I found another victim of the radix tree being hard to use. Because
there was no call to radix_tree_preload(), khugepaged was allocating
radix_tree_nodes using GFP_ATOMIC.
I also converted a local_irq_save()/restore() pair to
disable()/enable().
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Both callers of __delete_from_swap_cache have the swp_entry_t already,
so pass that in to make constructing the XA_STATE easier.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Combine __add_to_swap_cache and add_to_swap_cache into one function
since there is no more need to preload.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
This is essentially xa_cmpxchg() with the locking handled above us,
and it doesn't have to handle replacing a NULL entry.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
We construct an XA_STATE and use it to delete the node with
xas_store() rather than adding a special function for this unique
use case. Includes a test that simulates this usage for the
test suite.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Instead of calling find_get_pages_range() and putting any reference,
use xas_find() to iterate over any entries in the range, skipping the
shadow/swap entries.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Slight change of strategy here; if we have trouble getting hold of a
page for whatever reason (eg a compound page is split underneath us),
don't spin to stabilise the page, just continue the iteration, like we
would if we failed to trylock the page. Since this is a speculative
optimisation, it feels like we should allow the process to take an extra
fault if it turns out to need this page instead of spending time to pin
down a page it may not need.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
The 'end' parameter of the xas_for_each iterator avoids a useless
iteration at the end of the range.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
There's no direct replacement for radix_tree_for_each_contig()
in the XArray API as it's an unusual thing to do. Instead,
open-code a loop using xas_next(). This removes the only user of
radix_tree_for_each_contig() so delete the iterator from the API and
the test suite code for it.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
The 'end' parameter of the xas_for_each iterator avoids a useless
iteration at the end of the range.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Use the XArray APIs to add and replace pages in the page cache. This
removes two uses of the radix tree preload API and is significantly
shorter code. It also removes the last user of __radix_tree_create()
outside radix-tree.c itself, so make it static.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
The page cache offers the ability to search for a miss in the previous or
next N locations. Rather than teach the XArray about the page cache's
definition of a miss, use xas_prev() and xas_next() to search the page
array. This should be more efficient as it does not have to start the
lookup from the top for each index.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
This is a direct replacement for struct radix_tree_node. A couple of
struct members have changed name, so convert those. Use a #define so
that radix tree users continue to work without change.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Jann Horn points out that our TLB flushing was subtly wrong for the
mremap() case. What makes mremap() special is that we don't follow the
usual "add page to list of pages to be freed, then flush tlb, and then
free pages". No, mremap() obviously just _moves_ the page from one page
table location to another.
That matters, because mremap() thus doesn't directly control the
lifetime of the moved page with a freelist: instead, the lifetime of the
page is controlled by the page table locking, that serializes access to
the entry.
As a result, we need to flush the TLB not just before releasing the lock
for the source location (to avoid any concurrent accesses to the entry),
but also before we release the destination page table lock (to avoid the
TLB being flushed after somebody else has already done something to that
page).
This also makes the whole "need_flush" logic unnecessary, since we now
always end up flushing the TLB for every valid entry.
Reported-and-tested-by: Jann Horn <jannh@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Export this routine so that we can use it later in devm_kstrdup_const()
and devm_kfree().
Signed-off-by: Bartosz Golaszewski <brgl@bgdev.pl>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Inside set_pmd_migration_entry() we are holding page table locks and thus
we can not sleep so we can not call invalidate_range_start/end()
So remove call to mmu_notifier_invalidate_range_start/end() because they
are call inside the function calling set_pmd_migration_entry() (see
try_to_unmap_one()).
Link: http://lkml.kernel.org/r/20181012181056.7864-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Daniel Micay reports that attempting to use MAP_FIXED_NOREPLACE in an
application causes that application to randomly crash. The existing check
for handling MAP_FIXED_NOREPLACE looks up the first VMA that either
overlaps or follows the requested region, and then bails out if that VMA
overlaps *the start* of the requested region. It does not bail out if the
VMA only overlaps another part of the requested region.
Fix it by checking that the found VMA only starts at or after the end of
the requested region, in which case there is no overlap.
Test case:
user@debian:~$ cat mmap_fixed_simple.c
#include <sys/mman.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#ifndef MAP_FIXED_NOREPLACE
#define MAP_FIXED_NOREPLACE 0x100000
#endif
int main(void) {
char *p;
errno = 0;
p = mmap((void*)0x10001000, 0x4000, PROT_NONE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED_NOREPLACE, -1, 0);
printf("p1=%p err=%m\n", p);
errno = 0;
p = mmap((void*)0x10000000, 0x2000, PROT_READ,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED_NOREPLACE, -1, 0);
printf("p2=%p err=%m\n", p);
char cmd[100];
sprintf(cmd, "cat /proc/%d/maps", getpid());
system(cmd);
return 0;
}
user@debian:~$ gcc -o mmap_fixed_simple mmap_fixed_simple.c
user@debian:~$ ./mmap_fixed_simple
p1=0x10001000 err=Success
p2=0x10000000 err=Success
10000000-10002000 r--p 00000000 00:00 0
10002000-10005000 ---p 00000000 00:00 0
564a9a06f000-564a9a070000 r-xp 00000000 fe:01 264004
/home/user/mmap_fixed_simple
564a9a26f000-564a9a270000 r--p 00000000 fe:01 264004
/home/user/mmap_fixed_simple
564a9a270000-564a9a271000 rw-p 00001000 fe:01 264004
/home/user/mmap_fixed_simple
564a9a54a000-564a9a56b000 rw-p 00000000 00:00 0 [heap]
7f8eba447000-7f8eba5dc000 r-xp 00000000 fe:01 405885
/lib/x86_64-linux-gnu/libc-2.24.so
7f8eba5dc000-7f8eba7dc000 ---p 00195000 fe:01 405885
/lib/x86_64-linux-gnu/libc-2.24.so
7f8eba7dc000-7f8eba7e0000 r--p 00195000 fe:01 405885
/lib/x86_64-linux-gnu/libc-2.24.so
7f8eba7e0000-7f8eba7e2000 rw-p 00199000 fe:01 405885
/lib/x86_64-linux-gnu/libc-2.24.so
7f8eba7e2000-7f8eba7e6000 rw-p 00000000 00:00 0
7f8eba7e6000-7f8eba809000 r-xp 00000000 fe:01 405876
/lib/x86_64-linux-gnu/ld-2.24.so
7f8eba9e9000-7f8eba9eb000 rw-p 00000000 00:00 0
7f8ebaa06000-7f8ebaa09000 rw-p 00000000 00:00 0
7f8ebaa09000-7f8ebaa0a000 r--p 00023000 fe:01 405876
/lib/x86_64-linux-gnu/ld-2.24.so
7f8ebaa0a000-7f8ebaa0b000 rw-p 00024000 fe:01 405876
/lib/x86_64-linux-gnu/ld-2.24.so
7f8ebaa0b000-7f8ebaa0c000 rw-p 00000000 00:00 0
7ffcc99fa000-7ffcc9a1b000 rw-p 00000000 00:00 0 [stack]
7ffcc9b44000-7ffcc9b47000 r--p 00000000 00:00 0 [vvar]
7ffcc9b47000-7ffcc9b49000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0
[vsyscall]
user@debian:~$ uname -a
Linux debian 4.19.0-rc6+ #181 SMP Wed Oct 3 23:43:42 CEST 2018 x86_64 GNU/Linux
user@debian:~$
As you can see, the first page of the mapping at 0x10001000 was clobbered.
Link: http://lkml.kernel.org/r/20181010152736.99475-1-jannh@google.com
Fixes: a4ff8e8620 ("mm: introduce MAP_FIXED_NOREPLACE")
Signed-off-by: Jann Horn <jannh@google.com>
Reported-by: Daniel Micay <danielmicay@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Ingo writes:
"scheduler fix:
Cleanup of dead code left over from the recent sched/numa fixes."
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm, sched/numa: Remove remaining traces of NUMA rate-limiting
Use the new tlb_get_unmap_shift() to determine the stride of the
INVLPG loop.
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
The commit ca460b3c96 ("percpu: introduce bitmap metadata blocks")
introduced bitmap metadata blocks. These metadata blocks are allocated
whenever a new chunk is created, but they are never freed. Fix it.
Fixes: ca460b3c96 ("percpu: introduce bitmap metadata blocks")
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Dennis Zhou <dennis@kernel.org>
* akpm:
mm: madvise(MADV_DODUMP): allow hugetlbfs pages
ocfs2: fix locking for res->tracking and dlm->tracking_list
mm/vmscan.c: fix int overflow in callers of do_shrink_slab()
mm/vmstat.c: skip NR_TLB_REMOTE_FLUSH* properly
mm/vmstat.c: fix outdated vmstat_text
proc: restrict kernel stack dumps to root
mm/hugetlb: add mmap() encodings for 32MB and 512MB page sizes
mm/migrate.c: split only transparent huge pages when allocation fails
ipc/shm.c: use ERR_CAST() for shm_lock() error return
mm/gup_benchmark: fix unsigned comparison to zero in __gup_benchmark_ioctl
mm, thp: fix mlocking THP page with migration enabled
ocfs2: fix crash in ocfs2_duplicate_clusters_by_page()
hugetlb: take PMD sharing into account when flushing tlb/caches
mm: migration: fix migration of huge PMD shared pages
Reproducer, assuming 2M of hugetlbfs available:
Hugetlbfs mounted, size=2M and option user=testuser
# mount | grep ^hugetlbfs
hugetlbfs on /dev/hugepages type hugetlbfs (rw,pagesize=2M,user=dan)
# sysctl vm.nr_hugepages=1
vm.nr_hugepages = 1
# grep Huge /proc/meminfo
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
HugePages_Total: 1
HugePages_Free: 1
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 2048 kB
Code:
#include <sys/mman.h>
#include <stddef.h>
#define SIZE 2*1024*1024
int main()
{
void *ptr;
ptr = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_HUGETLB | MAP_ANONYMOUS, -1, 0);
madvise(ptr, SIZE, MADV_DONTDUMP);
madvise(ptr, SIZE, MADV_DODUMP);
}
Compile and strace:
mmap(NULL, 2097152, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB, -1, 0) = 0x7ff7c9200000
madvise(0x7ff7c9200000, 2097152, MADV_DONTDUMP) = 0
madvise(0x7ff7c9200000, 2097152, MADV_DODUMP) = -1 EINVAL (Invalid argument)
hugetlbfs pages have VM_DONTEXPAND in the VmFlags driver pages based on
author testing with analysis from Florian Weimer[1].
The inclusion of VM_DONTEXPAND into the VM_SPECIAL defination was a
consequence of the large useage of VM_DONTEXPAND in device drivers.
A consequence of [2] is that VM_DONTEXPAND marked pages are unable to be
marked DODUMP.
A user could quite legitimately madvise(MADV_DONTDUMP) their hugetlbfs
memory for a while and later request that madvise(MADV_DODUMP) on the same
memory. We correct this omission by allowing madvice(MADV_DODUMP) on
hugetlbfs pages.
[1] https://stackoverflow.com/questions/52548260/madvisedodump-on-the-same-ptr-size-as-a-successful-madvisedontdump-fails-wit
[2] commit 0103bd16fb ("mm: prepare VM_DONTDUMP for using in drivers")
Link: http://lkml.kernel.org/r/20180930054629.29150-1-daniel@linux.ibm.com
Link: https://lists.launchpad.net/maria-discuss/msg05245.html
Fixes: 0103bd16fb ("mm: prepare VM_DONTDUMP for using in drivers")
Reported-by: Kenneth Penza <kpenza@gmail.com>
Signed-off-by: Daniel Black <daniel@linux.ibm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
do_shrink_slab() returns unsigned long value, and the placing into int
variable cuts high bytes off. Then we compare ret and 0xfffffffe (since
SHRINK_EMPTY is converted to ret type).
Thus a large number of objects returned by do_shrink_slab() may be
interpreted as SHRINK_EMPTY, if low bytes of their value are equal to
0xfffffffe. Fix that by declaration ret as unsigned long in these
functions.
Link: http://lkml.kernel.org/r/153813407177.17544.14888305435570723973.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reported-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
5dd0b16cda ("mm/vmstat: Make NR_TLB_REMOTE_FLUSH_RECEIVED available even
on UP") made the availability of the NR_TLB_REMOTE_FLUSH* counters inside
the kernel unconditional to reduce #ifdef soup, but (either to avoid
showing dummy zero counters to userspace, or because that code was missed)
didn't update the vmstat_array, meaning that all following counters would
be shown with incorrect values.
This only affects kernel builds with
CONFIG_VM_EVENT_COUNTERS=y && CONFIG_DEBUG_TLBFLUSH=y && CONFIG_SMP=n.
Link: http://lkml.kernel.org/r/20181001143138.95119-2-jannh@google.com
Fixes: 5dd0b16cda ("mm/vmstat: Make NR_TLB_REMOTE_FLUSH_RECEIVED available even on UP")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
7a9cdebdcc ("mm: get rid of vmacache_flush_all() entirely") removed the
VMACACHE_FULL_FLUSHES statistics, but didn't remove the corresponding
entry in vmstat_text. This causes an out-of-bounds access in
vmstat_show().
Luckily this only affects kernels with CONFIG_DEBUG_VM_VMACACHE=y, which
is probably very rare.
Link: http://lkml.kernel.org/r/20181001143138.95119-1-jannh@google.com
Fixes: 7a9cdebdcc ("mm: get rid of vmacache_flush_all() entirely")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
split_huge_page_to_list() fails on HugeTLB pages. I was experimenting
with moving 32MB contig HugeTLB pages on arm64 (with a debug patch
applied) and hit the following stack trace when the kernel crashed.
[ 3732.462797] Call trace:
[ 3732.462835] split_huge_page_to_list+0x3b0/0x858
[ 3732.462913] migrate_pages+0x728/0xc20
[ 3732.462999] soft_offline_page+0x448/0x8b0
[ 3732.463097] __arm64_sys_madvise+0x724/0x850
[ 3732.463197] el0_svc_handler+0x74/0x110
[ 3732.463297] el0_svc+0x8/0xc
[ 3732.463347] Code: d1000400 f90b0e60 f2fbd5a2 a94982a1 (f9000420)
When unmap_and_move[_huge_page]() fails due to lack of memory, the
splitting should happen only for transparent huge pages not for HugeTLB
pages. PageTransHuge() returns true for both THP and HugeTLB pages.
