Patch series "introduce get_user_pages_longterm()", v2.
Here is a new get_user_pages api for cases where a driver intends to
keep an elevated page count indefinitely. This is distinct from usages
like iov_iter_get_pages where the elevated page counts are transient.
The iov_iter_get_pages cases immediately turn around and submit the
pages to a device driver which will put_page when the i/o operation
completes (under kernel control).
In the longterm case userspace is responsible for dropping the page
reference at some undefined point in the future. This is untenable for
filesystem-dax case where the filesystem is in control of the lifetime
of the block / page and needs reasonable limits on how long it can wait
for pages in a mapping to become idle.
Fixing filesystems to actually wait for dax pages to be idle before
blocks from a truncate/hole-punch operation are repurposed is saved for
a later patch series.
Also, allowing longterm registration of dax mappings is a future patch
series that introduces a "map with lease" semantic where the kernel can
revoke a lease and force userspace to drop its page references.
I have also tagged these for -stable to purposely break cases that might
assume that longterm memory registrations for filesystem-dax mappings
were supported by the kernel. The behavior regression this policy
change implies is one of the reasons we maintain the "dax enabled.
Warning: EXPERIMENTAL, use at your own risk" notification when mounting
a filesystem in dax mode.
It is worth noting the device-dax interface does not suffer the same
constraints since it does not support file space management operations
like hole-punch.
This patch (of 4):
Until there is a solution to the dma-to-dax vs truncate problem it is
not safe to allow long standing memory registrations against
filesytem-dax vmas. Device-dax vmas do not have this problem and are
explicitly allowed.
This is temporary until a "memory registration with layout-lease"
mechanism can be implemented for the affected sub-systems (RDMA and
V4L2).
[akpm@linux-foundation.org: use kcalloc()]
Link: http://lkml.kernel.org/r/151068939435.7446.13560129395419350737.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: 3565fce3a6 ("mm, x86: get_user_pages() for dax mappings")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Hal Rosenstock <hal.rosenstock@gmail.com>
Cc: Inki Dae <inki.dae@samsung.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Joonyoung Shim <jy0922.shim@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Seung-Woo Kim <sw0312.kim@samsung.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "device-dax: fix unaligned munmap handling"
When device-dax is operating in huge-page mode we want it to behave like
hugetlbfs and fail attempts to split vmas into unaligned ranges. It
would be messy to teach the munmap path about device-dax alignment
constraints in the same (hstate) way that hugetlbfs communicates this
constraint. Instead, these patches introduce a new ->split() vm
operation.
This patch (of 2):
The device-dax interface has similar constraints as hugetlbfs in that it
requires the munmap path to unmap in huge page aligned units. Rather
than add more custom vma handling code in __split_vma() introduce a new
vm operation to perform this vma specific check.
Link: http://lkml.kernel.org/r/151130418135.4029.6783191281930729710.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: dee4107924 ("/dev/dax, core: file operations and dax-mmap")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may be
required to satisfy a write fault to also be flushed ("on disk") before
the kernel returns to userspace from the fault handler. Effectively
every write-fault that dirties metadata completes an fsync() before
returning from the fault handler. The new MAP_SHARED_VALIDATE mapping
type guarantees that the MAP_SYNC flag is validated as supported by the
filesystem's ->mmap() file operation.
* Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods. This
enables interoperability with environments that only implement the
standardized methods.
* Add support for the ACPI 6.2 NVDIMM media error injection methods.
* Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for latch
last shutdown status, firmware update, SMART error injection, and
SMART alarm threshold control.
* Cleanup physical address information disclosures to be root-only.
* Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
* Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
957ac8c421 dax: fix PMD faults on zero-length files
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
a39e596baa xfs: support for synchronous DAX faults
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
7b565c9f96 xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaDfvcAAoJEB7SkWpmfYgCk7sP/2qJhBH+VTTdg2osDnhAdAhI
co/AGEmsHFlUCMBb/Ek7UnMAmhBYiJU2q4ywPsNFBpusXpMlqNy5Iwo7k4/wQHE/
SJcIM0g4zg0ViFuUhwV+C2T0R5UzFR8JLd9EYWj/YS6aJpurtotm5l4UStaM0Hzo
AhxSXJLrBDuqCpbOxbctfiGEmdRL7aRfBEAARTNRKBn/iXxJUcYHlp62rtXQS+t4
I6LC/URCWTNTTMGmzW6TRsgSD9WMfd19xKcGzN3qL6ee0KFccxN4ctFqHA/sFGOh
iYLeR0XJUjJxyp+PkWGteXPVZL0Kj3bD/lSTG+Co5bm/ra8a/sh3TSFfgFyoBZD1
EqMN8Ryf80hGp3FabeH2Iw2SviYPZpHSWgjddjxLD0RA6OmpzINc+Wm8eqApjMME
sbZDTOijiab4QMQ0XamF4GuDHyQtawv5Y/w2Ehhl1tmiqW+5tKhsKqxkQt+/V3Yt
RTVSRe2Pkway66b+cD64IdQ6L2tyonPnmi5IzgkKOhlOEGomy+4/U2Jt2bMbhzq6
ymszKmXp2XI8P06wU8sHrIUeXO5I9qoKn/fZA73Eb8aIzgJe3tBE/5+Ab7RG6HB9
1OVfcMWoXU1gNgNktTs63X1Lsg4aW9kt/K4fPHHcqUcaliEJpJTlAbg9GLF2buoW
nQ+0fTRgMRihE3ZA0Fs3
=h2vZ
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and dax updates from Dan Williams:
"Save for a few late fixes, all of these commits have shipped in -next
releases since before the merge window opened, and 0day has given a
build success notification.
The ext4 touches came from Jan, and the xfs touches have Darrick's
reviewed-by. An xfstest for the MAP_SYNC feature has been through
a few round of reviews and is on track to be merged.
- Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may
be required to satisfy a write fault to also be flushed ("on disk")
before the kernel returns to userspace from the fault handler.
