpu] we
call touch_softlockup_watchdog() before we update jiffies.
That works fine most of the time when idle timeouts are within
60 seconds. But when an idle timeout is beyond 60 seconds,
jiffies is updated with a jump of more than 60 seconds,
which causes a jump in cpu-clock of more than 60 seconds,
triggering a false positive.
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change references from for_each_cpu_mask to for_each_cpu_mask_nr
where appropriate
Reviewed-by: Paul Jackson <pj@sgi.com>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is no harm, when users can read the info and we ask often enough
during debugging for this kind of information.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
File permissions for
/sys/devices/system/clocksource/clocksource0/available_clocksource
are 600 which allows write access. But this is in fact a read only
file. So change permissions to 400.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove the leap second handling from second_overflow(), which doesn't have to
check for it every second anymore. With CONFIG_NO_HZ this also makes sure the
leap second is handled close to the full second. Additionally this makes it
possible to abort a leap second properly by resetting the STA_INS/STA_DEL
status bits.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
current_tick_length used to do a little more, but now it just returns
tick_length, which we can also access directly at the few places, where it's
needed.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As TICK_LENGTH_SHIFT is used for more than just the tick length, the name
isn't quite approriate anymore, so this renames it to NTP_SCALE_SHIFT.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds support for setting the TAI value (International Atomic Time). The
value is reported back to userspace via timex (as we don't have a
ntp_gettime() syscall).
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
time_offset is already a 64bit value but its resolution barely used, so this
makes better use of it by replacing SHIFT_UPDATE with TICK_LENGTH_SHIFT.
Side note: the SHIFT_HZ in SHIFT_UPDATE was incorrect for CONFIG_NO_HZ and the
primary reason for changing time_offset to 64bit to avoid the overflow.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This changes time_freq to a 64bit value and makes it static (the only outside
user had no real need to modify it). Intermediate values were already 64bit,
so the change isn't that big, but it saves a little in shifts by replacing
SHIFT_NSEC with TICK_LENGTH_SHIFT. PPM_SCALE is then used to convert between
user space and kernel space representation.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds a few more things from the ntp nanokernel related to user space.
It's now possible to select the resolution used of some values via STA_NANO
and the kernel reports in which mode it works (pll/fll).
If some values for adjtimex() are outside the acceptable range, they are now
simply normalized instead of letting the syscall fail. I removed
MOD_CLKA/MOD_CLKB as the mapping didn't really makes any sense, the kernel
doesn't support setting the clock.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is mostly a style cleanup of ntp.c and extracts part of do_adjtimex as
ntp_update_offset(). Otherwise the functionality is still the same as before.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
x86 is the only arch right now, which provides an optimized for
div_long_long_rem and it has the downside that one has to be very careful that
the divide doesn't overflow.
The API is a little akward, as the arguments for the unsigned divide are
signed. The signed version also doesn't handle a negative divisor and
produces worse code on 64bit archs.
There is little incentive to keep this API alive, so this converts the few
users to the new API.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This converts a few users of do_div to div_[su]64 and this demonstrates nicely
how it can reduce some expressions to one-liners.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use proc_create()/proc_create_data() to make sure that ->proc_fops and ->data
be setup before gluing PDE to main tree.
Signed-off-by: Denis V. Lunev <den@openvz.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Miller reported:
|--------------->
the following commit:
| commit 27ec440779
| Author: Ingo Molnar <mingo@elte.hu>
| Date: Thu Feb 28 21:00:21 2008 +0100
|
| sched: make cpu_clock() globally synchronous
|
| Alexey Zaytsev reported (and bisected) that the introduction of
| cpu_clock() in printk made the timestamps jump back and forth.
|
| Make cpu_clock() more reliable while still keeping it fast when it's
| called frequently.