Hence the conditonal check should test PagesHuge() flag to make sure that
given pages is not a HugeTLB one.
Link: http://lkml.kernel.org/r/1537798495-4996-1-git-send-email-anshuman.khandual@arm.com
Fixes: 94723aafb9 ("mm: unclutter THP migration")
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
get_user_pages_fast() will return negative value if no pages were pinned,
then be converted to a unsigned, which is compared to zero, giving the
wrong result.
Link: http://lkml.kernel.org/r/20180921095015.26088-1-yuehaibing@huawei.com
Fixes: 09e35a4a1c ("mm/gup_benchmark: handle gup failures")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A transparent huge page is represented by a single entry on an LRU list.
Therefore, we can only make unevictable an entire compound page, not
individual subpages.
If a user tries to mlock() part of a huge page, we want the rest of the
page to be reclaimable.
We handle this by keeping PTE-mapped huge pages on normal LRU lists: the
PMD on border of VM_LOCKED VMA will be split into PTE table.
Introduction of THP migration breaks[1] the rules around mlocking THP
pages. If we had a single PMD mapping of the page in mlocked VMA, the
page will get mlocked, regardless of PTE mappings of the page.
For tmpfs/shmem it's easy to fix by checking PageDoubleMap() in
remove_migration_pmd().
Anon THP pages can only be shared between processes via fork(). Mlocked
page can only be shared if parent mlocked it before forking, otherwise CoW
will be triggered on mlock().
For Anon-THP, we can fix the issue by munlocking the page on removing PTE
migration entry for the page. PTEs for the page will always come after
mlocked PMD: rmap walks VMAs from oldest to newest.
Test-case:
#include <unistd.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <linux/mempolicy.h>
#include <numaif.h>
int main(void)
{
unsigned long nodemask = 4;
void *addr;
addr = mmap((void *)0x20000000UL, 2UL << 20, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_LOCKED, -1, 0);
if (fork()) {
wait(NULL);
return 0;
}
mlock(addr, 4UL << 10);
mbind(addr, 2UL << 20, MPOL_PREFERRED | MPOL_F_RELATIVE_NODES,
&nodemask, 4, MPOL_MF_MOVE);
return 0;
}
[1] https://lkml.kernel.org/r/CAOMGZ=G52R-30rZvhGxEbkTw7rLLwBGadVYeo--iizcD3upL3A@mail.gmail.com
Link: http://lkml.kernel.org/r/20180917133816.43995-1-kirill.shutemov@linux.intel.com
Fixes: 616b837153 ("mm: thp: enable thp migration in generic path")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When fixing an issue with PMD sharing and migration, it was discovered via
code inspection that other callers of huge_pmd_unshare potentially have an
issue with cache and tlb flushing.
Use the routine adjust_range_if_pmd_sharing_possible() to calculate worst
case ranges for mmu notifiers. Ensure that this range is flushed if
huge_pmd_unshare succeeds and unmaps a PUD_SUZE area.
Link: http://lkml.kernel.org/r/20180823205917.16297-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The page migration code employs try_to_unmap() to try and unmap the source
page. This is accomplished by using rmap_walk to find all vmas where the
page is mapped. This search stops when page mapcount is zero. For shared
PMD huge pages, the page map count is always 1 no matter the number of
mappings. Shared mappings are tracked via the reference count of the PMD
page. Therefore, try_to_unmap stops prematurely and does not completely
unmap all mappings of the source page.
This problem can result is data corruption as writes to the original
source page can happen after contents of the page are copied to the target
page. Hence, data is lost.
This problem was originally seen as DB corruption of shared global areas
after a huge page was soft offlined due to ECC memory errors. DB
developers noticed they could reproduce the issue by (hotplug) offlining
memory used to back huge pages. A simple testcase can reproduce the
problem by creating a shared PMD mapping (note that this must be at least
PUD_SIZE in size and PUD_SIZE aligned (1GB on x86)), and using
migrate_pages() to migrate process pages between nodes while continually
writing to the huge pages being migrated.
To fix, have the try_to_unmap_one routine check for huge PMD sharing by
calling huge_pmd_unshare for hugetlbfs huge pages. If it is a shared
mapping it will be 'unshared' which removes the page table entry and drops
the reference on the PMD page. After this, flush caches and TLB.
mmu notifiers are called before locking page tables, but we can not be
sure of PMD sharing until page tables are locked. Therefore, check for
the possibility of PMD sharing before locking so that notifiers can
prepare for the worst possible case.
Link: http://lkml.kernel.org/r/20180823205917.16297-2-mike.kravetz@oracle.com
[mike.kravetz@oracle.com: make _range_in_vma() a static inline]
Link: http://lkml.kernel.org/r/6063f215-a5c8-2f0c-465a-2c515ddc952d@oracle.com
Fixes: 39dde65c99 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Rate limiting of page migrations due to automatic NUMA balancing was
introduced to mitigate the worst-case scenario of migrating at high
frequency due to false sharing or slowly ping-ponging between nodes.
Since then, a lot of effort was spent on correctly identifying these
pages and avoiding unnecessary migrations and the safety net may no longer
be required.
Jirka Hladky reported a regression in 4.17 due to a scheduler patch that
avoids spreading STREAM tasks wide prematurely. However, once the task
was properly placed, it delayed migrating the memory due to rate limiting.
Increasing the limit fixed the problem for him.
Currently, the limit is hard-coded and does not account for the real
capabilities of the hardware. Even if an estimate was attempted, it would
not properly account for the number of memory controllers and it could
not account for the amount of bandwidth used for normal accesses. Rather
than fudging, this patch simply eliminates the rate limiting.
However, Jirka reports that a STREAM configuration using multiple
processes achieved similar performance to 4.16. In local tests, this patch
improved performance of STREAM relative to the baseline but it is somewhat
machine-dependent. Most workloads show little or not performance difference
implying that there is not a heavily reliance on the throttling mechanism
and it is safe to remove.
STREAM on 2-socket machine
4.19.0-rc5 4.19.0-rc5
numab-v1r1 noratelimit-v1r1
MB/sec copy 43298.52 ( 0.00%) 44673.38 ( 3.18%)
MB/sec scale 30115.06 ( 0.00%) 31293.06 ( 3.91%)
MB/sec add 32825.12 ( 0.00%) 34883.62 ( 6.27%)
MB/sec triad 32549.52 ( 0.00%) 34906.60 ( 7.24%
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jirka Hladky <jhladky@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux-MM <linux-mm@kvack.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181001100525.29789-2-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAluw4MIACgkQONu9yGCS
aT7+8xAAiYnc4khUsxeInm3z44WPfRX1+UF51frTNSY5C8Nn5nvRSnTUNLuKkkrz
8RbwCL6UYyJxF9I/oZdHPsPOD4IxXkQY55tBjz7ZbSBIFEwYM6RJMm8mAGlXY7wq
VyWA5MhlpGHM9DjrguB4DMRipnrSc06CVAnC+ZyKLjzblzU1Wdf2dYu+AW9pUVXP
j4r74lFED5djPY1xfqfzEwmYRCeEGYGx7zMqT3GrrF5uFPqj1H6O5klEsAhIZvdl
IWnJTU2coC8R/Sd17g4lHWPIeQNnMUGIUbu+PhIrZ/lDwFxlocg4BvarPXEdzgYi
gdZzKBfovpEsSu5RCQsKWG4IGQxY7I1p70IOP9eqEFHZy77qT1YcHVAWrK1Y/bJd
UA08gUOSzRnhKkNR3+PsaMflUOl9WkpyHECZu394cyRGMutSS50aWkavJPJ/o1Qi
D/oGqZLLcKFyuNcchG+Met1TzY3LvYEDgSburqwqeUZWtAsGs8kmiiq7qvmXx4zV
IcgM8ERqJ8mbfhfsXQU7hwydIrPJ3JdIq19RnM5ajbv2Q4C/qJCyAKkQoacrlKR4
aiow/qvyNrP80rpXfPJB8/8PiWeDtAnnGhM+xySZNlw3t8GR6NYpUkIzf5TdkSb3
C8KuKg6FY9QAS62fv+5KK3LB/wbQanxaPNruQFGe5K1iDQ5Fvzw=
=dMl4
-----END PGP SIGNATURE-----
Merge tag 'v4.19-rc6' into for-4.20/block
Merge -rc6 in, for two reasons:
1) Resolve a trivial conflict in the blk-mq-tag.c documentation
2) A few important regression fixes went into upstream directly, so
they aren't in the 4.20 branch.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
* tag 'v4.19-rc6': (780 commits)
Linux 4.19-rc6
MAINTAINERS: fix reference to moved drivers/{misc => auxdisplay}/panel.c
cpufreq: qcom-kryo: Fix section annotations
perf/core: Add sanity check to deal with pinned event failure
xen/blkfront: correct purging of persistent grants
Revert "xen/blkfront: When purging persistent grants, keep them in the buffer"
selftests/powerpc: Fix Makefiles for headers_install change
blk-mq: I/O and timer unplugs are inverted in blktrace
dax: Fix deadlock in dax_lock_mapping_entry()
x86/boot: Fix kexec booting failure in the SEV bit detection code
bcache: add separate workqueue for journal_write to avoid deadlock
drm/amd/display: Fix Edid emulation for linux
drm/amd/display: Fix Vega10 lightup on S3 resume
drm/amdgpu: Fix vce work queue was not cancelled when suspend
Revert "drm/panel: Add device_link from panel device to DRM device"
xen/blkfront: When purging persistent grants, keep them in the buffer
clocksource/drivers/timer-atmel-pit: Properly handle error cases
block: fix deadline elevator drain for zoned block devices
ACPI / hotplug / PCI: Don't scan for non-hotplug bridges if slot is not bridge
drm/syncobj: Don't leak fences when WAIT_FOR_SUBMIT is set
...
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
A prior patch in this series added blkg association to bios issued by
cgroups. There are two other paths that we want to attribute work back
to the appropriate cgroup: swap and writeback. Here we modify the way
swap tags bios to include the blkg. Writeback will be tackle in the next
patch.
Signed-off-by: Dennis Zhou <dennisszhou@gmail.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
9092c71bb7 ("mm: use sc->priority for slab shrink targets") changed the
way that the target slab pressure is calculated and made it
priority-based:
delta = freeable >> priority;
delta *= 4;
do_div(delta, shrinker->seeks);
The problem is that on a default priority (which is 12) no pressure is
applied at all, if the number of potentially reclaimable objects is less
than 4096 (1<<12).
This causes the last objects on slab caches of no longer used cgroups to
(almost) never get reclaimed. It's obviously a waste of memory.
It can be especially painful, if these stale objects are holding a
reference to a dying cgroup. Slab LRU lists are reparented on memcg
offlining, but corresponding objects are still holding a reference to the
dying cgroup. If we don't scan these objects, the dying cgroup can't go
away. Most likely, the parent cgroup hasn't any directly charged objects,
only remaining objects from dying children cgroups. So it can easily hold
a reference to hundreds of dying cgroups.
If there are no big spikes in memory pressure, and new memory cgroups are
created and destroyed periodically, this causes the number of dying
cgroups grow steadily, causing a slow-ish and hard-to-detect memory
"leak". It's not a real leak, as the memory can be eventually reclaimed,
but it could not happen in a real life at all. I've seen hosts with a
steadily climbing number of dying cgroups, which doesn't show any signs of
a decline in months, despite the host is loaded with a production
workload.
It is an obvious waste of memory, and to prevent it, let's apply a minimal
pressure even on small shrinker lists. E.g. if there are freeable
objects, let's scan at least min(freeable, scan_batch) objects.
This fix significantly improves a chance of a dying cgroup to be
reclaimed, and together with some previous patches stops the steady growth
of the dying cgroups number on some of our hosts.
Link: http://lkml.kernel.org/r/20180905230759.12236-1-guro@fb.com
Fixes: 9092c71bb7 ("mm: use sc->priority for slab shrink targets")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSQHSd0lITzzeNWNm3h3BK/laaZPAUCW5qpOgAKCRDh3BK/laaZ
PDCQAQCIKLg0aLeWOkfUO76mBjlp5srKgJfrqpFoyuozD6l2fQEAl/W2x9NOduV+
PK4sCYMT8SpI0hMrbv9P4zZ683kmaA8=
=RnZU
-----END PGP SIGNATURE-----
Merge tag 'ovl-fixes-4.19-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
Pull overlayfs fixes from Miklos Szeredi:
"This fixes a regression in the recent file stacking update, reported
and fixed by Amir Goldstein. The fix is fairly trivial, but involves
adding a fadvise() f_op and the associated churn in the vfs. As
discussed on -fsdevel, there are other possible uses for this method,
than allowing proper stacking for overlays.
And there's one other fix for a syzkaller detected oops"
* tag 'ovl-fixes-4.19-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
ovl: fix oopses in ovl_fill_super() failure paths
ovl: add ovl_fadvise()
vfs: implement readahead(2) using POSIX_FADV_WILLNEED
vfs: add the fadvise() file operation
Documentation/filesystems: update documentation of file_operations
ovl: fix GPF in swapfile_activate of file from overlayfs over xfs
ovl: respect FIEMAP_FLAG_SYNC flag
Jann Horn points out that the vmacache_flush_all() function is not only
potentially expensive, it's buggy too. It also happens to be entirely
unnecessary, because the sequence number overflow case can be avoided by
simply making the sequence number be 64-bit. That doesn't even grow the
data structures in question, because the other adjacent fields are
already 64-bit.
So simplify the whole thing by just making the sequence number overflow
case go away entirely, which gets rid of all the complications and makes
the code faster too. Win-win.
[ Oleg Nesterov points out that the VMACACHE_FULL_FLUSHES statistics
also just goes away entirely with this ]
Reported-by: Jann Horn <jannh@google.com>
Suggested-by: Will Deacon <will.deacon@arm.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
WARN_ON() already contains an unlikely(), so it's not necessary to
wrap it into another.
Signed-off-by: Igor Stoppa <igor.stoppa@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: zijun_hu <zijun_hu@htc.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: linux-mm@kvack.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Now that siginfo is never allocated for SIGKILL and SIGSTOP there is
no difference between SEND_SIG_PRIV and SEND_SIG_FORCED for SIGKILL
and SIGSTOP. This makes SEND_SIG_FORCED unnecessary and redundant in
the presence of SIGKILL and SIGSTOP. Therefore change users of
SEND_SIG_FORCED that are sending SIGKILL or SIGSTOP to use
SEND_SIG_PRIV instead.
