Define an fs geometry bit for sparse inode chunks such that the
characteristic of the fs can be identified by userspace.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The sparse inode chunks feature uses the helper function to enable the
allocation of sparse inode chunks. The incompatible feature bit is set
on disk at mkfs time to prevent mount from unsupported kernels.
Also, enforce the inode alignment requirements required for sparse inode
chunks at mount time. When enabled, full inode chunks (and all inode
record) alignment is increased from cluster size to inode chunk size.
Sparse inode alignment must match the cluster size of the fs. Both
superblock alignment fields are set as such by mkfs when sparse inode
support is enabled.
Finally, warn that sparse inode chunks is an experimental feature until
further notice.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_ialloc_ag_select() iterates through the allocation groups looking
for free inodes or free space to determine whether to allow an inode
allocation to proceed. If no free inodes are available, it assumes that
an AG must have an extent longer than mp->m_ialloc_blks.
Sparse inode chunk support currently allows for allocations smaller than
the traditional inode chunk size specified in m_ialloc_blks. The current
minimum sparse allocation is set in the superblock sb_spino_align field
at mkfs time. Create a new m_ialloc_min_blks field in xfs_mount and use
this to represent the minimum supported allocation size for inode
chunks. Initialize m_ialloc_min_blks at mount time based on whether
sparse inodes are supported.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add sb_spino_align to the superblock to specify sparse inode chunk
alignment. This also currently represents the minimum allowable sparse
chunk allocation size.
Signed-off-by: Brian Foster <bfoster@redhat.com>
The block allocator supports various arguments to tweak block allocation
behavior and set allocation requirements. The sparse inode chunk feature
introduces a new requirement not supported by the current arguments.
Sparse inode allocations must convert or merge into an inode record that
describes a fixed length chunk (64 inodes x inodesize). Full inode chunk
allocations by definition always result in valid inode records. Sparse
chunk allocations are smaller and the associated records can refer to
blocks not owned by the inode chunk. This model can result in invalid
inode records in certain cases.
For example, if a sparse allocation occurs near the start of an AG, the
aligned inode record for that chunk might refer to agbno 0. If an
allocation occurs towards the end of the AG and the AG size is not
aligned, the inode record could refer to blocks beyond the end of the
AG. While neither of these scenarios directly result in corruption, they
both insert invalid inode records and at minimum cause repair to
complain, are unlikely to merge into full chunks over time and set land
mines for other areas of code.
To guarantee sparse inode chunk allocation creates valid inode records,
support the ability to specify an agbno range limit for
XFS_ALLOCTYPE_NEAR_BNO block allocations. The min/max agbno's are
specified in the allocation arguments and limit the block allocation
algorithms to that range. The starting 'agbno' hint is clamped to the
range if the specified agbno is out of range. If no sufficient extent is
available within the range, the allocation fails. For backwards
compatibility, the min/max fields can be initialized to 0 to disable
range limiting (e.g., equivalent to min=0,max=agsize).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_difree_inobt() uses logic in a couple places that assume inobt
records refer to fully allocated chunks. Specifically, the use of
mp->m_ialloc_inos can cause problems for inode chunks that are sparsely
allocated. Sparse inode chunks can, by definition, define a smaller
number of inodes than a full inode chunk.
Fix the logic that determines whether an inode record should be removed
from the inobt to use the ir_free mask rather than ir_freecount. Fix the
agi counters modification to use ir_freecount to add the actual number
of inodes freed rather than assuming a full inode chunk.
Also make sure that we preserve the behavior to not remove inode chunks
if the block size is large enough for multiple inode chunks (e.g.,
bsize=64k, isize=512). This behavior was previously implicit in that in
such configurations, ir.freecount of a single record never matches
m_ialloc_inos. Hence, add some comments as well.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Inode allocation from sparse inode records must filter the ir_free mask
against ir_holemask. In preparation for this requirement, create a
helper to allocate an individual inode from an inode record.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_attr_inactive() is supposed to clean up the attribute fork when
the inode is being freed. While it removes attribute fork extents,
it completely ignores attributes in local format, which means that
there can still be active attributes on the inode after
xfs_attr_inactive() has run.
This leads to problems with concurrent inode writeback - the in-core
inode attribute fork is removed without locking on the assumption
that nothing will be attempting to access the attribute fork after a
call to xfs_attr_inactive() because it isn't supposed to exist on
disk any more.