|
| Signed-off-by: Ingo Molnar <mingo@elte.hu>
causes watchdog triggers when a cpu exits NOHZ state when it has been
there for >= the soft lockup threshold, for example here are some
messages from a 128 cpu Niagara2 box:
[ 168.106406] BUG: soft lockup - CPU#11 stuck for 128s! [dd:3239]
[ 168.989592] BUG: soft lockup - CPU#21 stuck for 86s! [swapper:0]
[ 168.999587] BUG: soft lockup - CPU#29 stuck for 91s! [make:4511]
[ 168.999615] BUG: soft lockup - CPU#2 stuck for 85s! [swapper:0]
[ 169.020514] BUG: soft lockup - CPU#37 stuck for 91s! [swapper:0]
[ 169.020514] BUG: soft lockup - CPU#45 stuck for 91s! [sh:4515]
[ 169.020515] BUG: soft lockup - CPU#69 stuck for 92s! [swapper:0]
[ 169.020515] BUG: soft lockup - CPU#77 stuck for 92s! [swapper:0]
[ 169.020515] BUG: soft lockup - CPU#61 stuck for 92s! [swapper:0]
[ 169.112554] BUG: soft lockup - CPU#85 stuck for 92s! [swapper:0]
[ 169.112554] BUG: soft lockup - CPU#101 stuck for 92s! [swapper:0]
[ 169.112554] BUG: soft lockup - CPU#109 stuck for 92s! [swapper:0]
[ 169.112554] BUG: soft lockup - CPU#117 stuck for 92s! [swapper:0]
[ 169.171483] BUG: soft lockup - CPU#40 stuck for 80s! [dd:3239]
[ 169.331483] BUG: soft lockup - CPU#13 stuck for 86s! [swapper:0]
[ 169.351500] BUG: soft lockup - CPU#43 stuck for 101s! [dd:3239]
[ 169.531482] BUG: soft lockup - CPU#9 stuck for 129s! [mkdir:4565]
[ 169.595754] BUG: soft lockup - CPU#20 stuck for 93s! [swapper:0]
[ 169.626787] BUG: soft lockup - CPU#52 stuck for 93s! [swapper:0]
[ 169.626787] BUG: soft lockup - CPU#84 stuck for 92s! [swapper:0]
[ 169.636812] BUG: soft lockup - CPU#116 stuck for 94s! [swapper:0]
It's simple enough to trigger this by doing a 10 minute sleep after a
fresh bootup then starting a parallel kernel build.
I suspect this might be reintroducing a problem we've had and fixed
before, see the thread:
http://marc.info/?l=linux-kernel&m=119546414004065&w=2
<---------------|
touch the softlockup watchdog when exiting NOHZ state - we are
obviously not locked up.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-hrt:
hrtimer: optimize the softirq time optimization
hrtimer: reduce calls to hrtimer_get_softirq_time()
clockevents: fix typo in tick-broadcast.c
jiffies: add time_is_after_jiffies and others which compare with jiffies
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched-devel: (62 commits)
sched: build fix
sched: better rt-group documentation
sched: features fix
sched: /debug/sched_features
sched: add SCHED_FEAT_DEADLINE
sched: debug: show a weight tree
sched: fair: weight calculations
sched: fair-group: de-couple load-balancing from the rb-trees
sched: fair-group scheduling vs latency
sched: rt-group: optimize dequeue_rt_stack
sched: debug: add some debug code to handle the full hierarchy
sched: fair-group: SMP-nice for group scheduling
sched, cpuset: customize sched domains, core
sched, cpuset: customize sched domains, docs
sched: prepatory code movement
sched: rt: multi level group constraints
sched: task_group hierarchy
sched: fix the task_group hierarchy for UID grouping
sched: allow the group scheduler to have multiple levels
sched: mix tasks and groups
...
braodcast -> broadcast
Signed-off-by: Glauber Costa <gcosta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Various SMP balancing algorithms require that the bandwidth period
run in sync.
Possible improvements are moving the rt_bandwidth thing into root_domain
and keeping a span per rt_bandwidth which marks throttled cpus.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We already catch most of the TSC problems by sanity checks, but there
is a subtle bug which has been in the code forever. This can cause
time jumps in the range of hours.