This removes the last users of SEND_SIG_FORCED.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
In preparation for maintaining the mmu_gather code as its own entity,
move the implementation out of memory.c and into its own file.
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAluRkywQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpm8uEAC8vBFb5tzZ2dOeRbGQ6LaPTToBmRrLtOcP
kDRnfZIw0raNStOpn1dkGLz8IOSjwOGftx9Q4pJed25vynTEq5lYmmLVUlJQ6cJ7
oNpYiCdPxJvbKz5fChGG2nHHa1RLer1d728NZtkeZU/ChPmw56EO5ORghE7zPG7K
Z/0qHYsgwS427o8pUDsymmt6I62IJGrjzqJdC0pqBy6RePQWtlwkmtd7CIgFiffY
tDnk6RSwcihnIalMMLvFXeGf6cSaZvuH4oK1QNdfojAyS8kWeA6gHtjRS8UcuuUY
t6o+hU0vki8bghoNoI40RrLgAmV91BVv1/Voo79dQvDWAigyie51HwFFkqdWzJxJ
g4MCZYpys26w/VUGBFCku0hiRIAhZFO8Sun5zbVCJpyt8hTXF0RrG3CpwmCF7Lc0
m+h8tJanEMCesfYMztTD31L1BOFhJeOgBJr4a5QURy0LbIvC0V52IKiOQ0475E8E
H10rQaRw/7Am+mZugedMUGMgYD/eN33NQoRuTWZdck/58big2SU78zGpR/GqTmy3
w9v2I8ksBTivzEayBV0G4Z5Gxu7QYA7NMsO5RS/wuGfUX8D/1QtQU9Ejh5TESbek
R3WUyhXJJ2S+DWTUlmX7TgPxYxG3sXatQbSAgFJiucxyIRdpdqfeoXmOHvPrWZEq
O3VDm0D6pw==
=qhv7
-----END PGP SIGNATURE-----
Merge tag 'for-linus-20180906' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
"Small collection of fixes that should go into this release. This
contains:
- Small series that fixes a race between blkcg teardown and writeback
(Dennis Zhou)
- Fix disallowing invalid block size settings from the nbd ioctl (me)
- BFQ fix for a use-after-free on last release of a bfqg (Konstantin
Khlebnikov)
- Fix for the "don't warn for flush" fix (Mikulas)"
* tag 'for-linus-20180906' of git://git.kernel.dk/linux-block:
block: bfq: swap puts in bfqg_and_blkg_put
block: don't warn when doing fsync on read-only devices
nbd: don't allow invalid blocksize settings
blkcg: use tryget logic when associating a blkg with a bio
blkcg: delay blkg destruction until after writeback has finished
Revert "blk-throttle: fix race between blkcg_bio_issue_check() and cgroup_rmdir()"
It looks like I missed the PUD path when doing VM_MIXEDMAP removal.
This can be triggered by:
1. Boot with memmap=4G!8G
2. build ndctl with destructive flag on
3. make TESTS=device-dax check
[ +0.000675] kernel BUG at mm/huge_memory.c:824!
Applying the same change that was applied to vmf_insert_pfn_pmd() in the
original patch.
Link: http://lkml.kernel.org/r/153565957352.35524.1005746906902065126.stgit@djiang5-desk3.ch.intel.com
Fixes: e1fb4a0864 ("dax: remove VM_MIXEDMAP for fsdax and device dax")
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reported-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When scanning for movable pages, filter out Hugetlb pages if hugepage
migration is not supported. Without this we hit infinte loop in
__offline_pages() where we do
pfn = scan_movable_pages(start_pfn, end_pfn);
if (pfn) { /* We have movable pages */
ret = do_migrate_range(pfn, end_pfn);
goto repeat;
}
Fix this by checking hugepage_migration_supported both in
has_unmovable_pages which is the primary backoff mechanism for page
offlining and for consistency reasons also into scan_movable_pages
because it doesn't make any sense to return a pfn to non-migrateable
huge page.
This issue was revealed by, but not caused by 72b39cfc4d ("mm,
memory_hotplug: do not fail offlining too early").
Link: http://lkml.kernel.org/r/20180824063314.21981-1-aneesh.kumar@linux.ibm.com
Fixes: 72b39cfc4d ("mm, memory_hotplug: do not fail offlining too early")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Haren Myneni <haren@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Scooped from an email from Matthew.
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If kmemleak built in to the kernel, but is disabled by default, the
debugfs file is never registered. Because of this, it is not possible
to find out if the kernel is built with kmemleak support by checking for
the presence of this file. To allow this, always register the file.
After this patch, if the file doesn't exist, kmemleak is not available
in the kernel. If writing "scan" or any other value than "clear" to
this file results in EBUSY, then kmemleak is available but is disabled
by default and can be activated via the kernel command line.
Catalin: "that's also consistent with a late disabling of kmemleak when
the debugfs entry sticks around."
Link: http://lkml.kernel.org/r/20180824131220.19176-1-vincent.whitchurch@axis.com
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 93065ac753 ("mm, oom: distinguish blockable mode for mmu
notifiers") has added an ability to skip over vmas with blockable mmu
notifiers. This however didn't call tlb_finish_mmu as it should.
As a result inc_tlb_flush_pending has been called without its pairing
dec_tlb_flush_pending and all callers mm_tlb_flush_pending would flush
even though this is not really needed. This alone is not harmful and it
seems there shouldn't be any such callers for oom victims at all but
there is no real reason to skip tlb_finish_mmu on early skip either so
call it.
[mhocko@suse.com: new changelog]
Link: http://lkml.kernel.org/r/b752d1d5-81ad-7a35-2394-7870641be51c@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the memcg OOM killer runs out of killable tasks, it currently
prints a WARN with no further OOM context. This has caused some user
confusion.
Warnings indicate a kernel problem. In a reported case, however, the
situation was triggered by a nonsensical memcg configuration (hard limit
set to 0). But without any VM context this wasn't obvious from the
report, and it took some back and forth on the mailing list to identify
what is actually a trivial issue.
Handle this OOM condition like we handle it in the global OOM killer:
dump the full OOM context and tell the user we ran out of tasks.
This way the user can identify misconfigurations easily by themselves
and rectify the problem - without having to go through the hassle of
running into an obscure but unsettling warning, finding the appropriate
kernel mailing list and waiting for a kernel developer to remote-analyze
that the memcg configuration caused this.
If users cannot make sense of why the OOM killer was triggered or why it
failed, they will still report it to the mailing list, we know that from
experience. So in case there is an actual kernel bug causing this,
kernel developers will very likely hear about it.
Link: http://lkml.kernel.org/r/20180821160406.22578-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is common for architectures with hugepage support to require only a
single TLB invalidation operation per hugepage during unmap(), rather than
iterating through the mapping at a PAGE_SIZE increment. Currently,
however, the level in the page table where the unmap() operation occurs
is not stored in the mmu_gather structure, therefore forcing
architectures to issue additional TLB invalidation operations or to give
up and over-invalidate by e.g. invalidating the entire TLB.
Ideally, we could add an interval rbtree to the mmu_gather structure,
which would allow us to associate the correct mapping granule with the
various sub-mappings within the range being invalidated. However, this
is costly in terms of book-keeping and memory management, so instead we
approximate by keeping track of the page table levels that are cleared
and provide a means to query the smallest granule required for invalidation.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There have been multiple kernel vulnerabilities that permitted userspace to
pass completely unchecked pointers through to userspace accessors:
- the waitid() bug - commit 96ca579a1e ("waitid(): Add missing
access_ok() checks")
- the sg/bsg read/write APIs
- the infiniband read/write APIs
These don't happen all that often, but when they do happen, it is hard to
test for them properly; and it is probably also hard to discover them with
fuzzing. Even when an unmapped kernel address is supplied to such buggy
code, it just returns -EFAULT instead of doing a proper BUG() or at least
WARN().
Try to make such misbehaving code a bit more visible by refusing to do a
fixup in the pagefault handler code when a userspace accessor causes a #PF
on a kernel address and the current context isn't whitelisted.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: dvyukov@google.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180828201421.157735-7-jannh@google.com
Currently, blkcg destruction relies on a sequence of events:
1. Destruction starts. blkcg_css_offline() is called and blkgs
release their reference to the blkcg. This immediately destroys
the cgwbs (writeback).
2. With blkgs giving up their reference, the blkcg ref count should
become zero and eventually call blkcg_css_free() which finally
frees the blkcg.
Jiufei Xue reported that there is a race between blkcg_bio_issue_check()
and cgroup_rmdir(). To remedy this, blkg destruction becomes contingent
on the completion of all writeback associated with the blkcg. A count of
the number of cgwbs is maintained and once that goes to zero, blkg
destruction can follow. This should prevent premature blkg destruction
related to writeback.
The new process for blkcg cleanup is as follows:
1. Destruction starts. blkcg_css_offline() is called which offlines
writeback. Blkg destruction is delayed on the cgwb_refcnt count to
avoid punting potentially large amounts of outstanding writeback
to root while maintaining any ongoing policies. Here, the base
cgwb_refcnt is put back.
2. When the cgwb_refcnt becomes zero, blkcg_destroy_blkgs() is called
and handles destruction of blkgs. This is where the css reference
held by each blkg is released.
3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
This finally frees the blkg.
It seems in the past blk-throttle didn't do the most understandable
things with taking data from a blkg while associating with current. So,
the simplification and unification of what blk-throttle is doing caused
this.
Fixes: 08e18eab0c ("block: add bi_blkg to the bio for cgroups")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennisszhou@gmail.com>
Cc: Jiufei Xue <jiufei.xue@linux.alibaba.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The implementation of readahead(2) syscall is identical to that of
fadvise64(POSIX_FADV_WILLNEED) with a few exceptions:
1. readahead(2) returns -EINVAL for !mapping->a_ops and fadvise64()
ignores the request and returns 0.
2. fadvise64() checks for integer overflow corner case
3. fadvise64() calls the optional filesystem fadvise() file operation
Unite the two implementations by calling vfs_fadvise() from readahead(2)
syscall. Check the !mapping->a_ops in readahead(2) syscall to preserve
documented syscall ABI behaviour.
Suggested-by: Miklos Szeredi <mszeredi@redhat.com>
Fixes: d1d04ef857 ("ovl: stack file ops")
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This is going to be used by overlayfs and possibly useful
for other filesystems.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
* memory_failure() gets confused by dev_pagemap backed mappings. The
recovery code has specific enabling for several possible page states
that needs new enabling to handle poison in dax mappings. Teach
memory_failure() about ZONE_DEVICE pages.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5DAy15EJMCV1R6v9YGjFFmlTOEoFAlt9ui8ACgkQYGjFFmlT
OEpNRw//XGj9s7sezfJFeol4psJlRUd935yii/gmJRgi/yPf2VxxQG9qyM6SMBUc
75jASfOL6FSsfxHz0kplyWzMDNdrTkNNAD+9rv80FmY7GqWgcas9DaJX7jZ994vI
5SRO7pfvNZcXlo7IhqZippDw3yxkIU9Ufi0YQKaEUm7GFieptvCZ0p9x3VYfdvwM
BExrxQe0X1XUF4xErp5P78+WUbKxP47DLcucRDig8Q7dmHELUdyNzo3E1SVoc7m+
3CmvyTj6XuFQgOZw7ZKun1BJYfx/eD5ZlRJLZbx6wJHRtTXv/Uea8mZ8mJ31ykN9
F7QVd0Pmlyxys8lcXfK+nvpL09QBE0/PhwWKjmZBoU8AdgP/ZvBXLDL/D6YuMTg6
T4wwtPNJorfV4lVD06OliFkVI4qbKbmNsfRq43Ns7PCaLueu4U/eMaSwSH99UMaZ
MGbO140XW2RZsHiU9yTRUmZq73AplePEjxtzR8oHmnjo45nPDPy8mucWPlkT9kXA
oUFMhgiviK7dOo19H4eaPJGqLmHM93+x5tpYxGqTr0dUOXUadKWxMsTnkID+8Yi7
/kzQWCFvySz3VhiEHGuWkW08GZT6aCcpkREDomnRh4MEnETlZI8bblcuXYOCLs6c
nNf1SIMtLdlsl7U1fEX89PNeQQ2y237vEDhFQZftaalPeu/JJV0=
=Ftop
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm memory-failure update from Dave Jiang:
"As it stands, memory_failure() gets thoroughly confused by dev_pagemap
backed mappings. The recovery code has specific enabling for several
possible page states and needs new enabling to handle poison in dax
mappings.
In order to support reliable reverse mapping of user space addresses:
1/ Add new locking in the memory_failure() rmap path to prevent races
that would typically be handled by the page lock.
2/ Since dev_pagemap pages are hidden from the page allocator and the
"compound page" accounting machinery, add a mechanism to determine
the size of the mapping that encompasses a given poisoned pfn.
3/ Given pmem errors can be repaired, change the speculatively
accessed poison protection, mce_unmap_kpfn(), to be reversible and
otherwise allow ongoing access from the kernel.
A side effect of this enabling is that MADV_HWPOISON becomes usable
for dax mappings, however the primary motivation is to allow the
system to survive userspace consumption of hardware-poison via dax.
Specifically the current behavior is:
mce: Uncorrected hardware memory error in user-access at af34214200
{1}[Hardware Error]: It has been corrected by h/w and requires no further action
mce: [Hardware Error]: Machine check events logged
{1}[Hardware Error]: event severity: corrected
Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users
[..]
Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed
mce: Memory error not recovered
<reboot>
...and with these changes:
Injecting memory failure for pfn 0x20cb00 at process virtual address 0x7f763dd00000
Memory failure: 0x20cb00: Killing dax-pmd:5421 due to hardware memory corruption
Memory failure: 0x20cb00: recovery action for dax page: Recovered
Given all the cross dependencies I propose taking this through
nvdimm.git with acks from Naoya, x86/core, x86/RAS, and of course dax
folks"
* tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm, pmem: Restore page attributes when clearing errors
x86/memory_failure: Introduce {set, clear}_mce_nospec()
x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses
mm, memory_failure: Teach memory_failure() about dev_pagemap pages
filesystem-dax: Introduce dax_lock_mapping_entry()
mm, memory_failure: Collect mapping size in collect_procs()
mm, madvise_inject_error: Let memory_failure() optionally take a page reference
mm, dev_pagemap: Do not clear ->mapping on final put
mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages
filesystem-dax: Set page->index
device-dax: Set page->index
device-dax: Enable page_mapping()
device-dax: Convert to vmf_insert_mixed and vm_fault_t
This is not normally noticeable, but repeated forks are unnecessarily
expensive because they repeatedly dirty the parent page tables during
the page table copy operation.