To fix this, make xfs_attr_inactive() completely remove all traces
of the attribute fork from the inode, regardless of it's state.
Further, also remove the in-core attribute fork structure safely so
that there is nothing further that needs to be done by callers to
clean up the attribute fork. This means we can remove the in-core
and on-disk attribute forks atomically.
Also, on error simply remove the in-memory attribute fork. There's
nothing that can be done with it once we have failed to remove the
on-disk attribute fork, so we may as well just blow it away here
anyway.
cc: <stable@vger.kernel.org> # 3.12 to 4.0
Reported-by: Waiman Long <waiman.long@hp.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This results in BMBT corruption, as seen by this test:
# mkfs.xfs -f -d size=40051712b,agcount=4 /dev/vdc
....
# mount /dev/vdc /mnt/scratch
# xfs_io -ft -c "extsize 16m" -c "falloc 0 30g" -c "bmap -vp" /mnt/scratch/foo
which results in this failure on a debug kernel:
XFS: Assertion failed: (blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)) == 0, file: fs/xfs/libxfs/xfs_bmap_btree.c, line: 211
....
Call Trace:
[<ffffffff814cf0ff>] xfs_bmbt_set_allf+0x8f/0x100
[<ffffffff814cf18d>] xfs_bmbt_set_all+0x1d/0x20
[<ffffffff814f2efe>] xfs_iext_insert+0x9e/0x120
[<ffffffff814c7956>] ? xfs_bmap_add_extent_hole_real+0x1c6/0xc70
[<ffffffff814c7956>] xfs_bmap_add_extent_hole_real+0x1c6/0xc70
[<ffffffff814caaab>] xfs_bmapi_write+0x72b/0xed0
[<ffffffff811c72ac>] ? kmem_cache_alloc+0x15c/0x170
[<ffffffff814fe070>] xfs_alloc_file_space+0x160/0x400
[<ffffffff81ddcc29>] ? down_write+0x29/0x60
[<ffffffff815063eb>] xfs_file_fallocate+0x29b/0x310
[<ffffffff811d2bc8>] ? __sb_start_write+0x58/0x120
[<ffffffff811e3e18>] ? do_vfs_ioctl+0x318/0x570
[<ffffffff811cd680>] vfs_fallocate+0x140/0x260
[<ffffffff811ce6f8>] SyS_fallocate+0x48/0x80
[<ffffffff81ddec09>] system_call_fastpath+0x12/0x17
The tracepoint that indicates the extent that triggered the assert
failure is:
xfs_iext_insert: idx 0 offset 0 block 16777224 count 2097152 flag 1
Clearly indicating that the extent length is greater than MAXEXTLEN,
which is 2097151. A prior trace point shows the allocation was an
exact size match and that a length greater than MAXEXTLEN was asked
for:
xfs_alloc_size_done: agno 1 agbno 8 minlen 2097152 maxlen 2097152
^^^^^^^ ^^^^^^^
We don't see this problem with extent size hints through the IO path
because we can't do single IOs large enough to trigger MAXEXTLEN
allocation. fallocate(), OTOH, is not limited in it's allocation
sizes and so needs help here.
The issue is that the extent size hint alignment is rounding up the
extent size past MAXEXTLEN, because xfs_bmapi_write() is not taking
into account extent size hints when calculating the maximum extent
length to allocate. xfs_bmapi_reserve_delalloc() is already doing
this, but direct extent allocation is not.
Unfortunately, the calculation in xfs_bmapi_reserve_delalloc() is
wrong, and it works only because delayed allocation extents are not
limited in size to MAXEXTLEN in the in-core extent tree. hence this
calculation does not work for direct allocation, and the delalloc
code needs fixing. This may, in fact be the underlying bug that
occassionally causes transaction overruns in delayed allocation
extent conversion, so now we know it's wrong we should fix it, too.
Many thanks to Brian Foster for finding this problem during review
of this patch.