Effectively every write-fault that dirties metadata completes an
fsync() before returning from the fault handler. The new
MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag
is validated as supported by the filesystem's ->mmap() file
operation.
- Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods.
This enables interoperability with environments that only implement
the standardized methods.
- Add support for the ACPI 6.2 NVDIMM media error injection methods.
- Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for
latch last shutdown status, firmware update, SMART error injection,
and SMART alarm threshold control.
- Cleanup physical address information disclosures to be root-only.
- Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
- Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
- 957ac8c421 ("dax: fix PMD faults on zero-length files"):
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
- a39e596baa ("xfs: support for synchronous DAX faults") and
7b565c9f96 ("xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()")
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>"
* tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (49 commits)
acpi, nfit: add 'Enable Latch System Shutdown Status' command support
dax: fix general protection fault in dax_alloc_inode
dax: fix PMD faults on zero-length files
dax: stop requiring a live device for dax_flush()
brd: remove dax support
dax: quiet bdev_dax_supported()
fs, dax: unify IOMAP_F_DIRTY read vs write handling policy in the dax core
tools/testing/nvdimm: unit test clear-error commands
acpi, nfit: validate commands against the device type
tools/testing/nvdimm: stricter bounds checking for error injection commands
xfs: support for synchronous DAX faults
xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
ext4: Support for synchronous DAX faults
ext4: Simplify error handling in ext4_dax_huge_fault()
dax: Implement dax_finish_sync_fault()
dax, iomap: Add support for synchronous faults
mm: Define MAP_SYNC and VM_SYNC flags
dax: Allow tuning whether dax_insert_mapping_entry() dirties entry
dax: Allow dax_iomap_fault() to return pfn
dax: Fix comment describing dax_iomap_fault()
...
Patch series "Speed up page cache truncation", v1.
When rebasing our enterprise distro to a newer kernel (from 4.4 to 4.12)
we have noticed a regression in bonnie++ benchmark when deleting files.
Eventually we have tracked this down to a fact that page cache
truncation got slower by about 10%. There were both gains and losses in
the above interval of kernels but we have been able to identify that
commit 83929372f6 ("filemap: prepare find and delete operations for
huge pages") caused about 10% regression on its own.
After some investigation it didn't seem easily possible to fix the
regression while maintaining the THP in page cache functionality so
we've decided to optimize the page cache truncation path instead to make
up for the change. This series is a result of that effort.
Patch 1 is an easy speedup of cancel_dirty_page(). Patches 2-6 refactor
page cache truncation code so that it is easier to batch radix tree
operations. Patch 7 implements batching of deletes from the radix tree
which more than makes up for the original regression.
This patch (of 7):
cancel_dirty_page() does quite some work even for clean pages (fetching
of mapping, locking of memcg, atomic bit op on page flags) so it
accounts for ~2.5% of cost of truncation of a clean page. That is not
much but still dumb for something we don't need at all. Check whether a
page is actually dirty and avoid any work if not.
Link: http://lkml.kernel.org/r/20171010151937.26984-2-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some memory is reserved but unavailable: not present in memblock.memory
(because not backed by physical pages), but present in memblock.reserved.
Such memory has backing struct pages, but they are not initialized by
going through __init_single_page().
In some cases these struct pages are accessed even if they do not
contain any data. One example is page_to_pfn() might access page->flags
if this is where section information is stored (CONFIG_SPARSEMEM,
SECTION_IN_PAGE_FLAGS).
One example of such memory: trim_low_memory_range() unconditionally
reserves from pfn 0, but e820__memblock_setup() might provide the
exiting memory from pfn 1 (i.e. KVM).
Since struct pages are zeroed in __init_single_page(), and not during
allocation time, we must zero such struct pages explicitly.
The patch involves adding a new memblock iterator:
for_each_resv_unavail_range(i, p_start, p_end)
Which iterates through reserved && !memory lists, and we zero struct pages
explicitly by calling mm_zero_struct_page().
===
Here is more detailed example of problem that this patch is addressing:
Run tested on qemu with the following arguments:
-enable-kvm -cpu kvm64 -m 512 -smp 2
This patch reports that there are 98 unavailable pages.
They are: pfn 0 and pfns in range [159, 255].
Note, trim_low_memory_range() reserves only pfns in range [0, 15], it does
not reserve [159, 255] ones.
e820__memblock_setup() reports linux that the following physical ranges are
available:
[1 , 158]
[256, 130783]
Notice, that exactly unavailable pfns are missing!
Now, lets check what we have in zone 0: [1, 131039]
pfn 0, is not part of the zone, but pfns [1, 158], are.
However, the bigger problem we have if we do not initialize these struct
pages is with memory hotplug. Because, that path operates at 2M
boundaries (section_nr). And checks if 2M range of pages is hot
removable. It starts with first pfn from zone, rounds it down to 2M
boundary (sturct pages are allocated at 2M boundaries when vmemmap is
created), and checks if that section is hot removable. In this case
start with pfn 1 and convert it down to pfn 0. Later pfn is converted
to struct page, and some fields are checked. Now, if we do not zero
struct pages, we get unpredictable results.
In fact when CONFIG_VM_DEBUG is enabled, and we explicitly set all
vmemmap memory to ones, the following panic is observed with kernel test
without this patch applied:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: is_pageblock_removable_nolock+0x35/0x90
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT
...
task: ffff88001f4e2900 task.stack: ffffc90000314000
RIP: 0010:is_pageblock_removable_nolock+0x35/0x90
Call Trace:
? is_mem_section_removable+0x5a/0xd0
show_mem_removable+0x6b/0xa0
dev_attr_show+0x1b/0x50
sysfs_kf_seq_show+0xa1/0x100
kernfs_seq_show+0x22/0x30
seq_read+0x1ac/0x3a0
kernfs_fop_read+0x36/0x190
? security_file_permission+0x90/0xb0
__vfs_read+0x16/0x30
vfs_read+0x81/0x130
SyS_read+0x44/0xa0
entry_SYSCALL_64_fastpath+0x1f/0xbd
Link: http://lkml.kernel.org/r/20171013173214.27300-7-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we account page tables separately for each page table level,
but that's redundant -- we only make use of total memory allocated to
page tables for oom_badness calculation. We also provide the
information to userspace, but it has dubious value there too.