It's trivial to just avoid write protecting the page table entry if it
was already not writable.
This patch was inspired by
https://bugzilla.kernel.org/show_bug.cgi?id=200447
which points to an ancient "waste time re-doing fork" issue in the
presence of lots of signals.
That bug was fixed by Eric Biederman's signal handling series
culminating in commit c3ad2c3b02 ("signal: Don't restart fork when
signals come in"), but the unnecessary work for repeated forks is still
work just fixing, particularly since the fix is trivial.
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge yet more updates from Andrew Morton:
- the rest of MM
- various misc fixes and tweaks
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (22 commits)
mm: Change return type int to vm_fault_t for fault handlers
lib/fonts: convert comments to utf-8
s390: ebcdic: convert comments to UTF-8
treewide: convert ISO_8859-1 text comments to utf-8
drivers/gpu/drm/gma500/: change return type to vm_fault_t
docs/core-api: mm-api: add section about GFP flags
docs/mm: make GFP flags descriptions usable as kernel-doc
docs/core-api: split memory management API to a separate file
docs/core-api: move *{str,mem}dup* to "String Manipulation"
docs/core-api: kill trailing whitespace in kernel-api.rst
mm/util: add kernel-doc for kvfree
mm/util: make strndup_user description a kernel-doc comment
fs/proc/vmcore.c: hide vmcoredd_mmap_dumps() for nommu builds
treewide: correct "differenciate" and "instanciate" typos
fs/afs: use new return type vm_fault_t
drivers/hwtracing/intel_th/msu.c: change return type to vm_fault_t
mm: soft-offline: close the race against page allocation
mm: fix race on soft-offlining free huge pages
namei: allow restricted O_CREAT of FIFOs and regular files
hfs: prevent crash on exit from failed search
...
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
Ref-> commit 1c8f422059 ("mm: change return type to vm_fault_t")
The aim is to change the return type of finish_fault() and
handle_mm_fault() to vm_fault_t type. As part of that clean up return
type of all other recursively called functions have been changed to
vm_fault_t type.
The places from where handle_mm_fault() is getting invoked will be
change to vm_fault_t type but in a separate patch.
vmf_error() is the newly introduce inline function in 4.17-rc6.
[akpm@linux-foundation.org: don't shadow outer local `ret' in __do_huge_pmd_anonymous_page()]
Link: http://lkml.kernel.org/r/20180604171727.GA20279@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1532626360-16650-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memory management documentation updates", v3.
Here are several updates to the mm documentation.
Aside from really minor changes in the first three patches, the updates
are:
* move the documentation of kstrdup and friends to "String Manipulation"
section
* split memory management API into a separate .rst file
* adjust formating of the GFP flags description and include it in the
reference documentation.
This patch (of 7):
The description of the strndup_user function misses '*' character at the
beginning of the comment to be proper kernel-doc. Add the missing
character.
Link: http://lkml.kernel.org/r/1532626360-16650-2-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A process can be killed with SIGBUS(BUS_MCEERR_AR) when it tries to
allocate a page that was just freed on the way of soft-offline. This is
undesirable because soft-offline (which is about corrected error) is
less aggressive than hard-offline (which is about uncorrected error),
and we can make soft-offline fail and keep using the page for good
reason like "system is busy."
Two main changes of this patch are:
- setting migrate type of the target page to MIGRATE_ISOLATE. As done
in free_unref_page_commit(), this makes kernel bypass pcplist when
freeing the page. So we can assume that the page is in freelist just
after put_page() returns,
- setting PG_hwpoison on free page under zone->lock which protects
freelists, so this allows us to avoid setting PG_hwpoison on a page
that is decided to be allocated soon.
[akpm@linux-foundation.org: tweak set_hwpoison_free_buddy_page() comment]
Link: http://lkml.kernel.org/r/1531452366-11661-3-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <zy.zhengyi@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: soft-offline: fix race against page allocation".
Xishi recently reported the issue about race on reusing the target pages
of soft offlining. Discussion and analysis showed that we need make
sure that setting PG_hwpoison should be done in the right place under
zone->lock for soft offline. 1/2 handles free hugepage's case, and 2/2
hanldes free buddy page's case.
This patch (of 2):
There's a race condition between soft offline and hugetlb_fault which
causes unexpected process killing and/or hugetlb allocation failure.
The process killing is caused by the following flow:
CPU 0 CPU 1 CPU 2
soft offline
get_any_page
// find the hugetlb is free
mmap a hugetlb file
page fault
...
hugetlb_fault
hugetlb_no_page
alloc_huge_page
// succeed
soft_offline_free_page
// set hwpoison flag
mmap the hugetlb file
page fault
...
hugetlb_fault
hugetlb_no_page
find_lock_page
return VM_FAULT_HWPOISON
mm_fault_error
do_sigbus
// kill the process
The hugetlb allocation failure comes from the following flow:
CPU 0 CPU 1
mmap a hugetlb file
// reserve all free page but don't fault-in
soft offline
get_any_page
// find the hugetlb is free
soft_offline_free_page
// set hwpoison flag
dissolve_free_huge_page
// fail because all free hugepages are reserved
page fault
...
hugetlb_fault
hugetlb_no_page
alloc_huge_page
...
dequeue_huge_page_node_exact
// ignore hwpoisoned hugepage
// and finally fail due to no-mem
The root cause of this is that current soft-offline code is written based
on an assumption that PageHWPoison flag should be set at first to avoid
accessing the corrupted data. This makes sense for memory_failure() or
hard offline, but does not for soft offline because soft offline is about
corrected (not uncorrected) error and is safe from data lost. This patch
changes soft offline semantics where it sets PageHWPoison flag only after
containment of the error page completes successfully.
Link: http://lkml.kernel.org/r/1531452366-11661-2-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Suggested-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <zy.zhengyi@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The generic tlb_end_vma does not call invalidate_range mmu notifier, and
it resets resets the mmu_gather range, which means the notifier won't be
called on part of the range in case of an unmap that spans multiple
vmas.
ARM64 seems to be the only arch I could see that has notifiers and uses
the generic tlb_end_vma. I have not actually tested it.
[ Catalin and Will point out that ARM64 currently only uses the
notifiers for KVM, which doesn't use the ->invalidate_range()
callback right now, so it's a bug, but one that happens to
not affect them. So not necessary for stable. - Linus ]
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jann reported that x86 was missing required TLB invalidates when he
hit the !*batch slow path in tlb_remove_table().
This is indeed the case; RCU_TABLE_FREE does not provide TLB (cache)
invalidates, the PowerPC-hash where this code originated and the
Sparc-hash where this was subsequently used did not need that. ARM
which later used this put an explicit TLB invalidate in their
__p*_free_tlb() functions, and PowerPC-radix followed that example.
But when we hooked up x86 we failed to consider this. Fix this by
(optionally) hooking tlb_remove_table() into the TLB invalidate code.
NOTE: s390 was also needing something like this and might now
be able to use the generic code again.
[ Modified to be on top of Nick's cleanups, which simplified this patch
now that tlb_flush_mmu_tlbonly() really only flushes the TLB - Linus ]
Fixes: 9e52fc2b50 ("x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Will noted that only checking mm_users is incorrect; we should also
check mm_count in order to cover CPUs that have a lazy reference to
this mm (and could do speculative TLB operations).
If removing this turns out to be a performance issue, we can
re-instate a more complete check, but in tlb_table_flush() eliding the
call_rcu_sched().
Fixes: 2672391169 ("mm, powerpc: move the RCU page-table freeing into generic code")
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to call this from tlb_flush_mmu_tlbonly, it logically
belongs with tlb_flush_mmu_free. This makes future fixes simpler.
[ This was originally done to allow code consolidation for the
mmu_notifier fix, but it also ends up helping simplify the
HAVE_RCU_TABLE_INVALIDATE fix. - Linus ]
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commits:
95b0e6357d x86/mm/tlb: Always use lazy TLB mode
64482aafe5 x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs
ac03158969 x86/mm/tlb: Make lazy TLB mode lazier
61d0beb579 x86/mm/tlb: Restructure switch_mm_irqs_off()
2ff6ddf19c x86/mm/tlb: Leave lazy TLB mode at page table free time
In order to simplify the TLB invalidate fixes for x86 and unify the
parts that need backporting. We'll try again later.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit cafa0010cd ("Raise the minimum required gcc version to 4.6")
recently exposed a brittle part of the build for supporting non-gcc
compilers.
Both Clang and ICC define __GNUC__, __GNUC_MINOR__, and
__GNUC_PATCHLEVEL__ for quick compatibility with code bases that haven't
added compiler specific checks for __clang__ or __INTEL_COMPILER.
This is brittle, as they happened to get compatibility by posing as a
certain version of GCC. This broke when upgrading the minimal version
of GCC required to build the kernel, to a version above what ICC and
Clang claim to be.
Rather than always including compiler-gcc.h then undefining or
redefining macros in compiler-intel.h or compiler-clang.h, let's
separate out the compiler specific macro definitions into mutually
exclusive headers, do more proper compiler detection, and keep shared
definitions in compiler_types.h.
Fixes: cafa0010cd ("Raise the minimum required gcc version to 4.6")
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Suggested-by: Eli Friedman <efriedma@codeaurora.org>
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge more updates from Andrew Morton:
- the rest of MM
- procfs updates
- various misc things
- more y2038 fixes
- get_maintainer updates
- lib/ updates
- checkpatch updates
- various epoll updates
- autofs updates
- hfsplus
- some reiserfs work
- fatfs updates
- signal.c cleanups
- ipc/ updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (166 commits)
ipc/util.c: update return value of ipc_getref from int to bool
ipc/util.c: further variable name cleanups
ipc: simplify ipc initialization
ipc: get rid of ids->tables_initialized hack
lib/rhashtable: guarantee initial hashtable allocation
lib/rhashtable: simplify bucket_table_alloc()
ipc: drop ipc_lock()
ipc/util.c: correct comment in ipc_obtain_object_check
ipc: rename ipcctl_pre_down_nolock()
ipc/util.c: use ipc_rcu_putref() for failues in ipc_addid()
ipc: reorganize initialization of kern_ipc_perm.seq
ipc: compute kern_ipc_perm.id under the ipc lock
init/Kconfig: remove EXPERT from CHECKPOINT_RESTORE
fs/sysv/inode.c: use ktime_get_real_seconds() for superblock stamp
adfs: use timespec64 for time conversion
kernel/sysctl.c: fix typos in comments
drivers/rapidio/devices/rio_mport_cdev.c: remove redundant pointer md
fork: don't copy inconsistent signal handler state to child
signal: make get_signal() return bool
signal: make sigkill_pending() return bool
...
The irqsave variant of refcount_dec_and_lock handles irqsave/restore when
taking/releasing the spin lock. With this variant the call of
local_irq_save/restore is no longer required.
[bigeasy@linutronix.de: s@atomic_dec_and_lock@refcount_dec_and_lock@g]
Link: http://lkml.kernel.org/r/20180703200141.28415-5-bigeasy@linutronix.de
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
refcount_t type and corresponding API should be used instead of atomic_t
when the variable is used as a reference counter. This permits avoiding
accidental refcounter overflows that might lead to use-after-free
situations.
Link: http://lkml.kernel.org/r/20180703200141.28415-4-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, percpu memory only exposes allocation and utilization
information via debugfs. This more or less is only really useful for
understanding the fragmentation and allocation information at a per-chunk
level with a few global counters. This is also gated behind a config.
BPF and cgroup, for example, have seen an increase in use causing
increased use of percpu memory. Let's make it easier for someone to
identify how much memory is being used.
This patch adds the "Percpu" stat to meminfo to more easily look up how
much percpu memory is in use. This number includes the cost for all
allocated backing pages and not just insight at the per a unit, per chunk
level. Metadata is excluded. I think excluding metadata is fair because
the backing memory scales with the numbere of cpus and can quickly
outweigh the metadata. It also makes this calculation light.
Link: http://lkml.kernel.org/r/20180807184723.74919-1-dennisszhou@gmail.com
Signed-off-by: Dennis Zhou <dennisszhou@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For some workloads an intervention from the OOM killer can be painful.
Killing a random task can bring the workload into an inconsistent state.
Historically, there are two common solutions for this
problem:
1) enabling panic_on_oom,
2) using a userspace daemon to monitor OOMs and kill
all outstanding processes.
Both approaches have their downsides: rebooting on each OOM is an obvious
waste of capacity, and handling all in userspace is tricky and requires a
userspace agent, which will monitor all cgroups for OOMs.
In most cases an in-kernel after-OOM cleaning-up mechanism can eliminate
the necessity of enabling panic_on_oom. Also, it can simplify the cgroup
management for userspace applications.
This commit introduces a new knob for cgroup v2 memory controller:
memory.oom.group. The knob determines whether the cgroup should be
treated as an indivisible workload by the OOM killer. If set, all tasks
belonging to the cgroup or to its descendants (if the memory cgroup is not
a leaf cgroup) are killed together or not at all.
To determine which cgroup has to be killed, we do traverse the cgroup
hierarchy from the victim task's cgroup up to the OOMing cgroup (or root)
and looking for the highest-level cgroup with memory.oom.group set.
Tasks with the OOM protection (oom_score_adj set to -1000) are treated as
an exception and are never killed.
This patch doesn't change the OOM victim selection algorithm.
Link: http://lkml.kernel.org/r/20180802003201.817-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "introduce memory.oom.group", v2.
This is a tiny implementation of cgroup-aware OOM killer, which adds an
ability to kill a cgroup as a single unit and so guarantee the integrity
of the workload.
Although it has only a limited functionality in comparison to what now
resides in the mm tree (it doesn't change the victim task selection
algorithm, doesn't look at memory stas on cgroup level, etc), it's also
much simpler and more straightforward. So, hopefully, we can avoid having
long debates here, as we had with the full implementation.
As it doesn't prevent any futher development, and implements an useful and
complete feature, it looks as a sane way forward.
This patch (of 2):
oom_kill_process() consists of two logical parts: the first one is
responsible for considering task's children as a potential victim and
printing the debug information. The second half is responsible for
sending SIGKILL to all tasks sharing the mm struct with the given victim.
This commit splits oom_kill_process() with an intention to re-use the the
second half: __oom_kill_process().