Hence the fix, after much code reading, is to allow
xfs_bmap_extsize_align() to align partial extents when full
alignment would extend the alignment past MAXEXTLEN. We can safely
do this because all callers have higher layer allocation loops that
already handle short allocations, and so will simply run another
allocation to cover the remainder of the requested allocation range
that we ignored during alignment. The advantage of this approach is
that it also removes the need for callers to do anything other than
limit their requests to MAXEXTLEN - they don't really need to be
aware of extent size hints at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Function percpu_counter_read just return the current counter, which can be
negative. This will cause the checking of "allocated inode
counts <= m_maxicount" false positive. Use percpu_counter_read_positive can
solve this problem, and be consistent with the purpose to introduce percpu
mechanism to xfs.
Signed-off-by: George Wang <xuw2015@gmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_attr3_leaf_remove() removes an attribute from an attr leaf block. If
the attribute nameval data happens to be at the start of the nameval
region, a new start offset (firstused) for the region is calculated
(since the region grows from the tail of the block to the start). Once
the new firstused is calculated, it is checked for zero in an apparent
overflow check.
Now that the in-core firstused is 32-bit, overflow is not possible and
this check can be removed. Since the purpose for this check is not
documented and appears to exist since the port to Linux, be conservative
and replace it with an assert.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The on-disk xfs_attr3_leaf_hdr structure firstused field is 16-bit and
subject to overflow when fs block size is 64k. The field is typically
initialized to block size when an attr leaf block is initialized. This
problem is demonstrated by assert failures when running xfstests
generic/117 on an fs with 64k blocks.
To support the existing attr leaf block algorithms for insertion,
rebalance and entry movement, increase the size of the in-core firstused
field to 32-bit and handle the potential overflow on conversion to/from
the on-disk structure. If the overflow condition occurs, set a special
value in the firstused field that is translated back on header read. The
special value is only required in the case of an empty 64k attr block. A
value of zero is used because firstused is initialized to the block size
and grows backwards from there. Furthermore, the attribute block header
occupies the first bytes of the block. Thus, a value of zero has no
other legitimate meaning for this structure. Two new conversion helpers
are created to manage the conversion of firstused to and from disk.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The firstused field of the xfs_attr3_leaf_hdr structure is subject to an
overflow when fs blocksize is 64k. In preparation to handle this
overflow in the header conversion functions, pass the attribute geometry
to the functions that convert the in-core structure to and from the
on-disk structure.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch implements fallocate's FALLOC_FL_INSERT_RANGE for XFS.
1) Make sure that both offset and len are block size aligned.
2) Update the i_size of inode by len bytes.
3) Compute the file's logical block number against offset. If the computed
block number is not the starting block of the extent, split the extent
such that the block number is the starting block of the extent.
4) Shift all the extents which are lying bewteen [offset, last allocated extent]
towards right by len bytes. This step will make a hole of len bytes
at offset.
Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Ashish Sangwan <a.sangwan@samsung.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use icnodehdr for struct xfs_da3_icnode_hdr instead of nodehdr
(already declared above).
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This code is redundant now that we have verifiers that sanity check
the buffers as they are read from disk.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Test generic/224 is failing with a corruption being detected on one
of Michael's test boxes. Debug that Michael added is indicating
that the minleft trimming is resulting in an underflow:
.....
before fixup: rlen 1 args->len 0
after xfs_alloc_fix_len : rlen 1 args->len 1
before goto out_nominleft: rlen 1 args->len 0
before fixup: rlen 1 args->len 0
after xfs_alloc_fix_len : rlen 1 args->len 1
after fixup: rlen 1 args->len 1
before fixup: rlen 1 args->len 0
after xfs_alloc_fix_len : rlen 1 args->len 1
after fixup: rlen 4294967295 args->len 4294967295
XFS: Assertion failed: fs_is_ok, file: fs/xfs/libxfs/xfs_alloc.c, line: 1424
The "goto out_nominleft:" indicates that we are getting close to
ENOSPC in the AG, and a couple of allocations later we underflow
and the corruption check fires in xfs_alloc_ag_vextent_size().
The issue is that the extent length fixups comaprisons are done
with variables of xfs_extlen_t types. These are unsigned so an
underflow looks like a really big value and hence is not detected
as being smaller than the minimum length allowed for the extent.
Hence the corruption check fires as it is noticing that the returned
length is longer than the original extent length passed in.
This can be easily fixed by ensuring we do the underflow test on
signed values, the same way xfs_alloc_fix_len() prevents underflow.