This patch switches page table accounting to single counter.
mm->pgtables_bytes is now used to account all page table levels. We use
bytes, because page table size for different levels of page table tree
may be different.
The change has user-visible effect: we don't have VmPMD and VmPUD
reported in /proc/[pid]/status. Not sure if anybody uses them. (As
alternative, we can always report 0 kB for them.)
OOM-killer report is also slightly changed: we now report pgtables_bytes
instead of nr_ptes, nr_pmd, nr_puds.
Apart from reducing number of counters per-mm, the benefit is that we
now calculate oom_badness() more correctly for machines which have
different size of page tables depending on level or where page tables
are less than a page in size.
The only downside can be debuggability because we do not know which page
table level could leak. But I do not remember many bugs that would be
caught by separate counters so I wouldn't lose sleep over this.
[akpm@linux-foundation.org: fix mm/huge_memory.c]
Link: http://lkml.kernel.org/r/20171006100651.44742-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
[kirill.shutemov@linux.intel.com: fix build]
Link: http://lkml.kernel.org/r/20171016150113.ikfxy3e7zzfvsr4w@black.fi.intel.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's add wrappers for ->nr_ptes with the same interface as for nr_pmd
and nr_pud.
The patch also makes nr_ptes accounting dependent onto CONFIG_MMU. Page
table accounting doesn't make sense if you don't have page tables.
It's preparation for consolidation of page-table counters in mm_struct.
Link: http://lkml.kernel.org/r/20171006100651.44742-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On a machine with 5-level paging support a process can allocate
significant amount of memory and stay unnoticed by oom-killer and memory
cgroup. The trick is to allocate a lot of PUD page tables. We don't
account PUD page tables, only PMD and PTE.
We already addressed the same issue for PMD page tables, see commit
dc6c9a35b6 ("mm: account pmd page tables to the process").
Introduction of 5-level paging brings the same issue for PUD page
tables.
The patch expands accounting to PUD level.
[kirill.shutemov@linux.intel.com: s/pmd_t/pud_t/]
Link: http://lkml.kernel.org/r/20171004074305.x35eh5u7ybbt5kar@black.fi.intel.com
[heiko.carstens@de.ibm.com: s390/mm: fix pud table accounting]
Link: http://lkml.kernel.org/r/20171103090551.18231-1-heiko.carstens@de.ibm.com
Link: http://lkml.kernel.org/r/20171002080427.3320-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a flag to iomap interface informing the caller that inode needs
fdstasync(2) for returned extent to become persistent and use it in DAX
fault code so that we don't map such extents into page tables
immediately. Instead we propagate the information that fdatasync(2) is
necessary from dax_iomap_fault() with a new VM_FAULT_NEEDDSYNC flag.
Filesystem fault handler is then responsible for calling fdatasync(2)
and inserting pfn into page tables.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Define new MAP_SYNC flag and corresponding VMA VM_SYNC flag. As the
MAP_SYNC flag is not part of LEGACY_MAP_MASK, currently it will be
refused by all MAP_SHARED_VALIDATE map attempts and silently ignored for
everything else.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
It is unused.
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
register_page_bootmem_memmap()'s 3rd 'size' parameter is named
in a somewhat misleading fashion - rename it to 'nr_pages' which
makes the units of it much clearer.
Meanwhile rename the existing local variable 'nr_pages' to
'nr_pmd_pages', a more expressive name, to avoid conflict with
new function parameter 'nr_pages'.
(Also clean up the unnecessary parentheses in which get_order() is called.)
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: akpm@linux-foundation.org
Link: http://lkml.kernel.org/r/1509154238-23250-1-git-send-email-bhe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's a typo in recent change of VM_MPX definition. We want it to be
VM_HIGH_ARCH_4, not VM_HIGH_ARCH_BIT_4.
This bug does cause visible regressions. In arch_vma_name the vmflags
are tested against VM_MPX. With the incorrect value of VM_MPX, a number
of vmas (such as the stack) test positive and end up being marked as
"[mpx]" in /proc/N/maps instead of their correct names.
This confuses tools like rr which expect to be able to find familiar
vmas.
Fixes: df3735c5b4 ("x86,mpx: make mpx depend on x86-64 to free up VMA flag")
Link: http://lkml.kernel.org/r/20170918140253.36856-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kyle Huey <me@kylehuey.com>
Cc: <stable@vger.kernel.org> [4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow interval trees to quickly check for overlaps to avoid unnecesary
tree lookups in interval_tree_iter_first().
As of this patch, all interval tree flavors will require using a
'rb_root_cached' such that we can have the leftmost node easily
available. While most users will make use of this feature, those with
special functions (in addition to the generic insert, delete, search
calls) will avoid using the cached option as they can do funky things
with insertions -- for example, vma_interval_tree_insert_after().
[jglisse@redhat.com: fix deadlock from typo vm_lock_anon_vma()]
Link: http://lkml.kernel.org/r/20170808225719.20723-1-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170719014603.19029-12-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Doug Ledford <dledford@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Christian Benvenuti <benve@cisco.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves all new code including new page migration helper behind kernel
Kconfig option so that there is no codee bloat for arch or user that do
not want to use HMM or any of its associated features.
arm allyesconfig (without all the patchset, then with and this patch):
text data bss dec hex filename
83721896 46511131 27582964 157815991 96814b7 ../without/vmlinux
83722364 46511131 27582964 157816459 968168b vmlinux
[jglisse@redhat.com: struct hmm is only use by HMM mirror functionality]
Link: http://lkml.kernel.org/r/20170825213133.27286-1-jglisse@redhat.com
[sfr@canb.auug.org.au: fix build (arm multi_v7_defconfig)]
Link: http://lkml.kernel.org/r/20170828181849.323ab81b@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170818032858.7447-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Platform with advance system bus (like CAPI or CCIX) allow device memory
to be accessible from CPU in a cache coherent fashion. Add a new type of
ZONE_DEVICE to represent such memory. The use case are the same as for
the un-addressable device memory but without all the corners cases.
Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A ZONE_DEVICE page that reach a refcount of 1 is free ie no longer have
any user. For device private pages this is important to catch and thus we
need to special case put_page() for this.
Link: http://lkml.kernel.org/r/20170817000548.32038-9-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
HMM (heterogeneous memory management) need struct page to support
migration from system main memory to device memory. Reasons for HMM and
migration to device memory is explained with HMM core patch.
This patch deals with device memory that is un-addressable memory (ie CPU
can not access it). Hence we do not want those struct page to be manage
like regular memory. That is why we extend ZONE_DEVICE to support
different types of memory.
A persistent memory type is define for existing user of ZONE_DEVICE and a
new device un-addressable type is added for the un-addressable memory
type. There is a clear separation between what is expected from each
memory type and existing user of ZONE_DEVICE are un-affected by new
requirement and new use of the un-addressable type. All specific code
path are protect with test against the memory type.
Because memory is un-addressable we use a new special swap type for when a
page is migrated to device memory (this reduces the number of maximum swap
file).
The main two additions beside memory type to ZONE_DEVICE is two callbacks.
First one, page_free() is call whenever page refcount reach 1 (which
means the page is free as ZONE_DEVICE page never reach a refcount of 0).
This allow device driver to manage its memory and associated struct page.
The second callback page_fault() happens when there is a CPU access to an
address that is back by a device page (which are un-addressable by the
CPU). This callback is responsible to migrate the page back to system
main memory. Device driver can not block migration back to system memory,
HMM make sure that such page can not be pin into device memory.
If device is in some error condition and can not migrate memory back then
a CPU page fault to device memory should end with SIGBUS.
[arnd@arndb.de: fix warning]
Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty
in the child process after fork. This differs from MADV_DONTFORK in one
important way.
If a child process accesses memory that was MADV_WIPEONFORK, it will get
zeroes. The address ranges are still valid, they are just empty.
If a child process accesses memory that was MADV_DONTFORK, it will get a
segmentation fault, since those address ranges are no longer valid in
the child after fork.
Since MADV_DONTFORK also seems to be used to allow very large programs
to fork in systems with strict memory overcommit restrictions, changing
the semantics of MADV_DONTFORK might break existing programs.
MADV_WIPEONFORK only works on private, anonymous VMAs.
The use case is libraries that store or cache information, and want to
know that they need to regenerate it in the child process after fork.
Examples of this would be:
- systemd/pulseaudio API checks (fail after fork) (replacing a getpid
check, which is too slow without a PID cache)
- PKCS#11 API reinitialization check (mandated by specification)
- glibc's upcoming PRNG (reseed after fork)
- OpenSSL PRNG (reseed after fork)
The security benefits of a forking server having a re-inialized PRNG in
every child process are pretty obvious. However, due to libraries
having all kinds of internal state, and programs getting compiled with
many different versions of each library, it is unreasonable to expect
calling programs to re-initialize everything manually after fork.
A further complication is the proliferation of clone flags, programs
bypassing glibc's functions to call clone directly, and programs calling
unshare, causing the glibc pthread_atfork hook to not get called.
It would be better to have the kernel take care of this automatically.
The patch also adds MADV_KEEPONFORK, to undo the effects of a prior
MADV_WIPEONFORK.
This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO:
https://man.openbsd.org/minherit.2
[akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines]
Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Florian Weimer <fweimer@redhat.com>
Reported-by: Colm MacCártaigh <colm@allcosts.net>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Drewry <wad@chromium.org>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm,fork,security: introduce MADV_WIPEONFORK", v4.
If a child process accesses memory that was MADV_WIPEONFORK, it will get
zeroes. The address ranges are still valid, they are just empty.
If a child process accesses memory that was MADV_DONTFORK, it will get a
segmentation fault, since those address ranges are no longer valid in
the child after fork.
Since MADV_DONTFORK also seems to be used to allow very large programs
to fork in systems with strict memory overcommit restrictions, changing
the semantics of MADV_DONTFORK might break existing programs.
The use case is libraries that store or cache information, and want to
know that they need to regenerate it in the child process after fork.
Examples of this would be:
- systemd/pulseaudio API checks (fail after fork) (replacing a getpid
check, which is too slow without a PID cache)
- PKCS#11 API reinitialization check (mandated by specification)
- glibc's upcoming PRNG (reseed after fork)
- OpenSSL PRNG (reseed after fork)
The security benefits of a forking server having a re-inialized PRNG in
every child process are pretty obvious. However, due to libraries
having all kinds of internal state, and programs getting compiled with
many different versions of each library, it is unreasonable to expect
calling programs to re-initialize everything manually after fork.
A further complication is the proliferation of clone flags, programs
bypassing glibc's functions to call clone directly, and programs calling
unshare, causing the glibc pthread_atfork hook to not get called.
It would be better to have the kernel take care of this automatically.
The patchset also adds MADV_KEEPONFORK, to undo the effects of a prior
MADV_WIPEONFORK.
This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO:
https://man.openbsd.org/minherit.2
This patch (of 2):
MPX only seems to be available on 64 bit CPUs, starting with Skylake and
Goldmont. Move VM_MPX into the 64 bit only portion of vma->vm_flags, in
order to free up a VMA flag.
Link: http://lkml.kernel.org/r/20170811212829.29186-2-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Will Drewry <wad@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Colm MacCártaigh <colm@allcosts.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge page helps to reduce TLB miss rate, but it has higher cache
footprint, sometimes this may cause some issue. For example, when
clearing huge page on x86_64 platform, the cache footprint is 2M. But
on a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M
LLC (last level cache). That is, in average, there are 2.5M LLC for
each core and 1.25M LLC for each thread.