The cgroup-aware OOM killer will kill multiple tasks belonging to the
victim cgroup. We don't need to print the debug information for the each
task, as well as play with task selection (considering task's children),
so we can't use the existing oom_kill_process().
Link: http://lkml.kernel.org/r/20171130152824.1591-2-guro@fb.com
Link: http://lkml.kernel.org/r/20180802003201.817-3-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, whenever a new node is created/re-used from the memhotplug
path, we call free_area_init_node()->free_area_init_core(). But there is
some code that we do not really need to run when we are coming from such
path.
free_area_init_core() performs the following actions:
1) Initializes pgdat internals, such as spinlock, waitqueues and more.
2) Account # nr_all_pages and # nr_kernel_pages. These values are used later on
when creating hash tables.
3) Account number of managed_pages per zone, substracting dma_reserved and
memmap pages.
4) Initializes some fields of the zone structure data
5) Calls init_currently_empty_zone to initialize all the freelists
6) Calls memmap_init to initialize all pages belonging to certain zone
When called from memhotplug path, free_area_init_core() only performs
actions #1 and #4.
Action #2 is pointless as the zones do not have any pages since either the
node was freed, or we are re-using it, eitherway all zones belonging to
this node should have 0 pages. For the same reason, action #3 results
always in manages_pages being 0.
Action #5 and #6 are performed later on when onlining the pages:
online_pages()->move_pfn_range_to_zone()->init_currently_empty_zone()
online_pages()->move_pfn_range_to_zone()->memmap_init_zone()
This patch does two things:
First, moves the node/zone initializtion to their own function, so it
allows us to create a small version of free_area_init_core, where we only
perform:
1) Initialization of pgdat internals, such as spinlock, waitqueues and more
4) Initialization of some fields of the zone structure data
These two functions are: pgdat_init_internals() and zone_init_internals().
The second thing this patch does, is to introduce
free_area_init_core_hotplug(), the memhotplug version of
free_area_init_core():
Currently, we call free_area_init_node() from the memhotplug path. In
there, we set some pgdat's fields, and call calculate_node_totalpages().
calculate_node_totalpages() calculates the # of pages the node has.
Since the node is either new, or we are re-using it, the zones belonging
to this node should not have any pages, so there is no point to calculate
this now.
Actually, we re-set these values to 0 later on with the calls to:
reset_node_managed_pages()
reset_node_present_pages()
The # of pages per node and the # of pages per zone will be calculated when
onlining the pages:
online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_zone_range()
online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_pgdat_range()
Also, since free_area_init_core/free_area_init_node will now only get called during early init, let us replace
__paginginit with __init, so their code gets freed up.
[osalvador@techadventures.net: fix section usage]
Link: http://lkml.kernel.org/r/20180731101752.GA473@techadventures.net
[osalvador@suse.de: v6]
Link: http://lkml.kernel.org/r/20180801122348.21588-6-osalvador@techadventures.net
Link: http://lkml.kernel.org/r/20180730101757.28058-5-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let us move the code between CONFIG_DEFERRED_STRUCT_PAGE_INIT to an inline
function. Not having an ifdef in the function makes the code more
readable.
Link: http://lkml.kernel.org/r/20180730101757.28058-4-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__paginginit is the same thing as __meminit except for platforms without
sparsemem, there it is defined as __init.
Remove __paginginit and use __meminit. Use __ref in one single function
that merges __meminit and __init sections: setup_usemap().
Link: http://lkml.kernel.org/r/20180801122348.21588-4-osalvador@techadventures.net
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zone->node is configured only when CONFIG_NUMA=y, so it is a good idea to
have inline functions to access this field in order to avoid ifdef's in c
files.
Link: http://lkml.kernel.org/r/20180730101757.28058-3-osalvador@techadventures.net
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Refactor free_area_init_core and add
free_area_init_core_hotplug", v6.
This patchset does three things:
1) Clean up/refactor free_area_init_core/free_area_init_node
by moving the ifdefery out of the functions.
2) Move the pgdat/zone initialization in free_area_init_core to its
own function.
3) Introduce free_area_init_core_hotplug, a small subset of
free_area_init_core, which is only called from memhotlug code path. In this
way, we have:
free_area_init_core: called during early initialization
free_area_init_core_hotplug: called whenever a new node is allocated/re-used (memhotplug path)
This patch (of 5):
Moving the #ifdefs out of the function makes it easier to follow.
Link: http://lkml.kernel.org/r/20180730101757.28058-2-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently cgroup-v1's memcg_stat_show traverses the memcg tree ~17 times
to collect the stats while cgroup-v2's memory_stat_show traverses the
memcg tree thrice. On a large machine, a couple thousand memcgs is very
normal and if the churn is high and memcgs stick around during to several
reasons, tens of thousands of nodes in memcg tree can exist. This patch
has refactored and shared the stat collection code between cgroup-v1 and
cgroup-v2 and has reduced the tree traversal to just one.
I ran a simple benchmark which reads the root_mem_cgroup's stat file
1000 times in the presense of 2500 memcgs on cgroup-v1. The results are:
Without the patch:
$ time ./read-root-stat-1000-times
real 0m1.663s
user 0m0.000s
sys 0m1.660s
With the patch:
$ time ./read-root-stat-1000-times
real 0m0.468s
user 0m0.000s
sys 0m0.467s
Link: http://lkml.kernel.org/r/20180724224635.143944-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Bruce Merry <bmerry@ska.ac.za>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_freeze_refs/page_unfreeze_refs have already been relplaced by
page_ref_freeze/page_ref_unfreeze , but they are not modified in the
comments.
Link: http://lkml.kernel.org/r/1532590226-106038-1-git-send-email-jiang.biao2@zte.com.cn
Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The Kconfig text for CONFIG_PAGE_POISONING doesn't mention that it has to
be enabled explicitly. This updates the documentation for that and adds a
note about CONFIG_PAGE_POISONING to the "page_poison" command line docs.
While here, change description of CONFIG_PAGE_POISONING_ZERO too, as it's
not "random" data, but rather the fixed debugging value that would be used
when not zeroing. Additionally removes a stray "bool" in the Kconfig.
Link: http://lkml.kernel.org/r/20180725223832.GA43733@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rather than in vm_area_alloc(). To ensure that the various oddball
stack-based vmas are in a good state. Some of the callers were zeroing
them out, others were not.
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel-doc for mempool_init function is missing the description of the
pool parameter. Add it.
Link: http://lkml.kernel.org/r/1532336274-26228-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrew has noticed some inconsistencies in oom_reap_task_mm. Notably
- Undocumented return value.
- comment "failed to reap part..." is misleading - sounds like it's
referring to something which happened in the past, is in fact
referring to something which might happen in the future.
- fails to call trace_finish_task_reaping() in one case
- code duplication.
- Increases mmap_sem hold time a little by moving
trace_finish_task_reaping() inside the locked region. So sue me ;)
- Sharing the finish: path means that the trace event won't
distinguish between the two sources of finishing.
Add a short explanation for the return value and fix the rest by
reorganizing the function a bit to have unified function exit paths.
Link: http://lkml.kernel.org/r/20180724141747.GP28386@dhcp22.suse.cz
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The default page memory unit of OOM task dump events might not be
intuitive and potentially misleading for the non-initiated when debugging
OOM events: These are pages and not kBs. Add a small printk prior to the
task dump informing that the memory units are actually memory _pages_.
Also extends PID field to align on up to 7 characters.
Reference https://lkml.org/lkml/2018/7/3/1201
Link: http://lkml.kernel.org/r/c795eb5129149ed8a6345c273aba167ff1bbd388.1530715938.git.rfreire@redhat.com
Signed-off-by: Rodrigo Freire <rfreire@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_reaper used to rely on the oom_lock since e2fe14564d ("oom_reaper:
close race with exiting task"). We do not really need the lock anymore
though. 2129258024 ("mm: oom: let oom_reap_task and exit_mmap run
concurrently") has removed serialization with the exit path based on the
mm reference count and so we do not really rely on the oom_lock anymore.
Tetsuo was arguing that at least MMF_OOM_SKIP should be set under the lock
to prevent from races when the page allocator didn't manage to get the
freed (reaped) memory in __alloc_pages_may_oom but it sees the flag later
on and move on to another victim. Although this is possible in principle
let's wait for it to actually happen in real life before we make the
locking more complex again.
Therefore remove the oom_lock for oom_reaper paths (both exit_mmap and
oom_reap_task_mm). The reaper serializes with exit_mmap by mmap_sem +
MMF_OOM_SKIP flag. There is no synchronization with out_of_memory path
now.
[mhocko@kernel.org: oom_reap_task_mm should return false when __oom_reap_task_mm did]
Link: http://lkml.kernel.org/r/20180724141747.GP28386@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20180719075922.13784-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several blockable mmu notifiers which might sleep in
mmu_notifier_invalidate_range_start and that is a problem for the
oom_reaper because it needs to guarantee a forward progress so it cannot
depend on any sleepable locks.
Currently we simply back off and mark an oom victim with blockable mmu
notifiers as done after a short sleep. That can result in selecting a new
oom victim prematurely because the previous one still hasn't torn its
memory down yet.
We can do much better though. Even if mmu notifiers use sleepable locks
there is no reason to automatically assume those locks are held. Moreover
majority of notifiers only care about a portion of the address space and
there is absolutely zero reason to fail when we are unmapping an unrelated
range. Many notifiers do really block and wait for HW which is harder to
handle and we have to bail out though.
This patch handles the low hanging fruit.
__mmu_notifier_invalidate_range_start gets a blockable flag and callbacks
are not allowed to sleep if the flag is set to false. This is achieved by
using trylock instead of the sleepable lock for most callbacks and
continue as long as we do not block down the call chain.
I think we can improve that even further because there is a common pattern
to do a range lookup first and then do something about that. The first
part can be done without a sleeping lock in most cases AFAICS.
The oom_reaper end then simply retries if there is at least one notifier
which couldn't make any progress in !blockable mode. A retry loop is
already implemented to wait for the mmap_sem and this is basically the
same thing.
The simplest way for driver developers to test this code path is to wrap
userspace code which uses these notifiers into a memcg and set the hard
limit to hit the oom. This can be done e.g. after the test faults in all
the mmu notifier managed memory and set the hard limit to something really
small. Then we are looking for a proper process tear down.
[akpm@linux-foundation.org: coding style fixes]
[akpm@linux-foundation.org: minor code simplification]
Link: http://lkml.kernel.org/r/20180716115058.5559-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christian König <christian.koenig@amd.com> # AMD notifiers
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx and umem_odp
Reported-by: David Rientjes <rientjes@google.com>
Cc: "David (ChunMing) Zhou" <David1.Zhou@amd.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Dennis Dalessandro <dennis.dalessandro@intel.com>
Cc: Sudeep Dutt <sudeep.dutt@intel.com>
Cc: Ashutosh Dixit <ashutosh.dixit@intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In this patch, locking related code is shared between huge/normal code
path in put_swap_page() to reduce code duplication. The `free_entries == 0`
case is merged into the more general `free_entries != SWAPFILE_CLUSTER`
case, because the new locking method makes it easy.
The added lines is same as the removed lines. But the code size is
increased when CONFIG_TRANSPARENT_HUGEPAGE=n.
text data bss dec hex filename
base: 24123 2004 340 26467 6763 mm/swapfile.o
unified: 24485 2004 340 26829 68cd mm/swapfile.o
Dig on step deeper with `size -A mm/swapfile.o` for base and unified
kernel and compare the result, yields,
-.text 17723 0
+.text 17835 0
-.orc_unwind_ip 1380 0
+.orc_unwind_ip 1480 0
-.orc_unwind 2070 0
+.orc_unwind 2220 0
-Total 26686
+Total 27048
The total difference is the same. The text segment difference is much
smaller: 112. More difference comes from the ORC unwinder segments:
(1480 + 2220) - (1380 + 2070) = 250. If the frame pointer unwinder is
used, this costs nothing.
Link: http://lkml.kernel.org/r/20180720071845.17920-9-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The part of __swap_entry_free() with lock held is separated into a new
function __swap_entry_free_locked(). Because we want to reuse that
piece of code in some other places.
Just mechanical code refactoring, there is no any functional change in
this function.
Link: http://lkml.kernel.org/r/20180720071845.17920-8-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As suggested by Matthew Wilcox, it is better to use "int entry_size"
instead of "bool cluster" as parameter to specify whether to operate for
huge or normal swap entries. Because this improve the flexibility to
support other swap entry size. And Dave Hansen thinks that this
improves code readability too.
So in this patch, the "bool cluster" parameter of get_swap_pages() is
replaced by "int entry_size".
And nr_swap_entries() trick is used to reduce the binary size when
!CONFIG_TRANSPARENT_HUGE_PAGE.
text data bss dec hex filename
base 24215 2028 340 26583 67d7 mm/swapfile.o
head 24123 2004 340 26467 6763 mm/swapfile.o
Link: http://lkml.kernel.org/r/20180720071845.17920-7-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In this patch, the normal/huge code path in put_swap_page() and several
helper functions are unified to avoid duplicated code, bugs, etc. and
make it easier to review the code.
The removed lines are more than added lines. And the binary size is
kept exactly same when CONFIG_TRANSPARENT_HUGEPAGE=n.
Link: http://lkml.kernel.org/r/20180720071845.17920-6-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As suggested by Dave, we should unify the code path for normal and huge
swap support if possible to avoid duplicated code, bugs, etc. and make
it easier to review code.
In this patch, the normal/huge code path in
swap_page_trans_huge_swapped() is unified, the added and removed lines
are same. And the binary size is kept almost same when
CONFIG_TRANSPARENT_HUGEPAGE=n.
text data bss dec hex filename
base: 24179 2028 340 26547 67b3 mm/swapfile.o
unified: 24215 2028 340 26583 67d7 mm/swapfile.o
Link: http://lkml.kernel.org/r/20180720071845.17920-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-and-acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In swap_page_trans_huge_swapped(), to identify whether there's any page
table mapping for a 4k sized swap entry, "si->swap_map[i] !=
SWAP_HAS_CACHE" is used. This works correctly now, because all users of
the function will only call it after checking SWAP_HAS_CACHE. But as
pointed out by Daniel, it is better to use "swap_count(map[i])" here,
because it works for "map[i] == 0" case too.
And this makes the implementation more consistent between normal and
huge swap entry.