So we realise in future that these casts prevent underflows from
going undetected, add comments to the code indicating this.
Reported-by: Michael L. Semon <mlsemon35@gmail.com>
Tested-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The error messages document the reason for the checks better than the comment
and the comments about volume mounts date back to Irix and so aren't relevant
any more. So just remove the old and redundant comment.
Signed-off-by: Wang Sheng-Hui <shhuiw@foxmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Today, if we hit an XFS_WANT_CORRUPTED_RETURN we don't print any
information about which filesystem hit it. Passing in the mp allows
us to print the filesystem (device) name, which is a pretty critical
piece of information.
Tested by running fsfuzzer 'til I hit some.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Today, if we hit an XFS_WANT_CORRUPTED_GOTO we don't print any
information about which filesystem hit it. Passing in the mp allows
us to print the filesystem (device) name, which is a pretty critical
piece of information.
Tested by running fsfuzzer 'til I hit some.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that there are no users of the bitfield based incore superblock
modification API, just remove the whole damn lot of it, including
all the bitfield definitions. This finally removes a lot of cruft
that has been around for a long time.
Credit goes to Christoph Hellwig for providing a great patch
connecting all the dots to enale us to do this. This patch is
derived from that work.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add a new helper to modify the incore counter of free realtime
extents. This matches the helpers used for inode and data block
counters, and removes a significant users of the xfs_mod_incore_sb()
interface.
Based on a patch originally from Christoph Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that the in-core superblock infrastructure has been replaced with
generic per-cpu counters, we don't need it anymore. Nuke it from
orbit so we are sure that it won't haunt us again...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. The free block counter is
special in that it is used for ENOSPC detection outside transaction
contexts for for delayed allocation. This means that the counter
needs to be accurate at zero. The current per-cpu counter code jumps
through lots of hoops to ensure we never run past zero, but we don't
need to make all those jumps with the generic counter
implementation.
The generic counter implementation allows us to pass a "batch"
threshold at which the addition/subtraction to the counter value
will be folded back into global value under lock. We can use this
feature to reduce the batch size as we approach 0 in a very similar
manner to the existing counters and their rebalance algorithm. If we
use a batch size of 1 as we approach 0, then every addition and
subtraction will be done against the global value and hence allow
accurate detection of zero threshold crossing.
Hence we can replace the handrolled, accurate-at-zero counters with
generic percpu counters.
Note: this removes just enough of the icsb infrastructure to compile
without warnings. The rest will go in subsequent commits.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. The free inode counter is not
used for any limit enforcement - the per-AG free inode counters are
used during allocation to determine if there are inode available for
allocation.
Hence we don't need any of the complexity of the hand-rolled
counters and we can simply replace them with generic per-cpu
counters similar to the inode counter.
This version introduces a xfs_mod_ifree() helper function from
Christoph Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has hand-rolled per-cpu counters for the superblock since before
there was any generic implementation. There are some warts around
the use of them for the inode counter as the hand rolled counter is
designed to be accurate at zero, but has no specific accurracy at
any other value. This design causes problems for the maximum inode
count threshold enforcement, as there is no trigger that balances
the counters as they get close tothe maximum threshold.
Instead of designing new triggers for balancing, just replace the
handrolled per-cpu counter with a generic counter. This enables us
to update the counter through the normal superblock modification
funtions, but rather than do that we add a xfs_mod_icount() helper
function (from Christoph Hellwig) and keep the percpu counter
outside the superblock in the struct xfs_mount.
This means we still need to initialise the per-cpu counter
specifically when we read the superblock, and vice versa when we
log/write it, but it does mean that we don't need to change any
other code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Conversion from local to extent format does not set the buffer type
correctly on the new extent buffer when a symlink data is moved out
of line.
Fix the symlink code and leave a comment in the generic bmap code
reminding us that the format-specific data copy needs to set the
destination buffer type appropriately.
cc: <stable@vger.kernel.org> # 3.10 to current
Tested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently have to ensure that every time we update sb_features2
that we update sb_bad_features2. Now that we log and format the
superblock in it's entirety we actually don't have to care because
we can simply update the sb_bad_features2 when we format it into the
buffer. This removes the need for anything but the mount and
superblock formatting code to care about sb_bad_features2, and
hence removes the possibility that we forget to update bad_features2
when necessary in the future.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We now have several superblock loggin functions that are identical
except for the transaction reservation and whether it shoul dbe a
synchronous transaction or not. Consolidate these all into a single
function, a single reserveration and a sync flag and call it
xfs_sync_sb().