If the cache pressure is heavy when clearing the huge page, and we clear
the huge page from the begin to the end, it is possible that the begin
of huge page is evicted from the cache after we finishing clearing the
end of the huge page. And it is possible for the application to access
the begin of the huge page after clearing the huge page.
To help the above situation, in this patch, when we clear a huge page,
the order to clear sub-pages is changed. In quite some situation, we
can get the address that the application will access after we clear the
huge page, for example, in a page fault handler. Instead of clearing
the huge page from begin to end, we will clear the sub-pages farthest
from the the sub-page to access firstly, and clear the sub-page to
access last. This will make the sub-page to access most cache-hot and
sub-pages around it more cache-hot too. If we cannot know the address
the application will access, the begin of the huge page is assumed to be
the the address the application will access.
With this patch, the throughput increases ~28.3% in vm-scalability
anon-w-seq test case with 72 processes on a 2 socket Xeon E5 v3 2699
system (36 cores, 72 threads). The test case creates 72 processes, each
process mmap a big anonymous memory area and writes to it from the begin
to the end. For each process, other processes could be seen as other
workload which generates heavy cache pressure. At the same time, the
cache miss rate reduced from ~33.4% to ~31.7%, the IPC (instruction per
cycle) increased from 0.56 to 0.74, and the time spent in user space is
reduced ~7.9%
Christopher Lameter suggests to clear bytes inside a sub-page from end
to begin too. But tests show no visible performance difference in the
tests. May because the size of page is small compared with the cache
size.
Thanks Andi Kleen to propose to use address to access to determine the
order of sub-pages to clear.
The hugetlbfs access address could be improved, will do that in another
patch.
[ying.huang@intel.com: improve readability of clear_huge_page()]
Link: http://lkml.kernel.org/r/20170830051842.1397-1-ying.huang@intel.com
Link: http://lkml.kernel.org/r/20170815014618.15842-1-ying.huang@intel.com
Suggested-by: Andi Kleen <andi.kleen@intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When servicing mmap() reads from file holes the current DAX code
allocates a page cache page of all zeroes and places the struct page
pointer in the mapping->page_tree radix tree. This has three major
drawbacks:
1) It consumes memory unnecessarily. For every 4k page that is read via
a DAX mmap() over a hole, we allocate a new page cache page. This
means that if you read 1GiB worth of pages, you end up using 1GiB of
zeroed memory.
2) It is slower than using a common zero page because each page fault
has more work to do. Instead of just inserting a common zero page we
have to allocate a page cache page, zero it, and then insert it.
3) The fact that we had to check for both DAX exceptional entries and
for page cache pages in the radix tree made the DAX code more
complex.
This series solves these issues by following the lead of the DAX PMD
code and using a common 4k zero page instead. This reduces memory usage
and decreases latencies for some workloads, and it simplifies the DAX
code, removing over 100 lines in total.
This patch (of 5):
To be able to use the common 4k zero page in DAX we need to have our PTE
fault path look more like our PMD fault path where a PTE entry can be
marked as dirty and writeable as it is first inserted rather than
waiting for a follow-up dax_pfn_mkwrite() => finish_mkwrite_fault()
call.
Right now we can rely on having a dax_pfn_mkwrite() call because we can
distinguish between these two cases in do_wp_page():
case 1: 4k zero page => writable DAX storage
case 2: read-only DAX storage => writeable DAX storage
This distinction is made by via vm_normal_page(). vm_normal_page()
returns false for the common 4k zero page, though, just as it does for
DAX ptes. Instead of special casing the DAX + 4k zero page case we will
simplify our DAX PTE page fault sequence so that it matches our DAX PMD
sequence, and get rid of the dax_pfn_mkwrite() helper. We will instead
use dax_iomap_fault() to handle write-protection faults.
This means that insert_pfn() needs to follow the lead of
insert_pfn_pmd() and allow us to pass in a 'mkwrite' flag. If 'mkwrite'
is set insert_pfn() will do the work that was previously done by
wp_page_reuse() as part of the dax_pfn_mkwrite() call path.
Link: http://lkml.kernel.org/r/20170724170616.25810-2-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace all mmu_notifier_invalidate_page() calls by *_invalidate_range()
and make sure it is bracketed by calls to *_invalidate_range_start()/end().
Note that because we can not presume the pmd value or pte value we have
to assume the worst and unconditionaly report an invalidation as
happening.
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Bernhard Held <berny156@gmx.de>
Cc: Adam Borowski <kilobyte@angband.pl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: axie <axie@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZXXLdAAoJEAAOaEEZVoIVtBIP/2BMtyDB5IVaxUuYc9LiFxCZ
Y6W4aYEBgPhrct6epV3pnV+SXuzov9F5QZWe1P+lB3e30JHvPhO52OUIT7gSbFbv
kKCh+p7Q1vLqaKxONPQpJI5LjlB6e6GIekrI4woA2RWVw+6cUyP0oQTVhsSsgnj/
/GMo2pAqlhR3vnn9cWG93vl+xnrtmckpwFe0g5Jhdp/cVQBrqwxG+1W9rEsJf0nx
RN29E7+CyxI3x2KkVdmgsMQkpkM2ooopn//1QDmS3M2sbCrJrLSTRG8LBEcs8fi8
pQZcgW6uHXDH2I0hews1vhJRA38TeXoQfj9OZoFGQcVpbP3ZnjASKioRoQiSsHyQ
QRDxUw6C45tjWT0HZ1GaCDMuTMs0z2/zF/E7TaOX6zB2LS/NuIluoVAMkYVyXY3a
L39flIddnDaga1ojL+tQK5hhSl9C66++/FsFa2FZ0hLkeXA5WDLhRy0ODW3NaYg8
89pPJDfiocEiI7ULht2Bkk88zFe+K07bQRQ5eoFtSOAxOnWGJCbxn8G8dFZZDHnO
XZe3gscbR3DCMJ+agb4V/YOyqCHAJMA/lcnP9v7P+QnrEXSV5yrblk1Gx442xMhv
tANcCUI3nb/b2Ma3DW3iZS/iYmhmy/baBSV3n65K9NqtkkIbnqSXxk+5RJd5eKsS
8Y5nyu+6mlcOOxBMkmRo
=jRrj
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux
Pull Writeback error handling fixes from Jeff Layton:
"The main rationale for all of these changes is to tighten up writeback
error reporting to userland. There are many ways now that writeback
errors can be lost, such that fsync/fdatasync/msync return 0 when
writeback actually failed.
