This patch adds the necessary functions to compute and check the HMAC signature
of an SR-enabled packet. Two HMAC algorithms are supported: hmac(sha1) and
hmac(sha256).
In order to avoid dynamic memory allocation for each HMAC computation,
a per-cpu ring buffer is allocated for this purpose.
A new per-interface sysctl called seg6_require_hmac is added, allowing a
user-defined policy for processing HMAC-signed SR-enabled packets.
A value of -1 means that the HMAC field will always be ignored.
A value of 0 means that if an HMAC field is present, its validity will
be enforced (the packet is dropped is the signature is incorrect).
Finally, a value of 1 means that any SR-enabled packet that does not
contain an HMAC signature or whose signature is incorrect will be dropped.
Signed-off-by: David Lebrun <david.lebrun@uclouvain.be>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch creates a new type of interfaceless lightweight tunnel (SEG6),
enabling the encapsulation and injection of SRH within locally emitted
packets and forwarded packets.
>From a configuration viewpoint, a seg6 tunnel would be configured as follows:
ip -6 ro ad fc00::1/128 encap seg6 mode encap segs fc42::1,fc42::2,fc42::3 dev eth0
Any packet whose destination address is fc00::1 would thus be encapsulated
within an outer IPv6 header containing the SRH with three segments, and would
actually be routed to the first segment of the list. If `mode inline' was
specified instead of `mode encap', then the SRH would be directly inserted
after the IPv6 header without outer encapsulation.
The inline mode is only available if CONFIG_IPV6_SEG6_INLINE is enabled. This
feature was made configurable because direct header insertion may break
several mechanisms such as PMTUD or IPSec AH.
Signed-off-by: David Lebrun <david.lebrun@uclouvain.be>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds the necessary hooks and structures to provide support
for SR-IPv6 control plane, essentially the Generic Netlink commands
that will be used for userspace control over the Segment Routing
kernel structures.
The genetlink commands provide control over two different structures:
tunnel source and HMAC data. The tunnel source is the source address
that will be used by default when encapsulating packets into an
outer IPv6 header + SRH. If the tunnel source is set to :: then an
address of the outgoing interface will be selected as the source.
The HMAC commands currently just return ENOTSUPP and will be implemented
in a future patch.
Signed-off-by: David Lebrun <david.lebrun@uclouvain.be>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement minimal support for processing of SR-enabled packets
as described in
https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-02.
This patch implements the following operations:
- Intermediate segment endpoint: incrementation of active segment and rerouting.
- Egress for SR-encapsulated packets: decapsulation of outer IPv6 header + SRH
and routing of inner packet.
- Cleanup flag support for SR-inlined packets: removal of SRH if we are the
penultimate segment endpoint.
A per-interface sysctl seg6_enabled is provided, to accept/deny SR-enabled
packets. Default is deny.
This patch does not provide support for HMAC-signed packets.
Signed-off-by: David Lebrun <david.lebrun@uclouvain.be>
Signed-off-by: David S. Miller <davem@davemloft.net>