This was reported in:
http://lkml.org/lkml/2007/8/23/96
and
http://lkml.org/lkml/2008/3/31/23
I was able to reproduce the problem with a gettimeofday loop test on a
dual core and a quad core machine which both have sychronized
TSCs. The TSCs seems not to be perfectly in sync though, but the
kernel is not able to detect the slight delta in the sync check. Still
there exists an extremly small window where this delta can be observed
with a real big time jump. So far I was only able to reproduce this
with the vsyscall gettimeofday implementation, but in theory this
might be observable with the syscall based version as well.
CPU 0 updates the clock source variables under xtime/vyscall lock and
CPU1, where the TSC is slighty behind CPU0, is reading the time right
after the seqlock was unlocked.
The clocksource reference data was updated with the TSC from CPU0 and
the value which is read from TSC on CPU1 is less than the reference
data. This results in a huge delta value due to the unsigned
subtraction of the TSC value and the reference value. This algorithm
can not be changed due to the support of wrapping clock sources like
pm timer.
The huge delta is converted to nanoseconds and added to xtime, which
is then observable by the caller. The next gettimeofday call on CPU1
will show the correct time again as now the TSC has advanced above the
reference value.
To prevent this TSC specific wreckage we need to compare the TSC value
against the reference value and return the latter when it is larger
than the actual TSC value.
I pondered to mark the TSC unstable when the readout is smaller than
the reference value, but this would render an otherwise good and fast
clocksource unusable without a real good reason.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* git://git.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-hrt:
clocksource: make clocksource watchdog cycle through online CPUs
Documentation: move timer related documentation to a single place
clockevents: optimise tick_nohz_stop_sched_tick() a bit
locking: remove unused double_spin_lock()
hrtimers: simplify lockdep handling
timers: simplify lockdep handling
posix-timers: fix shadowed variables
timer_list: add annotations to workqueue.c
hrtimer: use nanosleep specific restart_block fields
hrtimer: add nanosleep specific restart_block member
In order to not trip the clocksource watchdog, kgdb must touch the
clocksource watchdog on the return to normal system run state.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This way it checks if the clocks are synchronized between CPUs too.
This might be able to detect slowly drifting TSCs which only
go wrong over longer time.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Call
ts = &per_cpu(tick_cpu_sched, cpu);
and
cpu = smp_processor_id();
once instead of twice.
No functional change done, as changed code runs with local irq off.
Reduces source lines and text size (20bytes on x86_64).
[ akpm@linux-foundation.org: Build fix ]
Signed-off-by: Karsten Wiese <fzu@wemgehoertderstaat.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
> Generic code is not supposed to include irq.h. Replace this include
> by linux/hardirq.h instead and add/replace an include of linux/irq.h
> in asm header files where necessary.
> This change should only matter for architectures that make use of
> GENERIC_CLOCKEVENTS.
> Architectures in question are mips, x86, arm, sh, powerpc, uml and sparc64.
>
> I did some cross compile tests for mips, x86_64, arm, powerpc and sparc64.
> This patch fixes also build breakages caused by the include replacement in
> tick-common.h.
I generally dislike adding optional linux/* includes in asm/* includes -
I'm nervous about this causing include loops.
However, there's a separate point to be discussed here.
That is, what interfaces are expected of every architecture in the kernel.
If generic code wants to be able to set the affinity of interrupts, then
that needs to become part of the interfaces listed in linux/interrupt.h
rather than linux/irq.h.
So what I suggest is this approach instead (against Linus' tree of a
couple of days ago) - we move irq_set_affinity() and irq_can_set_affinity()
to linux/interrupt.h, change the linux/irq.h includes to linux/interrupt.h
and include asm/irq_regs.h where needed (asm/irq_regs.h is supposed to be
rarely used include since not much touches the stacked parent context
registers.)
Build tested on ARM PXA family kernels and ARM's Realview platform
kernels which both use genirq.
[ tglx@linutronix.de: add GENERIC_HARDIRQ dependencies ]
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Revert
commit 1077f5a917
Author: Parag Warudkar <parag.warudkar@gmail.com>
Date: Wed Jan 30 13:30:01 2008 +0100
clocksource.c: use init_timer_deferrable for clocksource_watchdog
clocksource_watchdog can use a deferrable timer - reduces wakeups from
idle per second.