This pile contains a small set of cleanups and writeback error
handling fixes that I was able to break off from the main pile (#2).
Two of the patches in this pile are trivial. The exceptions are the
patch to fix up error handling in write_one_page, and the patch to
make JFS pay attention to write_one_page errors"
* tag 'for-linus-v4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux:
fs: remove call_fsync helper function
mm: clean up error handling in write_one_page
JFS: do not ignore return code from write_one_page()
mm: drop "wait" parameter from write_one_page()
The callers all set it to 1.
Also, make it clear that this function will not set any sort of AS_*
error, and that the caller must do so if necessary. No existing caller
uses this on normal files, so none of them need it.
Also, add __must_check here since, in general, the callers need to handle
an error here in some fashion.
Link: http://lkml.kernel.org/r/20170525103303.6524-1-jlayton@redhat.com
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stack guard page is a useful feature to reduce a risk of stack smashing
into a different mapping. We have been using a single page gap which
is sufficient to prevent having stack adjacent to a different mapping.
But this seems to be insufficient in the light of the stack usage in
userspace. E.g. glibc uses as large as 64kB alloca() in many commonly
used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX]
which is 256kB or stack strings with MAX_ARG_STRLEN.
This will become especially dangerous for suid binaries and the default
no limit for the stack size limit because those applications can be
tricked to consume a large portion of the stack and a single glibc call
could jump over the guard page. These attacks are not theoretical,
unfortunatelly.
Make those attacks less probable by increasing the stack guard gap
to 1MB (on systems with 4k pages; but make it depend on the page size
because systems with larger base pages might cap stack allocations in
the PAGE_SIZE units) which should cover larger alloca() and VLA stack
allocations. It is obviously not a full fix because the problem is
somehow inherent, but it should reduce attack space a lot.
One could argue that the gap size should be configurable from userspace,
but that can be done later when somebody finds that the new 1MB is wrong
for some special case applications. For now, add a kernel command line
option (stack_guard_gap) to specify the stack gap size (in page units).
Implementation wise, first delete all the old code for stack guard page:
because although we could get away with accounting one extra page in a
stack vma, accounting a larger gap can break userspace - case in point,
a program run with "ulimit -S -v 20000" failed when the 1MB gap was
counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK
and strict non-overcommit mode.
Instead of keeping gap inside the stack vma, maintain the stack guard
gap as a gap between vmas: using vm_start_gap() in place of vm_start
(or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few
places which need to respect the gap - mainly arch_get_unmapped_area(),
and and the vma tree's subtree_gap support for that.
Original-patch-by: Oleg Nesterov <oleg@redhat.com>
Original-patch-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KVM uses get_user_pages() to resolve its stage2 faults. KVM sets the
FOLL_HWPOISON flag causing faultin_page() to return -EHWPOISON when it
finds a VM_FAULT_HWPOISON. KVM handles these hwpoison pages as a
special case. (check_user_page_hwpoison())
When huge pages are involved, this doesn't work so well.
get_user_pages() calls follow_hugetlb_page(), which stops early if it
receives VM_FAULT_HWPOISON from hugetlb_fault(), eventually returning
-EFAULT to the caller. The step to map this to -EHWPOISON based on the
FOLL_ flags is missing. The hwpoison special case is skipped, and
-EFAULT is returned to user-space, causing Qemu or kvmtool to exit.
Instead, move this VM_FAULT_ to errno mapping code into a header file
and use it from faultin_page() and follow_hugetlb_page().
With this, KVM works as expected.
This isn't a problem for arm64 today as we haven't enabled
MEMORY_FAILURE, but I can't see any reason this doesn't happen on x86
too, so I think this should be a fix. This doesn't apply earlier than
stable's v4.11.1 due to all sorts of cleanup.
[james.morse@arm.com: add vm_fault_to_errno() call to faultin_page()]
suggested.
Link: http://lkml.kernel.org/r/20170525171035.16359-1-james.morse@arm.com
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170524160900.28786-1-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org> [4.11.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are many code paths opencoding kvmalloc. Let's use the helper
instead. The main difference to kvmalloc is that those users are
usually not considering all the aspects of the memory allocator. E.g.
allocation requests <= 32kB (with 4kB pages) are basically never failing
and invoke OOM killer to satisfy the allocation. This sounds too
disruptive for something that has a reasonable fallback - the vmalloc.
On the other hand those requests might fallback to vmalloc even when the
memory allocator would succeed after several more reclaim/compaction
attempts previously. There is no guarantee something like that happens
though.
This patch converts many of those places to kv[mz]alloc* helpers because
they are more conservative.
Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390
Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim
Acked-by: David Sterba <dsterba@suse.com> # btrfs
Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph
Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Santosh Raspatur <santosh@chelsio.com>
Cc: Hariprasad S <hariprasad@chelsio.com>
Cc: Yishai Hadas <yishaih@mellanox.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: "Yan, Zheng" <zyan@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kvmalloc", v5.
There are many open coded kmalloc with vmalloc fallback instances in the
tree. Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.
As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.
Most callers, I could find, have been converted to use the helper
instead. This is patch 6. There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.
[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com
This patch (of 9):
Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code. Yet we do not have any common helper
for that and so users have invented their own helpers. Some of them are
really creative when doing so. Let's just add kv[mz]alloc and make sure
it is implemented properly. This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures. This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.