Also, xfs_mod_sb() is not really a modification function - it's the
operation of logging the superblock buffer. hence change the name of
it to reflect this.
Note that we have to change the mp->m_update_flags that are passed
around at mount time to a boolean simply to indicate a superblock
update is needed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we log changes to the superblock, we first have to write them
to the on-disk buffer, and then log that. Right now we have a
complex bitfield based arrangement to only write the modified field
to the buffer before we log it.
This used to be necessary as a performance optimisation because we
logged the superblock buffer in every extent or inode allocation or
freeing, and so performance was extremely important. We haven't done
this for years, however, ever since the lazy superblock counters
pulled the superblock logging out of the transaction commit
fast path.
Hence we have a bunch of complexity that is not necessary that makes
writing the in-core superblock to disk much more complex than it
needs to be. We only need to log the superblock now during
management operations (e.g. during mount, unmount or quota control
operations) so it is not a performance critical path anymore.
As such, remove the complex field based logging mechanism and
replace it with a simple conversion function similar to what we use
for all other on-disk structures.
This means we always log the entirity of the superblock, but again
because we rarely modify the superblock this is not an issue for log
bandwidth or CPU time. Indeed, if we do log the superblock
frequently, delayed logging will minimise the impact of this
overhead.
[Fixed gquota/pquota inode sharing regression noticed by bfoster.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This function is used libxfs code, but is implemented separately in
userspace. Move the function prototype to xfs_bmap.h so that the
prototype is shared even if the implementations aren't.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
It no long is used for stack splits, so strip the kernel workqueue
bits from it and push it back into libxfs/xfs_bmap.h so that
it can be shared with the userspace code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The types used by the core XFS code are common between kernel and
userspace. xfs_types.h is duplicated in both kernel and userspace,
so move it to libxfs along with all the other shared code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Ioctl API definitions are shared with userspace, so move the header
file that defines them all to libxfs along with all the other code
shared with userspace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently when we modify sb_features2, we store the same value also in
sb_bad_features2. However in most places we forget to mark field
sb_bad_features2 for logging and thus it can happen that a change to it
is lost. This results in an inconsistent sb_features2 and
sb_bad_features2 fields e.g. after xfstests test xfs/187.
Fix the problem by changing XFS_SB_FEATURES2 to actually mean both
sb_features2 and sb_bad_features2 fields since this is always what we
want to log. This isn't ideal because the fact that XFS_SB_FEATURES2
means two fields could cause some problem in future however the code is
hopefully less error prone that it is now.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The kernel compile doesn't turn on these checks by default, so it's
only when I do a kernel-user sync that I find that there are lots of
compiler warnings waiting to be fixed. Fix up these set-but-unused
warnings.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These are currently considered private to libxfs, but they are
widely used by the userspace code to decode, walk and check
directory structures. Hence they really form part of the external
API and as such need to bemoved to xfs_dir2.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These functions are needed in userspace for repair and mkfs to
do the right thing. Move them to libxfs so they can be easily
shared.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
xfs_bmse_merge() has a jump label for return that just returns the
error value. Convert all the code to just return the error directly
and use XFS_WANT_CORRUPTED_RETURN. This also allows the final call
to xfs_bmbt_update() to return directly.
Noticed while reviewing coccinelle return cleanup patches and
wondering why the same return pattern as in xfs_bmse_shift_one()
wasn't picked up by the checker pattern...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_bmse_shift_one() jumps around determining whether to shift or
merge, making the code flow difficult to follow. Clean it up and
use direct error returns (including XFS_WANT_CORRUPTED_RETURN) to
make the code flow better and be easier to read.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
After growing a filesystem, XFS can fail to allocate inodes even
though there is a large amount of space available in the filesystem
for inodes. The issue is caused by a nearly full allocation group
having enough free space in it to be considered for inode
allocation, but not enough contiguous free space to actually
allocation inodes. This situation results in successful selection
of the AG for allocation, then failure of the allocation resulting
in ENOSPC being reported to the caller.