The watchdog timer needs to run with the specified interval. Otherwise
it will miss the possible wrap of the watchdog clocksource.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
The printk() can deadlock because it can wake up klogd(), and
task enqueueing will try to read the time in order to set a hrtimer.
Reported-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Debugged-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 1ada5cba6a ("clocksource:
make clocksource watchdog cycle through online CPUs") due to the
regression reported by Gabriel C at
http://lkml.org/lkml/2008/2/24/281
(short vesion: it makes TSC be marked as always unstable on his
machine).
Cc: Andi Kleen <ak@suse.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Robert Hancock <hancockr@shaw.ca>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Gabriel C <nix.or.die@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The first version of the ntp_interval/tick_length inconsistent usage patch was
recently merged as bbe4d18ac2http://git.kernel.org/gitweb.cgi?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=bbe4d18ac2e058c56adb0cd71f49d9ed3216a405
While the fix did greatly improve the situation, it was correctly pointed out
by Roman that it does have a small bug: If the users change clocksources after
the system has been running and NTP has made corrections, the correctoins made
against the old clocksource will be applied against the new clocksource,
causing error.
The second attempt, which corrects the issue in the NTP_INTERVAL_LENGTH
definition has also made it up-stream as commit
e13a2e61ddhttp://git.kernel.org/gitweb.cgi?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=e13a2e61dd5152f5499d2003470acf9c838eab84
Roman has correctly pointed out that CLOCK_TICK_ADJUST is calculated
based on the PIT's frequency, and isn't really relevant to non-PIT
driven clocksources (that is, clocksources other then jiffies and pit).
This patch reverts both of those changes, and simply removes
CLOCK_TICK_ADJUST.
This does remove the granularity error correction for users of PIT and Jiffies
clocksource users, but the granularity error but for the majority of users, it
should be within the 500ppm range NTP can accommodate for.
For systems that have granularity errors greater then 500ppm, the
"ntp_tick_adj=" boot option can be used to compensate.
[johnstul@us.ibm.com: provided changelog]
[mattilinnanvuori@yahoo.com: maek ntp_tick_adj static]
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Acked-by: john stultz <johnstul@us.ibm.com>
Signed-off-by: Matti Linnanvuori <mattilinnanvuori@yahoo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: mingo@elte.hu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Silences WARN_ONs in rcu_enter_nohz() and rcu_exit_nohz(), which appeared
before caused by (repeated) calls to:
$ echo 0 > /sys/devices/system/cpu/cpu1/online
$ echo 1 > /sys/devices/system/cpu/cpu1/online
Signed-off-by: Karsten Wiese <fzu@wemgehoertderstaat.de>
Cc: johnstul@us.ibm.com
Cc: Rafael Wysocki <rjw@sisk.pl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The kernel NTP code shouldn't hand 64-bit *signed* values to do_div(). Make it
instead hand 64-bit unsigned values. This gets rid of a couple of warnings.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The PREEMPT-RCU can get stuck if a CPU goes idle and NO_HZ is set. The
idle CPU will not progress the RCU through its grace period and a
synchronize_rcu my get stuck. Without this patch I have a box that will
not boot when PREEMPT_RCU and NO_HZ are set. That same box boots fine
with this patch.
This patch comes from the -rt kernel where it has been tested for
several months.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Relative expiry time can get negative, so it should be signed.
Signed-off-by: Pavel Machek <Pavel@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
clocksource initialization and error accumulation. This corrects a 280ppm
drift seen on some systems using acpi_pm, and affects other clocksources as
well (likely to a lesser degree).
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fix typo in comments.
BTW: I have to fix coding style in arch/ia64/kernel/time.c also, otherwise
checkpatch.pl will be complaining.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Function timekeeping_is_continuous() no longer checks flag
CLOCK_IS_CONTINUOUS, and it checks CLOCK_SOURCE_VALID_FOR_HRES now. So rename
the function accordingly.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Flag CLOCK_SOURCE_WATCHDOG is cleared twice. Note clocksource_change_rating()
won't do anyting with the cs flag.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>