This patch also changes some existing users and removes helpers which
are specific for them. In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL). Those need to be
fixed separately.
While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers. Existing ones would have to die
slowly.
[sfr@canb.auug.org.au: f2fs fixup]
Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca> [ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On SPARSEMEM systems page poisoning is enabled after buddy is up,
because of the dependency on page extension init. This causes the pages
released by free_all_bootmem not to be poisoned. This either delays or
misses the identification of some issues because the pages have to
undergo another cycle of alloc-free-alloc for any corruption to be
detected.
Enable page poisoning early by getting rid of the PAGE_EXT_DEBUG_POISON
flag. Since all the free pages will now be poisoned, the flag need not
be verified before checking the poison during an alloc.
[vinmenon@codeaurora.org: fix Kconfig]
Link: http://lkml.kernel.org/r/1490878002-14423-1-git-send-email-vinmenon@codeaurora.org
Link: http://lkml.kernel.org/r/1490358246-11001-1-git-send-email-vinmenon@codeaurora.org
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
Acked-by: Laura Abbott <labbott@redhat.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The x86 conversion to the generic GUP code included a small change which causes
crashes and data corruption in the pmem code - not good.
The root cause is that the /dev/pmem driver code implicitly relies on the x86
get_user_pages() implementation doing a get_page() on the page refcount, because
get_page() does a get_zone_device_page() which properly refcounts pmem's separate
page struct arrays that are not present in the regular page struct structures.
(The pmem driver does this because it can cover huge memory areas.)
But the x86 conversion to the generic GUP code changed the get_page() to
page_cache_get_speculative() which is faster but doesn't do the
get_zone_device_page() call the pmem code relies on.
One way to solve the regression would be to change the generic GUP code to use
get_page(), but that would slow things down a bit and punish other generic-GUP
using architectures for an x86-ism they did not care about. (Arguably the pmem
driver was probably not working reliably for them: but nvdimm is an Intel
feature, so non-x86 exposure is probably still limited.)
So restructure the pmem code's interface with the MM instead: get rid of the
get/put_zone_device_page() distinction, integrate put_zone_device_page() into
__put_page() and and restructure the pmem completion-wait and teardown machinery:
Kirill points out that the calls to {get,put}_dev_pagemap() can be
removed from the mm fast path if we take a single get_dev_pagemap()
reference to signify that the page is alive and use the final put of the
page to drop that reference.
This does require some care to make sure that any waits for the
percpu_ref to drop to zero occur *after* devm_memremap_page_release(),
since it now maintains its own elevated reference.
This speeds up things while also making the pmem refcounting more robust going
forward.
Suggested-by: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/149339998297.24933.1129582806028305912.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Yang Li has reported that drain_all_pages triggers a WARN_ON which means
that this function is called earlier than the mm_percpu_wq is
initialized on arm64 with CMA configured:
WARNING: CPU: 2 PID: 1 at mm/page_alloc.c:2423 drain_all_pages+0x244/0x25c
Modules linked in:
CPU: 2 PID: 1 Comm: swapper/0 Not tainted 4.11.0-rc1-next-20170310-00027-g64dfbc5 #127
Hardware name: Freescale Layerscape 2088A RDB Board (DT)
task: ffffffc07c4a6d00 task.stack: ffffffc07c4a8000
PC is at drain_all_pages+0x244/0x25c
LR is at start_isolate_page_range+0x14c/0x1f0
[...]
drain_all_pages+0x244/0x25c
start_isolate_page_range+0x14c/0x1f0
alloc_contig_range+0xec/0x354
cma_alloc+0x100/0x1fc
dma_alloc_from_contiguous+0x3c/0x44
atomic_pool_init+0x7c/0x208
arm64_dma_init+0x44/0x4c
do_one_initcall+0x38/0x128
kernel_init_freeable+0x1a0/0x240
kernel_init+0x10/0xfc
ret_from_fork+0x10/0x20
Fix this by moving the whole setup_vmstat which is an initcall right now
to init_mm_internals which will be called right after the WQ subsystem
is initialized.
Link: http://lkml.kernel.org/r/20170315164021.28532-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Yang Li <pku.leo@gmail.com>
Tested-by: Yang Li <pku.leo@gmail.com>
Tested-by: Xiaolong Ye <xiaolong.ye@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a preparation patch for the transition of x86 to the generic GUP_fast()
implementation.
Prepare generic GUP_fast() to handle dev_pagemap(). At the moment, it's
only implemented on x86. On non-x86, the new code will be compiled out.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K . V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dann Frazier <dann.frazier@canonical.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170316152655.37789-6-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Convert all non-architecture-specific code to 5-level paging.
It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are going to switch core MM to 5-level paging abstraction.
This is preparation step which adds <asm-generic/5level-fixup.h>
As with 4level-fixup.h, the new header allows quickly make all
architectures compatible with 5-level paging in core MM.
In long run we would like to switch architectures to properly folded p4d
level by using <asm-generic/pgtable-nop4d.h>, but it requires more
changes to arch-specific code.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the prototypes for shmem_mapping() and shmem_zero_setup() from
linux/mm.h, since they are already provided in linux/shmem_fs.h. But
shmem_fs.h must then provide the inline stub for shmem_mapping() when
CONFIG_SHMEM is not set, and a few more cfiles now need to #include it.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1702081658250.1549@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If madvise(2) advice will result in the underlying vma being split and
the number of areas mapped by the process will exceed
/proc/sys/vm/max_map_count as a result, return ENOMEM instead of EAGAIN.
EAGAIN is returned by madvise(2) when a kernel resource, such as slab,
is temporarily unavailable. It indicates that userspace should retry
the advice in the near future. This is important for advice such as
MADV_DONTNEED which is often used by malloc implementations to free
memory back to the system: we really do want to free memory back when
madvise(2) returns EAGAIN because slab allocations (for vmas, anon_vmas,
or mempolicies) cannot be allocated.