It is caused by two possible issues. Firstly, we only consider the
lognest free extent and whether it would fit an inode chunk. If the
extent is not correctly aligned, then we can't allocate an inode
chunk in it regardless of the fact that it is large enough. This
tends to be a permanent error until space in the AG is freed.
The second issue is that we don't actually lock the AGI or AGF when
we are doing these checks, and so by the time we get to actually
allocating the inode chunk the space we thought we had in the AG may
have been allocated. This tends to be a spurious error as it
requires a race to trigger. Hence this case is ignored in this patch
as the reported problem is for permanent errors.
The first issue could be addressed by simply taking into account the
alignment when checking the longest extent. This, however, would
prevent allocation in AGs that have aligned, exact sized extents
free. However, this case should be fairly rare compared to the
number of allocations that occur near ENOSPC that would trigger this
condition.
Hence, when selecting the inode AG, take into account the inode
cluster alignment when checking the lognest free extent in the AG.
If we can't find any AGs with a contiguous free space large
enough to be aligned, drop the alignment addition and just try for
an AG that has enough contiguous free space available for an inode
chunk. This won't prevent issues from occurring, but should avoid
situations where other AGs have lots of free space but the selected
AG can't allocate due to alignment constraints.
Reported-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
fs/xfs/libxfs/xfs_bmap.c:5591:1-6: WARNING: end returns can be simpified
Simplify a trivial if-return sequence. Possibly combine with a
preceding function call.
Generated by: scripts/coccinelle/misc/simple_return.cocci
CC: Brian Foster <bfoster@redhat.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
fs/xfs/libxfs/xfs_ialloc.c:1141:1-6: WARNING: end returns can be simpified
Simplify a trivial if-return sequence. Possibly combine with a
preceding function call.
Generated by: scripts/coccinelle/misc/simple_return.cocci
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the on-disk ACL format to xfs_format.h, so that repair can
use the common defintion.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More consolidatation for the on-disk format defintions. Note that the
XFS_IS_REALTIME_INODE moves to xfs_linux.h instead as it is not related
to the on disk format, but depends on a CONFIG_ option.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
I discovered this in userspace, but the same change applies
to the kernel.
If we xfs_mdrestore an image from a non-crc filesystem, lo
and behold the restored image has gained a CRC:
# db/xfs_metadump.sh -o /dev/sdc1 - | xfs_mdrestore - test.img
# xfs_db -c "sb 0" -c "p crc" /dev/sdc1
crc = 0 (correct)
# xfs_db -c "sb 0" -c "p crc" test.img
crc = 0xb6f8d6a0 (correct)
This is because xfs_sb_from_disk doesn't fill in sb_crc,
but xfs_sb_to_disk(XFS_SB_ALL_BITS) does write the in-memory
CRC to disk - so we get uninitialized memory on disk.
Fix this by always initializing sb_crc to 0 when we read
the superblock, and masking out the CRC bit from ALL_BITS
when we write it.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In this case, if bp is NULL, error is set, and we send a
NULL bp to xfs_trans_brelse, which will try to dereference it.
Test whether we actually have a buffer before we try to
free it.
Coverity spotted this.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Sparse warns that we are passing the big-endian valueo f agi_newino
to the initial btree lookup function when trying to find a new
inode. This is wrong - we need to pass the host order value, not the
disk order value. This will adversely affect the next inode
allocated, but given that the free inode btree is usually much
smaller than the allocated inode btree it is much less likely to be
a performance issue if we start the search in the wrong place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_dir3_data_get_ftype() gets the file type off disk, but ASSERTs
if it's invalid:
ASSERT(type < XFS_DIR3_FT_MAX);
We shouldn't ASSERT on bad values read from disk. V3 dirs are
CRC-protected, but V2 dirs + ftype are not.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The collapse range operation currently writes the entire file before
starting the collapse to avoid changes in the in-core extent list due to
writeback causing the extent count to change. Now that collapse range is
fsb based rather than extent index based it can sustain changes in the
extent list during the shift sequence without disruption.
Modify xfs_collapse_file_space() to writeback and invalidate pages
associated with the range of the file to be shifted.
xfs_free_file_space() currently has similar behavior, but the space free
need only affect the region of the file that is freed and this could
change in the future.