Link: http://lkml.kernel.org/r/20180720071845.17920-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-and-reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In mm/swapfile.c, THP (Transparent Huge Page) swap specific code is
enclosed by #ifdef CONFIG_THP_SWAP/#endif to avoid code dilating when
THP isn't enabled. But #ifdef/#endif in .c file hurt the code
readability, so Dave suggested to use IS_ENABLED(CONFIG_THP_SWAP)
instead and let compiler to do the dirty job for us. This has potential
to remove some duplicated code too. From output of `size`,
text data bss dec hex filename
THP=y: 26269 2076 340 28685 700d mm/swapfile.o
ifdef/endif: 24115 2028 340 26483 6773 mm/swapfile.o
IS_ENABLED: 24179 2028 340 26547 67b3 mm/swapfile.o
IS_ENABLED() based solution works quite well, almost as good as that of
#ifdef/#endif. And from the diffstat, the removed lines are more than
added lines.
One #ifdef for split_swap_cluster() is kept. Because it is a public
function with a stub implementation for CONFIG_THP_SWAP=n in swap.h.
Link: http://lkml.kernel.org/r/20180720071845.17920-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-and-acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "swap: THP optimizing refactoring", v4.
Now the THP (Transparent Huge Page) swap optimizing is implemented in the
way like below,
#ifdef CONFIG_THP_SWAP
huge_function(...)
{
}
#else
normal_function(...)
{
}
#endif
general_function(...)
{
if (huge)
return thp_function(...);
else
return normal_function(...);
}
As pointed out by Dave Hansen, this will,
1. Create a new, wholly untested code path for huge page
2. Create two places to patch bugs
3. Are not reusing code when possible
This patchset is to address these problems via merging huge/normal code
path/functions if possible.
One concern is that this may cause code size to dilate when
!CONFIG_TRANSPARENT_HUGEPAGE. The data shows that most refactoring will
only cause quite slight code size increase.
This patch (of 8):
To improve code readability.
Link: http://lkml.kernel.org/r/20180720071845.17920-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-and-acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a sad BUG introduced in patch adding SHRINKER_REGISTERING.
shrinker_idr business is only for memcg-aware shrinkers. Only such type
of shrinkers have id and they must be finaly installed via idr_replace()
in this function. For !memcg-aware shrinkers we never initialize
shrinker->id field.
But there are all types of shrinkers passed to idr_replace(), and every
!memcg-aware shrinker with random ID (most probably, its id is 0)
replaces memcg-aware shrinker pointed by the ID in IDR.
This patch fixes the problem.
Link: http://lkml.kernel.org/r/8ff8a793-8211-713a-4ed9-d6e52390c2fc@virtuozzo.com
Fixes: 7e010df53c "mm: use special value SHRINKER_REGISTERING instead of list_empty() check"
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reported-by: <syzbot+d5f648a1bfe15678786b@syzkaller.appspotmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <syzkaller-bugs@googlegroups.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull core signal handling updates from Eric Biederman:
"It was observed that a periodic timer in combination with a
sufficiently expensive fork could prevent fork from every completing.
This contains the changes to remove the need for that restart.
This set of changes is split into several parts:
- The first part makes PIDTYPE_TGID a proper pid type instead
something only for very special cases. The part starts using
PIDTYPE_TGID enough so that in __send_signal where signals are
actually delivered we know if the signal is being sent to a a group
of processes or just a single process.
- With that prep work out of the way the logic in fork is modified so
that fork logically makes signals received while it is running
appear to be received after the fork completes"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (22 commits)
signal: Don't send signals to tasks that don't exist
signal: Don't restart fork when signals come in.
fork: Have new threads join on-going signal group stops
fork: Skip setting TIF_SIGPENDING in ptrace_init_task
signal: Add calculate_sigpending()
fork: Unconditionally exit if a fatal signal is pending
fork: Move and describe why the code examines PIDNS_ADDING
signal: Push pid type down into complete_signal.
signal: Push pid type down into __send_signal
signal: Push pid type down into send_signal
signal: Pass pid type into do_send_sig_info
signal: Pass pid type into send_sigio_to_task & send_sigurg_to_task
signal: Pass pid type into group_send_sig_info
signal: Pass pid and pid type into send_sigqueue
posix-timers: Noralize good_sigevent
signal: Use PIDTYPE_TGID to clearly store where file signals will be sent
pid: Implement PIDTYPE_TGID
pids: Move the pgrp and session pid pointers from task_struct to signal_struct
kvm: Don't open code task_pid in kvm_vcpu_ioctl
pids: Compute task_tgid using signal->leader_pid
...
Variables align_start and align_end are being assigned but are never
used hence they are redundant and can be removed.
Cleans up clang warnings:
warning: variable 'align_start' set but not used [-Wunused-but-set-variable]
warning: variable 'align_size' set but not used [-Wunused-but-set-variable]
Link: http://lkml.kernel.org/r/20180714161124.3923-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When perf profiling a wide variety of different workloads, it was found
that vmacache_find() had higher than expected cost: up to 0.08% of cpu
utilization in some cases. This was found to rival other core VM
functions such as alloc_pages_vma() with thp enabled and default
mempolicy, and the conditionals in __get_vma_policy().
VMACACHE_HASH() determines which of the four per-task_struct slots a vma
is cached for a particular address. This currently depends on the pfn,
so pfn 5212 occupies a different vmacache slot than its neighboring pfn
5213.
vmacache_find() iterates through all four of current's vmacache slots
when looking up an address. Hashing based on pfn, an address has
~1/VMACACHE_SIZE chance of being cached in the first vmacache slot, or
about 25%, *if* the vma is cached.
This patch hashes an address by its pmd instead of pte to optimize for
workloads with good spatial locality. This results in a higher
probability of vmas being cached in the first slot that is checked:
normally ~70% on the same workloads instead of 25%.
[rientjes@google.com: various updates]
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1807231532290.109445@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1807091749150.114630@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide list_lru_shrink_walk_irq() and let it behave like
list_lru_walk_one() except that it locks the spinlock with
spin_lock_irq(). This is used by scan_shadow_nodes() because its lock
nests within the i_pages lock which is acquired with IRQ. This change
allows to use proper locking promitives instead hand crafted
lock_irq_disable() plus spin_lock().
There is no EXPORT_SYMBOL provided because the current user is in-kernel
only.
Add list_lru_shrink_walk_irq() which acquires the spinlock with the
proper locking primitives.
Link: http://lkml.kernel.org/r/20180716111921.5365-5-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__list_lru_walk_one() is invoked with struct list_lru *lru, int nid as
the first two argument. Those two are only used to retrieve struct
list_lru_node. Since this is already done by the caller of the function
for the locking, we can pass struct list_lru_node* directly and avoid
the dance around it.
Link: http://lkml.kernel.org/r/20180716111921.5365-4-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the locking inside __list_lru_walk_one() to its caller. This is a
preparation step in order to introduce list_lru_walk_one_irq() which
does spin_lock_irq() instead of spin_lock() for the locking.
Link: http://lkml.kernel.org/r/20180716111921.5365-3-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/list_lru: Add list_lru_shrink_walk_irq() and a user".
This series removes the local_irq_disable() around
list_lru_shrink_walk() (as used by mm/workingset) by adding
list_lru_shrink_walk_irq().
Vladimir Davydov preferred this over `irq' argument which I added to
struct list_lru.
The initial post (of this series) received a Reviewed-by tag by Vladimir
Davydov which I added to each patch of the series. The series applies
on top of akpm's tree which has Kirill's shrink_slab series and does not
clash with it (akpm asked me to wait a week or so and repost it then).
I tested the code paths by triggering the OOM-killer via memory over
commit and lockdep did not complain (nor did I see any warnings).
This patch (of 4):
list_lru_walk_node() invokes __list_lru_walk_one() with -1 as the
memcg_idx parameter. The same can be achieved by list_lru_walk_one() and
passing NULL as memcg argument which then gets converted into -1. This is
a preparation step when the spin_lock() function is lifted to the caller
of __list_lru_walk_one(). Invoke list_lru_walk_one() instead
__list_lru_walk_one() when possible.
Link: http://lkml.kernel.org/r/20180716111921.5365-2-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_THP_SWAP should depend on CONFIG_SWAP, because it's unreasonable
to optimize swapping for THP (Transparent Huge Page) without basic
swapping support.
In original code, when CONFIG_SWAP=n and CONFIG_THP_SWAP=y,
split_swap_cluster() will not be built because it is in swapfile.c, but
it will be called in huge_memory.c. This doesn't trigger a build error
in practice because the call site is enclosed by PageSwapCache(), which
is defined to be constant 0 when CONFIG_SWAP=n. But this is fragile and
should be fixed.
The comments are fixed too to reflect the latest progress.
Link: http://lkml.kernel.org/r/20180713021228.439-1-ying.huang@intel.com
Fixes: 38d8b4e6bd ("mm, THP, swap: delay splitting THP during swap out")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename new_sparse_init() to sparse_init() which enables it. Delete old
sparse_init() and all the code that became obsolete with.
[pasha.tatashin@oracle.com: remove unused sparse_mem_maps_populate_node()]
Link: http://lkml.kernel.org/r/20180716174447.14529-6-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180712203730.8703-6-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Tested-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparse_init() requires to temporary allocate two large buffers: usemap_map
and map_map. Baoquan He has identified that these buffers are so large
that Linux is not bootable on small memory machines, such as a kdump boot.
The buffers are especially large when CONFIG_X86_5LEVEL is set, as they
are scaled to the maximum physical memory size.
Baoquan provided a fix, which reduces these sizes of these buffers, but it
is much better to get rid of them entirely.
Add a new way to initialize sparse memory: sparse_init_nid(), which only
operates within one memory node, and thus allocates memory either in large
contiguous block or allocates section by section. This eliminates the
need for use of temporary buffers.
For simplified bisecting and review temporarly call sparse_init()
new_sparse_init(), the new interface is going to be enabled as well as old
code removed in the next patch.
Link: http://lkml.kernel.org/r/20180712203730.8703-5-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that both variants of sparse memory use the same buffers to populate
memory map, we can move sparse_buffer_init()/sparse_buffer_fini() to the
common place.
Link: http://lkml.kernel.org/r/20180712203730.8703-4-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Tested-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
non-vmemmap sparse also allocated large contiguous chunk of memory, and if
fails falls back to smaller allocations. Use the same functions to
allocate buffer as the vmemmap-sparse
Link: http://lkml.kernel.org/r/20180712203730.8703-3-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "sparse_init rewrite", v6.
In sparse_init() we allocate two large buffers to temporary hold usemap
and memmap for the whole machine. However, we can avoid doing that if
we changed sparse_init() to operated on per-node bases instead of doing
it on the whole machine beforehand.
As shown by Baoquan
http://lkml.kernel.org/r/20180628062857.29658-1-bhe@redhat.com
The buffers are large enough to cause machine stop to boot on small
memory systems.
Another benefit of these changes is that they also obsolete
CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER.
This patch (of 5):
When struct pages are allocated for sparse-vmemmap VA layout, we first try
to allocate one large buffer, and than if that fails allocate struct pages
for each section as we go.
The code that allocates buffer is uses global variables and is spread
across several call sites.
Cleanup the code by introducing three functions to handle the global
buffer:
sparse_buffer_init() initialize the buffer
sparse_buffer_fini() free the remaining part of the buffer
sparse_buffer_alloc() alloc from the buffer, and if buffer is empty
return NULL
Define these functions in sparse.c instead of sparse-vmemmap.c because
later we will use them for non-vmemmap sparse allocations as well.
[akpm@linux-foundation.org: use PTR_ALIGN()]
[akpm@linux-foundation.org: s/BUG_ON/WARN_ON/]
Link: http://lkml.kernel.org/r/20180712203730.8703-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When using 1GiB pages during early boot, use the new
memblock_virt_alloc_try_nid_raw() to allocate memory without zeroing it.
Zeroing out hundreds or thousands of GiB in a single core memset() call
is very slow, and can make early boot last upwards of 20-30 minutes on
multi TiB machines.
The memory does not need to be zero'd as the hugetlb pages are always
zero'd on page fault.
Tested: Booted with ~3800 1G pages, and it booted successfully in
roughly the same amount of time as with 0, as opposed to the 25+ minutes
it would take before.
Link: http://lkml.kernel.org/r/20180711213313.92481-1-cannonmatthews@google.com
Signed-off-by: Cannon Matthews <cannonmatthews@google.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts ee8f248d26 ("hugetlb: add phys addr to struct
huge_bootmem_page").
At one time powerpc used this field and supporting code. However that
was removed with commit 79cc38ded1 ("powerpc/mm/hugetlb: Add support
for reserving gigantic huge pages via kernel command line").
There are no users of this field and supporting code, so remove it.
Link: http://lkml.kernel.org/r/20180711195913.1294-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo has pointed out that since 27ae357fa8 ("mm, oom: fix concurrent
munlock and oom reaper unmap, v3") we have a strong synchronization
between the oom_killer and victim's exiting because both have to take
the oom_lock. Therefore the original heuristic to sleep for a short
time in out_of_memory doesn't serve the original purpose.
Moreover Tetsuo has noticed that the short sleep can be more harmful
than actually useful. Hammering the system with many processes can lead
to a starvation when the task holding the oom_lock can block for a long
time (minutes) and block any further progress because the oom_reaper
depends on the oom_lock as well.
Drop the short sleep from out_of_memory when we hold the lock. Keep the
sleep when the trylock fails to throttle the concurrent OOM paths a bit.
This should be solved in a more reasonable way (e.g. sleep proportional
to the time spent in the active reclaiming etc.) but this is much more
complex thing to achieve. This is a quick fixup to remove a stale code.
Link: http://lkml.kernel.org/r/20180709074706.30635-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cma_alloc() doesn't really support gfp flags other than __GFP_NOWARN, so
convert gfp_mask parameter to boolean no_warn parameter.
This will help to avoid giving false feeling that this function supports
standard gfp flags and callers can pass __GFP_ZERO to get zeroed buffer,
what has already been an issue: see commit dd65a941f6 ("arm64:
dma-mapping: clear buffers allocated with FORCE_CONTIGUOUS flag").
Link: http://lkml.kernel.org/r/20180709122019eucas1p2340da484acfcc932537e6014f4fd2c29~-sqTPJKij2939229392eucas1p2j@eucas1p2.samsung.com
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michał Nazarewicz <mina86@mina86.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There was a bug in Linux that could cause madvise (and mprotect?) system
calls to return to userspace without the TLB having been flushed for all
the pages involved.