Encountering /proc/sys/vm/max_map_count is not a temporary failure,
however, so return ENOMEM to indicate this is a more serious issue. A
followup patch to the man page will specify this behavior.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701241431120.42507@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a non-cooperative userfaultfd monitor copies pages in the
background, it may encounter regions that were already unmapped.
Addition of UFFD_EVENT_UNMAP allows the uffd monitor to track precisely
changes in the virtual memory layout.
Since there might be different uffd contexts for the affected VMAs, we
first should create a temporary representation for the unmap event for
each uffd context and then notify them one by one to the appropriate
userfault file descriptors.
The event notification occurs after the mmap_sem has been released.
[arnd@arndb.de: fix nommu build]
Link: http://lkml.kernel.org/r/20170203165141.3665284-1-arnd@arndb.de
[mhocko@suse.com: fix nommu build]
Link: http://lkml.kernel.org/r/20170202091503.GA22823@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1485542673-24387-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the introduction of FAULT_FLAG_SIZE to the vm_fault flag, it has
been somewhat painful with getting the flags set and removed at the
correct locations. More than one kernel oops was introduced due to
difficulties of getting the placement correctly.
Remove the flag values and introduce an input parameter to huge_fault
that indicates the size of the page entry. This makes the code easier
to trace and should avoid the issues we see with the fault flags where
removal of the flag was necessary in the fallback paths.
Link: http://lkml.kernel.org/r/148615748258.43180.1690152053774975329.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current transparent hugepage code only supports PMDs. This patch
adds support for transparent use of PUDs with DAX. It does not include
support for anonymous pages. x86 support code also added.
Most of this patch simply parallels the work that was done for huge
PMDs. The only major difference is how the new ->pud_entry method in
mm_walk works. The ->pmd_entry method replaces the ->pte_entry method,
whereas the ->pud_entry method works along with either ->pmd_entry or
->pte_entry. The pagewalk code takes care of locking the PUD before
calling ->pud_walk, so handlers do not need to worry whether the PUD is
stable.
[dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()]
Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com
[dave.jiang@intel.com: native_pud_clear missing on i386 build]
Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "1G transparent hugepage support for device dax", v2.
The following series implements support for 1G trasparent hugepage on
x86 for device dax. The bulk of the code was written by Mathew Wilcox a
while back supporting transparent 1G hugepage for fs DAX. I have
forward ported the relevant bits to 4.10-rc. The current submission has
only the necessary code to support device DAX.
Comments from Dan Williams: So the motivation and intended user of this
functionality mirrors the motivation and users of 1GB page support in
hugetlbfs. Given expected capacities of persistent memory devices an
in-memory database may want to reduce tlb pressure beyond what they can
already achieve with 2MB mappings of a device-dax file. We have
customer feedback to that effect as Willy mentioned in his previous
version of these patches [1].
[1]: https://lkml.org/lkml/2016/1/31/52
Comments from Nilesh @ Oracle:
There are applications which have a process model; and if you assume
10,000 processes attempting to mmap all the 6TB memory available on a
server; we are looking at the following:
processes : 10,000
memory : 6TB
pte @ 4k page size: 8 bytes / 4K of memory * #processes = 6TB / 4k * 8 * 10000 = 1.5GB * 80000 = 120,000GB
pmd @ 2M page size: 120,000 / 512 = ~240GB
pud @ 1G page size: 240GB / 512 = ~480MB
As you can see with 2M pages, this system will use up an exorbitant
amount of DRAM to hold the page tables; but the 1G pages finally brings
it down to a reasonable level. Memory sizes will keep increasing; so
this number will keep increasing.
An argument can be made to convert the applications from process model
to thread model, but in the real world that may not be always practical.
Hopefully this helps explain the use case where this is valuable.
This patch (of 3):
In preparation for adding the ability to handle PUD pages, convert
vm_operations_struct.pmd_fault to vm_operations_struct.huge_fault. The
vm_fault structure is extended to include a union of the different page
table pointers that may be needed, and three flag bits are reserved to
indicate which type of pointer is in the union.
[ross.zwisler@linux.intel.com: remove unused function ext4_dax_huge_fault()]
Link: http://lkml.kernel.org/r/1485813172-7284-1-git-send-email-ross.zwisler@linux.intel.com
[dave.jiang@intel.com: clear PMD or PUD size flags when in fall through path]
Link: http://lkml.kernel.org/r/148589842696.5820.16078080610311444794.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545058784.17912.6353162518188733642.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's no users of zap_page_range() who wants non-NULL 'details'.
Let's drop it.
Link: http://lkml.kernel.org/r/20170118122429.43661-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
detail == NULL would give the same functionality as
.check_swap_entries==true.
Link: http://lkml.kernel.org/r/20170118122429.43661-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only user of ignore_dirty is oom-reaper. But it doesn't really use
it.
ignore_dirty only has effect on file pages mapped with dirty pte. But
oom-repear skips shared VMAs, so there's no way we can dirty file pte in
them.
Link: http://lkml.kernel.org/r/20170118122429.43661-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
show_mem() allows to filter out node specific data which is irrelevant
to the allocation request via SHOW_MEM_FILTER_NODES. The filtering is
done in skip_free_areas_node which skips all nodes which are not in the
mems_allowed of the current process. This works most of the time as
expected because the nodemask shouldn't be outside of the allocating
task but there are some exceptions. E.g. memory hotplug might want to
request allocations from outside of the allowed nodes (see
new_node_page).
Get rid of this hardcoded behavior and push the allocation mask down the
show_mem path and use it instead of cpuset_current_mems_allowed. NULL
nodemask is interpreted as cpuset_current_mems_allowed.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170117091543.25850-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
warn_alloc is currently used for to report an allocation failure or an
allocation stall. We print some details of the allocation request like
the gfp mask and the request order. We do not print the allocation
nodemask which is important when debugging the reason for the allocation
failure as well. We alreaddy print the nodemask in the OOM report.
Add nodemask to warn_alloc and print it in warn_alloc as well.
Link: http://lkml.kernel.org/r/20170117091543.25850-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>