Also update the comments to reflect the current implementation. We
retain the eofblocks trim permanently as a best option for dealing with
delalloc extents. We don't shift delalloc extents because this scenario
only occurs with post-eof preallocation (since data must be flushed such
that the cache can be invalidated and data can be shifted). That means
said space must also be initialized before being shifted into the
accessible region of the file only to be immediately truncated off as
the last part of the collapse. In other words, the eofblocks trim will
happen anyways, we just run it first to ensure the file remains in a
consistent state throughout the collapse.
Finally, detect and fail explicitly in the event of a delalloc extent
during the extent shift. The implementation does not support delalloc
extents and the caller is expected to prevent this scenario in advance
as is done by collapse.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_bmap_shift_extents() has a variety of conditions and error checks
that make the logic difficult to follow and indent heavy. Refactor the
loop body of this function into a new xfs_bmse_shift_one() helper. This
simplifies the error checks, eliminates index decrement on merge hack by
pushing the index increment down into the helper, and makes the code
more readable by reducing multiple levels of indentation.
This is a code refactor only. The behavior of extent shift and collapse
range is not modified.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The extent shift mechanism in xfs_bmap_shift_extents() is complicated
and handles several different, non-deterministic scenarios. These
include extent shifts, extent merges and potential btree updates in
either of the former scenarios.
Refactor the code to be more linear and readable. The loop logic in
xfs_bmap_shift_extents() and some initial error checking is adjusted
slightly. The associated btree lookup and update/delete operations are
condensed into single blocks of code. This reduces the number of
btree-specific blocks and facilitates the separation of the merge
operation into a new xfs_bmse_merge() and xfs_bmse_can_merge() helpers.
This is a code refactor only. The behavior of extent shift and collapse
range is not modified.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The collapse range implementation uses a transaction per extent shift.
The progress of the overall operation is tracked via the current extent
index of the in-core extent list. This is racy because the ilock must be
dropped and reacquired for each transaction according to locking and log
reservation rules. Therefore, writeback to prior regions of the file is
possible and can change the extent count. This changes the extent to
which the current index refers and causes the collapse to fail mid
operation. To avoid this problem, the entire file is currently written
back before the collapse operation starts.
To eliminate the need to flush the entire file, use the file offset
(fsb) to track the progress of the overall extent shift operation rather
than the extent index. Modify xfs_bmap_shift_extents() to
unconditionally convert the start_fsb parameter to an extent index and
return the file offset of the extent where the shift left off, if
further extents exist. The bulk of ths function can remain based on
extent index as ilock is held by the caller. xfs_collapse_file_space()
now uses the fsb output as the starting point for the subsequent shift.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
rbpp is always passed into xfs_rtmodify_summary
and xfs_rtget_summary, so there is no need to
test for it in xfs_rtmodify_summary_int.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_rtmodify_summary and xfs_rtget_summary are almost identical;
fold them into xfs_rtmodify_summary_int(), with wrappers for each of
the original calls.
The _int function modifies if a delta is passed, and returns a
summary pointer if *sum is passed.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_dir_canenter and xfs_dir_createname are
almost identical.
Fold the former into the latter, with a helpful
wrapper for the former. If createname is called without
an inode number, it now only checks for space, and does
not actually add the entry.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the resblks test out of the xfs_dir_canenter,
and into the caller.
This makes a little more sense on the face of it;
xfs_dir_canenter immediately returns if resblks !=0;
and given some of the comments preceding the calls:
* Check for ability to enter directory entry, if no space reserved.
even more so.
It also facilitates the next patch.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These were exposed by fsfuzzer runs; without them we fail
in various exciting and sometimes convoluted ways when we
encounter disk corruption.
Without the MAXLEVELS tests we tend to walk off the end of
an array in a loop like this:
for (i = 0; i < cur->bc_nlevels; i++) {
if (cur->bc_bufs[i])
Without the dirblklog test we try to allocate more memory
than we could possibly hope for and loop forever:
xfs_dabuf_map()
nfsb = mp->m_dir_geo->fsbcount;
irecs = kmem_zalloc(sizeof(irec) * nfsb, KM_SLEEP...
As for the logbsize check, that's the convoluted one.
If logbsize is specified at mount time, it's sanitized
in xfs_parseargs; in particular it makes sure that it's
not > XLOG_MAX_RECORD_BSIZE.