This could happen when multiple threads of a process made simultaneous
madvise and/or mprotect calls.
This was noticed in the summer of 2017, at which time two solutions
were created:
56236a5955 ("mm: refactor TLB gathering API")
99baac21e4 ("mm: fix MADV_[FREE|DONTNEED] TLB flush miss problem")
and
4647706ebe ("mm: always flush VMA ranges affected by zap_page_range")
We need only one of these solutions, and the former appears to be a
little more efficient than the latter, so revert that one.
This reverts 4647706ebe ("mm: always flush VMA ranges affected by
zap_page_range")
Link: http://lkml.kernel.org/r/20180706131019.51e3a5f0@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In sparse_init(), two temporary pointer arrays, usemap_map and map_map
are allocated with the size of NR_MEM_SECTIONS. They are used to store
each memory section's usemap and mem map if marked as present. With the
help of these two arrays, continuous memory chunk is allocated for
usemap and memmap for memory sections on one node. This avoids too many
memory fragmentations. Like below diagram, '1' indicates the present
memory section, '0' means absent one. The number 'n' could be much
smaller than NR_MEM_SECTIONS on most of systems.
|1|1|1|1|0|0|0|0|1|1|0|0|...|1|0||1|0|...|1||0|1|...|0|
-------------------------------------------------------
0 1 2 3 4 5 i i+1 n-1 n
If we fail to populate the page tables to map one section's memmap, its
->section_mem_map will be cleared finally to indicate that it's not
present. After use, these two arrays will be released at the end of
sparse_init().
In 4-level paging mode, each array costs 4M which can be ignorable.
While in 5-level paging, they costs 256M each, 512M altogether. Kdump
kernel Usually only reserves very few memory, e.g 256M. So, even thouth
they are temporarily allocated, still not acceptable.
In fact, there's no need to allocate them with the size of
NR_MEM_SECTIONS. Since the ->section_mem_map clearing has been deferred
to the last, the number of present memory sections are kept the same
during sparse_init() until we finally clear out the memory section's
->section_mem_map if its usemap or memmap is not correctly handled.
Thus in the middle whenever for_each_present_section_nr() loop is taken,
the i-th present memory section is always the same one.
Here only allocate usemap_map and map_map with the size of
'nr_present_sections'. For the i-th present memory section, install its
usemap and memmap to usemap_map[i] and mam_map[i] during allocation.
Then in the last for_each_present_section_nr() loop which clears the
failed memory section's ->section_mem_map, fetch usemap and memmap from
usemap_map[] and map_map[] array and set them into mem_section[]
accordingly.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20180628062857.29658-5-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oscar Salvador <osalvador@techadventures.net>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's used to pass the size of map data unit into
alloc_usemap_and_memmap, and is preparation for next patch.
Link: http://lkml.kernel.org/r/20180228032657.32385-4-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In sparse_init(), if CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER=y, system
will allocate one continuous memory chunk for mem maps on one node and
populate the relevant page tables to map memory section one by one. If
fail to populate for a certain mem section, print warning and its
->section_mem_map will be cleared to cancel the marking of being
present. Like this, the number of mem sections marked as present could
become less during sparse_init() execution.
Here just defer the ms->section_mem_map clearing if failed to populate
its page tables until the last for_each_present_section_nr() loop. This
is in preparation for later optimizing the mem map allocation.
[akpm@linux-foundation.org: remove now-unused local `ms', per Oscar]
Link: http://lkml.kernel.org/r/20180228032657.32385-3-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/sparse: Optimize memmap allocation during
sparse_init()", v6.
In sparse_init(), two temporary pointer arrays, usemap_map and map_map
are allocated with the size of NR_MEM_SECTIONS. They are used to store
each memory section's usemap and mem map if marked as present. In
5-level paging mode, this will cost 512M memory though they will be
released at the end of sparse_init(). System with few memory, like
kdump kernel which usually only has about 256M, will fail to boot
because of allocation failure if CONFIG_X86_5LEVEL=y.
In this patchset, optimize the memmap allocation code to only use
usemap_map and map_map with the size of nr_present_sections. This makes
kdump kernel boot up with normal crashkernel='' setting when
CONFIG_X86_5LEVEL=y.
This patch (of 5):
nr_present_sections is used to record how many memory sections are
marked as present during system boot up, and will be used in the later
patch.
Link: http://lkml.kernel.org/r/20180228032657.32385-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch introduces a special value SHRINKER_REGISTERING to use instead
of list_empty() to differ a registering shrinker from unregistered
shrinker. Why we need that at all?
Shrinker registration is split in two parts. The first one is
prealloc_shrinker(), which allocates shrinker memory and reserves ID in
shrinker_idr. This function can fail. The second is
register_shrinker_prepared(), and it finalizes the registration. This
function actually makes shrinker available to be used from
shrink_slab(), and it can't fail.
One shrinker may be based on more then one LRU lists. So, we never
clear the bit in memcg shrinker maps, when (one of) corresponding LRU
list becomes empty, since other LRU lists may be not empty. See
superblock shrinker for example: it is based on two LRU lists:
s_inode_lru and s_dentry_lru. We do not want to clear shrinker bit,
when there are no inodes in s_inode_lru, as s_dentry_lru may contain
dentries.
Instead of that, we use special algorithm to detect shrinkers having no
elements at all its LRU lists, and this is made in shrink_slab_memcg().
See the comment in this function for the details.
Also, in shrink_slab_memcg() we clear shrinker bit in the map, when we
meet unregistered shrinker (bit is set, while there is no a shrinker in
IDR). Otherwise, we would have done that at the moment of shrinker
unregistration for all memcgs (and this looks worse, since iteration
over all memcg may take much time). Also this would have imposed
restrictions on shrinker unregistration order for its users: they would
have had to guarantee, there are no new elements after
unregister_shrinker() (otherwise, a new added element would have set a
bit).
So, if we meet a set bit in map and no shrinker in IDR when we're
iterating over the map in shrink_slab_memcg(), this means the
corresponding shrinker is unregistered, and we must clear the bit.
Another case is shrinker registration. We want two things there:
1) do_shrink_slab() can be called only for completely registered
shrinkers;
2) shrinker internal lists may be populated in any order with
register_shrinker_prepared() (let's talk on the example with sb). Both
of:
a)list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru); [cpu0]
memcg_set_shrinker_bit(); [cpu0]
...
register_shrinker_prepared(); [cpu1]
and
b)register_shrinker_prepared(); [cpu0]
...
list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru); [cpu1]
memcg_set_shrinker_bit(); [cpu1]
are legitimate. We don't want to impose restriction here and to
force people to use only (b) variant. We don't want to force people to
care, there is no elements in LRU lists before the shrinker is
completely registered. Internal users of LRU lists and shrinker code
are two different subsystems, and they have to be closed in themselves
each other.
In (a) case we have the bit set before shrinker is completely
registered. We don't want do_shrink_slab() is called at this moment, so
we have to detect such the registering shrinkers.
Before this patch list_empty() (shrinker is not linked to the list)
check was used for that. So, in (a) there could be a bit set, but we
don't call do_shrink_slab() unless shrinker is linked to the list. It's
just an indicator, I just overloaded linking to the list.
This was not the best solution, since it's better not to touch the
shrinker memory from shrink_slab_memcg() before it's completely
registered (this also will be useful in the future to make shrink_slab()
completely lockless).
So, this patch introduces better way to detect registering shrinker,
which allows not to dereference shrinker memory. It's just a ~0UL
value, which we insert into the IDR during ID allocation. After
shrinker is ready to be used, we insert actual shrinker pointer in the
IDR, and it becomes available to shrink_slab_memcg().
We can't use NULL instead of this new value for this purpose as:
shrink_slab_memcg() already uses NULL to detect unregistered shrinkers,
and we don't want the function sees NULL and clears the bit, otherwise
(a) won't work.
This is the only thing the patch makes: the better way to detect
registering shrinker. Nothing else this patch makes.
Also this gives a better assembler, but it's minor side of the patch:
Before:
callq <idr_find>
mov %rax,%r15
test %rax,%rax
je <shrink_slab_memcg+0x1d5>
mov 0x20(%rax),%rax
lea 0x20(%r15),%rdx
cmp %rax,%rdx
je <shrink_slab_memcg+0xbd>
mov 0x8(%rsp),%edx
mov %r15,%rsi
lea 0x10(%rsp),%rdi
callq <do_shrink_slab>
After:
callq <idr_find>
mov %rax,%r15
lea -0x1(%rax),%rax
cmp $0xfffffffffffffffd,%rax
ja <shrink_slab_memcg+0x1cd>
mov 0x8(%rsp),%edx
mov %r15,%rsi
lea 0x10(%rsp),%rdi
callq ffffffff810cefd0 <do_shrink_slab>
[ktkhai@virtuozzo.com: add #ifdef CONFIG_MEMCG_KMEM around idr_replace()]
Link: http://lkml.kernel.org/r/758b8fec-7573-47eb-b26a-7b2847ae7b8c@virtuozzo.com
Link: http://lkml.kernel.org/r/153355467546.11522.4518015068123480218.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In case of shrink_slab_memcg() we do not zero nid, when shrinker is not
numa-aware. This is not a real problem, since currently all memcg-aware
shrinkers are numa-aware too (we have two: super_block shrinker and
workingset shrinker), but something may change in the future.
Link: http://lkml.kernel.org/r/153320759911.18959.8842396230157677671.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid further unneed calls of do_shrink_slab() for shrinkers, which
already do not have any charged objects in a memcg, their bits have to
be cleared.
This patch introduces a lockless mechanism to do that without races
without parallel list lru add. After do_shrink_slab() returns
SHRINK_EMPTY the first time, we clear the bit and call it once again.
Then we restore the bit, if the new return value is different.
Note, that single smp_mb__after_atomic() in shrink_slab_memcg() covers
two situations:
1)list_lru_add() shrink_slab_memcg
list_add_tail() for_each_set_bit() <--- read bit
do_shrink_slab() <--- missed list update (no barrier)
<MB> <MB>
set_bit() do_shrink_slab() <--- seen list update
This situation, when the first do_shrink_slab() sees set bit, but it
doesn't see list update (i.e., race with the first element queueing), is
rare. So we don't add <MB> before the first call of do_shrink_slab()
instead of this to do not slow down generic case. Also, it's need the
second call as seen in below in (2).
2)list_lru_add() shrink_slab_memcg()
list_add_tail() ...
set_bit() ...
... for_each_set_bit()
do_shrink_slab() do_shrink_slab()
clear_bit() ...
... ...
list_lru_add() ...
list_add_tail() clear_bit()
<MB> <MB>
set_bit() do_shrink_slab()
The barriers guarantee that the second do_shrink_slab() in the right
side task sees list update if really cleared the bit. This case is
drawn in the code comment.
[Results/performance of the patchset]
After the whole patchset applied the below test shows signify increase
of performance:
$echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy
$mkdir /sys/fs/cgroup/memory/ct
$echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes
$for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i;
echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs;
mkdir -p s/$i; mount -t tmpfs $i s/$i;
touch s/$i/file; done
Then, 5 sequential calls of drop caches:
$time echo 3 > /proc/sys/vm/drop_caches
1)Before:
0.00user 13.78system 0:13.78elapsed 99%CPU
0.00user 5.59system 0:05.60elapsed 99%CPU
0.00user 5.48system 0:05.48elapsed 99%CPU
0.00user 8.35system 0:08.35elapsed 99%CPU
0.00user 8.34system 0:08.35elapsed 99%CPU
2)After
0.00user 1.10system 0:01.10elapsed 99%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
The results show the performance increases at least in 548 times.
Shakeel Butt tested this patchset with fork-bomb on his configuration:
> I created 255 memcgs, 255 ext4 mounts and made each memcg create a
> file containing few KiBs on corresponding mount. Then in a separate
> memcg of 200 MiB limit ran a fork-bomb.
>
> I ran the "perf record -ag -- sleep 60" and below are the results:
>
> Without the patch series:
> Samples: 4M of event 'cycles', Event count (approx.): 3279403076005
> + 36.40% fb.sh [kernel.kallsyms] [k] shrink_slab
> + 18.97% fb.sh [kernel.kallsyms] [k] list_lru_count_one
> + 6.75% fb.sh [kernel.kallsyms] [k] super_cache_count
> + 0.49% fb.sh [kernel.kallsyms] [k] down_read_trylock
> + 0.44% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter
> + 0.27% fb.sh [kernel.kallsyms] [k] up_read
> + 0.21% fb.sh [kernel.kallsyms] [k] osq_lock
> + 0.13% fb.sh [kernel.kallsyms] [k] shmem_unused_huge_count
> + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node_memcg
> + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node
>
> With the patch series:
> Samples: 4M of event 'cycles', Event count (approx.): 2756866824946
> + 47.49% fb.sh [kernel.kallsyms] [k] down_read_trylock
> + 30.72% fb.sh [kernel.kallsyms] [k] up_read
> + 9.51% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter
> + 1.69% fb.sh [kernel.kallsyms] [k] shrink_node_memcg
> + 1.35% fb.sh [kernel.kallsyms] [k] mem_cgroup_protected
> + 1.05% fb.sh [kernel.kallsyms] [k] queued_spin_lock_slowpath
> + 0.85% fb.sh [kernel.kallsyms] [k] _raw_spin_lock
> + 0.78% fb.sh [kernel.kallsyms] [k] lruvec_lru_size
> + 0.57% fb.sh [kernel.kallsyms] [k] shrink_node
> + 0.54% fb.sh [kernel.kallsyms] [k] queue_work_on
> + 0.46% fb.sh [kernel.kallsyms] [k] shrink_slab_memcg
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112561772.4097.11011071937553113003.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063070859.1818.11870882950920963480.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to distinguish the situations when shrinker has very small
amount of objects (see vfs_pressure_ratio() called from
super_cache_count()), and when it has no objects at all. Currently, in
the both of these cases, shrinker::count_objects() returns 0.
The patch introduces new SHRINK_EMPTY return value, which will be used
for "no objects at all" case. It's is a refactoring mostly, as
SHRINK_EMPTY is replaced by 0 by all callers of do_shrink_slab() in this
patch, and all the magic will happen in further.
Link: http://lkml.kernel.org/r/153063069574.1818.11037751256699341813.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch makes shrink_slab() be called for root_mem_cgroup in the same
way as it's called for the rest of cgroups. This simplifies the logic
and improves the readability.