If not specified at mount time, it comes from the superblock
via sb_logsunit; this is limited to 256k at mkfs time as well;
it's copied into m_logbsize in xfs_finish_flags().
However, if for some reason the on-disk value is corrupt and
too large, nothing catches it. It's a circuitous path, but
that size eventually finds its way to places that make the kernel
very unhappy, leading to oopses in xlog_pack_data() because we
use the size as an index into iclog->ic_data, but the array
is not necessarily that big.
Anyway - bounds checking when we read from disk is a good thing!
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The file collapse mechanism uses xfs_bmap_shift_extents() to collapse
all subsequent extents down into the specified, previously punched out,
region. This function performs some validation, such as whether a
sufficient hole exists in the target region of the collapse, then shifts
the remaining exents downward.
The exit path of the function currently logs the inode unconditionally.
While we must log the inode (and abort) if an error occurs and the
transaction is dirty, the initial validation paths can generate errors
before the transaction has been dirtied. This creates an unnecessary
filesystem shutdown scenario, as the caller will cancel a transaction
that has been marked dirty.
Modify xfs_bmap_shift_extents() to OR the logflags bits as modifications
are made to the inode bmap. Only log the inode in the exit path if
logflags has been set. This ensures we only have to cancel a dirty
transaction if modifications have been made and prevents an unnecessary
filesystem shutdown otherwise.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The commit
83e782e xfs: Remove incore use of XFS_OQUOTA_ENFD and XFS_OQUOTA_CHKD
added a new function xfs_sb_quota_from_disk() which swaps
on-disk XFS_OQUOTA_* flags for in-core XFS_GQUOTA_* and XFS_PQUOTA_*
flags after the superblock is read.
However, if log recovery is required, the superblock is read again,
and the modified in-core flags are re-read from disk, so we have
XFS_OQUOTA_* flags in memory again. This causes the
XFS_QM_NEED_QUOTACHECK() test to be true, because the XFS_OQUOTA_CHKD
is still set, and not XFS_GQUOTA_CHKD or XFS_PQUOTA_CHKD.
Change xfs_sb_from_disk to call xfs_sb_quota_from disk and always
convert the disk flags to in-memory flags.
Add a lower-level function which can be called with "false" to
not convert the flags, so that the sb verifier can verify
exactly what was on disk, per Brian Foster's suggestion.
Reported-by: Cyril B. <cbay@excellency.fr>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Trying to support tiny disks only and saving a bit memory might have
made sense on an SGI O2 15 years ago, but is pretty pointless today.
Remove the rarely tested codepath that uses various smaller in-memory
types to reduce our test matrix and make the codebase a little bit
smaller and less complicated.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove the XFS_IS_OQUOTA_ON macros as it is obsoleted.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Convert all the errors the core XFs code to negative error signs
like the rest of the kernel and remove all the sign conversion we
do in the interface layers.
Errors for conversion (and comparison) found via searches like:
$ git grep " E" fs/xfs
$ git grep "return E" fs/xfs
$ git grep " E[A-Z].*;$" fs/xfs
Negation points found via searches like:
$ git grep "= -[a-z,A-Z]" fs/xfs
$ git grep "return -[a-z,A-D,F-Z]" fs/xfs
$ git grep " -[a-z].*;" fs/xfs
[ with some bits I missed from Brian Foster ]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move all the source files that are shared with userspace into
libxfs/. This is done as one big chunk simpy to get it done
quickly
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move all the header files that are shared with userspace into
libxfs. This is done as one big chunk simpy to get it done quickly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
To minimise the differences between kernel and userspace code,
split the kernel code into the same structure as the userspace code.
That is, the gneric core functionality of XFS is moved to a libxfs/
directory and treat it as a layering barrier in the XFS code.
This patch introduces the libxfs directory, the build infrastructure
and an initial source and header file to build. The libxfs directory
will contain the header files that are needed to build libxfs - most
of userspace does not care about the location of these header files
as they are accessed indirectly. Hence keeping them inside libxfs
makes it easy to track the changes and script the sync process as
the directory structure will be identical.
To allow this changeover to occur in the kernel code, there are some
temporary infrastructure in the makefiles to grab the header
filesystem from both locations. Once all the files are moved,
modifications will be made in the source code that will make the
need for these include directives go away.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>