[ktkhai@virtuozzo.com: wrote changelog]
Link: http://lkml.kernel.org/r/153063068338.1818.11496084754797453962.stgit@localhost.localdomain
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using the preparations made in previous patches, in case of memcg
shrink, we may avoid shrinkers, which are not set in memcg's shrinkers
bitmap. To do that, we separate iterations over memcg-aware and
!memcg-aware shrinkers, and memcg-aware shrinkers are chosen via
for_each_set_bit() from the bitmap. In case of big nodes, having many
isolated environments, this gives significant performance growth. See
next patches for the details.
Note that the patch does not respect to empty memcg shrinkers, since we
never clear the bitmap bits after we set it once. Their shrinkers will
be called again, with no shrinked objects as result. This functionality
is provided by next patches.
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112558507.4097.12713813335683345488.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063066653.1818.976035462801487910.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce set_shrinker_bit() function to set shrinker-related bit in
memcg shrinker bitmap, and set the bit after the first item is added and
in case of reparenting destroyed memcg's items.
This will allow next patch to make shrinkers be called only, in case of
they have charged objects at the moment, and to improve shrink_slab()
performance.
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112557572.4097.17315791419810749985.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063065671.1818.15914674956134687268.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is just refactoring to allow next patches to have lru pointer in
memcg_drain_list_lru_node().
Link: http://lkml.kernel.org/r/153063063164.1818.55009531386089350.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is just refactoring to allow the next patches to have dst_memcg
pointer in memcg_drain_list_lru_node().
Link: http://lkml.kernel.org/r/153063062118.1818.2761273817739499749.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is just refactoring to allow the next patches to have memcg pointer
in list_lru_from_kmem().
Link: http://lkml.kernel.org/r/153063060664.1818.9541345386733498582.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add list_lru::shrinker_id field and populate it by registered shrinker
id.
This will be used to set correct bit in memcg shrinkers map by lru code
in next patches, after there appeared the first related to memcg element
in list_lru.
Link: http://lkml.kernel.org/r/153063059758.1818.14866596416857717800.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Imagine a big node with many cpus, memory cgroups and containers. Let
we have 200 containers, every container has 10 mounts, and 10 cgroups.
All container tasks don't touch foreign containers mounts. If there is
intensive pages write, and global reclaim happens, a writing task has to
iterate over all memcgs to shrink slab, before it's able to go to
shrink_page_list().
Iteration over all the memcg slabs is very expensive: the task has to
visit 200 * 10 = 2000 shrinkers for every memcg, and since there are
2000 memcgs, the total calls are 2000 * 2000 = 4000000.
So, the shrinker makes 4 million do_shrink_slab() calls just to try to
isolate SWAP_CLUSTER_MAX pages in one of the actively writing memcg via
shrink_page_list(). I've observed a node spending almost 100% in
kernel, making useless iteration over already shrinked slab.
This patch adds bitmap of memcg-aware shrinkers to memcg. The size of
the bitmap depends on bitmap_nr_ids, and during memcg life it's
maintained to be enough to fit bitmap_nr_ids shrinkers. Every bit in
the map is related to corresponding shrinker id.
Next patches will maintain set bit only for really charged memcg. This
will allow shrink_slab() to increase its performance in significant way.
See the last patch for the numbers.
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112549031.4097.3576147070498769979.stgit@localhost.localdomain
[ktkhai@virtuozzo.com: add comment to mem_cgroup_css_online()]
Link: http://lkml.kernel.org/r/521f9e5f-c436-b388-fe83-4dc870bfb489@virtuozzo.com
Link: http://lkml.kernel.org/r/153063056619.1818.12550500883688681076.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Next patch requires these defines are above their current position, so
here they are moved to declarations.
Link: http://lkml.kernel.org/r/153063055665.1818.5200425793649695598.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce shrinker::id number, which is used to enumerate memcg-aware
shrinkers. The number start from 0, and the code tries to maintain it
as small as possible.
This will be used to represent a memcg-aware shrinkers in memcg
shrinkers map.
Since all memcg-aware shrinkers are based on list_lru, which is
per-memcg in case of !CONFIG_MEMCG_KMEM only, the new functionality will
be under this config option.
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112546435.4097.10607140323811756557.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063054586.1818.6041047871606697364.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce new config option, which is used to replace repeating
CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more
memcg+kmem related code, so let's keep the defines more clearly.
Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Improve shrink_slab() scalability (old complexity was O(n^2), new is O(n))", v8.
This patcheset solves the problem with slow shrink_slab() occuring on
the machines having many shrinkers and memory cgroups (i.e., with many
containers). The problem is complexity of shrink_slab() is O(n^2) and
it grows too fast with the growth of containers numbers.
Let us have 200 containers, and every container has 10 mounts and 10
cgroups. All container tasks are isolated, and they don't touch foreign
containers mounts.
In case of global reclaim, a task has to iterate all over the memcgs and
to call all the memcg-aware shrinkers for all of them. This means, the
task has to visit 200 * 10 = 2000 shrinkers for every memcg, and since
there are 2000 memcgs, the total calls of do_shrink_slab() are 2000 *
2000 = 4000000.
4 million calls are not a number operations, which can takes 1 cpu
cycle. E.g., super_cache_count() accesses at least two lists, and makes
arifmetical calculations. Even, if there are no charged objects, we do
these calculations, and replaces cpu caches by read memory. I observed
nodes spending almost 100% time in kernel, in case of intensive writing
and global reclaim. The writer consumes pages fast, but it's need to
shrink_slab() before the reclaimer reached shrink pages function (and
frees SWAP_CLUSTER_MAX pages). Even if there is no writing, the
iterations just waste the time, and slows reclaim down.
Let's see the small test below:
$echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy
$mkdir /sys/fs/cgroup/memory/ct
$echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes
$for i in `seq 0 4000`;
do mkdir /sys/fs/cgroup/memory/ct/$i;
echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs;
mkdir -p s/$i; mount -t tmpfs $i s/$i; touch s/$i/file;
done
Then, let's see drop caches time (5 sequential calls):
$time echo 3 > /proc/sys/vm/drop_caches
0.00user 13.78system 0:13.78elapsed 99%CPU
0.00user 5.59system 0:05.60elapsed 99%CPU
0.00user 5.48system 0:05.48elapsed 99%CPU
0.00user 8.35system 0:08.35elapsed 99%CPU
0.00user 8.34system 0:08.35elapsed 99%CPU
The last four calls don't actually shrink anything. So, the iterations
over slab shrinkers take 5.48 seconds. Not so good for scalability.
The patchset solves the problem by making shrink_slab() of O(n)
complexity. There are following functional actions:
1) Assign id to every registered memcg-aware shrinker.
2) Maintain per-memcgroup bitmap of memcg-aware shrinkers, and set a
shrinker-related bit after the first element is added to lru list
(also, when removed child memcg elements are reparanted).
3) Split memcg-aware shrinkers and !memcg-aware shrinkers, and call a
shrinker if its bit is set in memcg's shrinker bitmap. (Also, there is
a functionality to clear the bit, after last element is shrinked).
This gives significant performance increase. The result after patchset
is applied:
$time echo 3 > /proc/sys/vm/drop_caches
0.00user 1.10system 0:01.10elapsed 99%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
The results show the performance increases at least in 548 times.
So, the patchset makes shrink_slab() of less complexity and improves the
performance in such types of load I pointed. This will give a profit in
case of !global reclaim case, since there also will be less
do_shrink_slab() calls.
This patch (of 17):
These two pairs of blocks of code are under the same #ifdef #else
#endif.
Link: http://lkml.kernel.org/r/153063052519.1818.9393587113056959488.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Roman Gushchin <guro@fb.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Waiman Long <longman@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most functions in memblock already use phys_addr_t to represent a
physical address with __memblock_free_late() being an exception.
This patch replaces u64 with phys_addr_t in __memblock_free_late() and
switches several format strings from %llx to %pa to avoid casting from
phys_addr_t to u64.
Link: http://lkml.kernel.org/r/1530637506-1256-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparse_init_one_section() is being called from two sites: sparse_init()
and sparse_add_one_section(). The former calls it from a
for_each_present_section_nr() loop, and the latter marks the section as
present before calling it. This means that when
sparse_init_one_section() gets called, we already know that the section
is present. So there is no point to double check that in the function.
This removes the check and makes the function void.
[ross.zwisler@linux.intel.com: fix error path in sparse_add_one_section]
Link: http://lkml.kernel.org/r/20180706190658.6873-1-ross.zwisler@linux.intel.com
[ross.zwisler@linux.intel.com: simplification suggested by Oscar]
Link: http://lkml.kernel.org/r/20180706223358.742-1-ross.zwisler@linux.intel.com
Link: http://lkml.kernel.org/r/20180702154325.12196-1-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3812c8c8f3 ("mm: memcg: do not trap chargers with full
callstack on OOM") has changed the ENOMEM semantic of memcg charges.
Rather than invoking the oom killer from the charging context it delays
the oom killer to the page fault path (pagefault_out_of_memory). This
in turn means that many users (e.g. slab or g-u-p) will get ENOMEM when
the corresponding memcg hits the hard limit and the memcg is is OOM.
This is behavior is inconsistent with !memcg case where the oom killer
is invoked from the allocation context and the allocator keeps retrying
until it succeeds.
The difference in the behavior is user visible. mmap(MAP_POPULATE)
might result in not fully populated ranges while the mmap return code
doesn't tell that to the userspace. Random syscalls might fail with
ENOMEM etc.
The primary motivation of the different memcg oom semantic was the
deadlock avoidance. Things have changed since then, though. We have an
async oom teardown by the oom reaper now and so we do not have to rely
on the victim to tear down its memory anymore. Therefore we can return
to the original semantic as long as the memcg oom killer is not handed
over to the users space.
There is still one thing to be careful about here though. If the oom
killer is not able to make any forward progress - e.g. because there is
no eligible task to kill - then we have to bail out of the charge path
to prevent from same class of deadlocks. We have basically two options
here. Either we fail the charge with ENOMEM or force the charge and
allow overcharge. The first option has been considered more harmful
than useful because rare inconsistencies in the ENOMEM behavior is hard
to test for and error prone. Basically the same reason why the page
allocator doesn't fail allocations under such conditions. The later
might allow runaways but those should be really unlikely unless somebody
misconfigures the system. E.g. allowing to migrate tasks away from the
memcg to a different unlimited memcg with move_charge_at_immigrate
disabled.
Link: http://lkml.kernel.org/r/20180628151101.25307-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The deferred memory initialization relies on section definitions, e.g
PAGES_PER_SECTION, that are only available when CONFIG_SPARSEMEM=y on
most architectures.
Initially DEFERRED_STRUCT_PAGE_INIT depended on explicit
ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT configuration option, but since
the commit 2e3ca40f03 ("mm: relax deferred struct page
requirements") this requirement was relaxed and now it is possible to
enable DEFERRED_STRUCT_PAGE_INIT on architectures that support
DISCONTINGMEM and NO_BOOTMEM which causes build failures.
For instance, setting SMP=y and DEFERRED_STRUCT_PAGE_INIT=y on arc
causes the following build failure:
CC mm/page_alloc.o
mm/page_alloc.c: In function 'update_defer_init':
mm/page_alloc.c:321:14: error: 'PAGES_PER_SECTION'
undeclared (first use in this function); did you mean 'USEC_PER_SEC'?
(pfn & (PAGES_PER_SECTION - 1)) == 0) {
^~~~~~~~~~~~~~~~~
USEC_PER_SEC
mm/page_alloc.c:321:14: note: each undeclared identifier is reported only once for each function it appears in
In file included from include/linux/cache.h:5:0,
from include/linux/printk.h:9,
from include/linux/kernel.h:14,
from include/asm-generic/bug.h:18,
from arch/arc/include/asm/bug.h:32,
from include/linux/bug.h:5,
from include/linux/mmdebug.h:5,
from include/linux/mm.h:9,
from mm/page_alloc.c:18:
mm/page_alloc.c: In function 'deferred_grow_zone':
mm/page_alloc.c:1624:52: error: 'PAGES_PER_SECTION' undeclared (first use in this function); did you mean 'USEC_PER_SEC'?
unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
^
include/uapi/linux/kernel.h:11:47: note: in definition of macro '__ALIGN_KERNEL_MASK'
#define __ALIGN_KERNEL_MASK(x, mask) (((x) + (mask)) & ~(mask))
^~~~
include/linux/kernel.h:58:22: note: in expansion of macro '__ALIGN_KERNEL'
#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
^~~~~~~~~~~~~~
mm/page_alloc.c:1624:34: note: in expansion of macro 'ALIGN'
unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
^~~~~
In file included from include/asm-generic/bug.h:18:0,
from arch/arc/include/asm/bug.h:32,
from include/linux/bug.h:5,
from include/linux/mmdebug.h:5,
from include/linux/mm.h:9,
from mm/page_alloc.c:18:
mm/page_alloc.c: In function 'free_area_init_node':
mm/page_alloc.c:6379:50: error: 'PAGES_PER_SECTION' undeclared (first use in this function); did you mean 'USEC_PER_SEC'?
pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
^
include/linux/kernel.h:812:22: note: in definition of macro '__typecheck'
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
^
include/linux/kernel.h:836:24: note: in expansion of macro '__safe_cmp'
__builtin_choose_expr(__safe_cmp(x, y), \
^~~~~~~~~~
include/linux/kernel.h:904:27: note: in expansion of macro '__careful_cmp'
#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
^~~~~~~~~~~~~
mm/page_alloc.c:6379:29: note: in expansion of macro 'min_t'
pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
^~~~~
include/linux/kernel.h:836:2: error: first argument to '__builtin_choose_expr' not a constant
__builtin_choose_expr(__safe_cmp(x, y), \
^
include/linux/kernel.h:904:27: note: in expansion of macro '__careful_cmp'
#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
^~~~~~~~~~~~~
mm/page_alloc.c:6379:29: note: in expansion of macro 'min_t'
pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
^~~~~
scripts/Makefile.build:317: recipe for target 'mm/page_alloc.o' failed
Let's make the DEFERRED_STRUCT_PAGE_INIT explicitly depend on SPARSEMEM
as the systems that support DISCONTIGMEM do not seem to have that huge
amounts of memory that would make DEFERRED_STRUCT_PAGE_INIT relevant.
Link: http://lkml.kernel.org/r/1530279308-24988-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KASAN learns about hotadded memory via the memory hotplug notifier.
devm_memremap_pages() intentionally skips calling memory hotplug
notifiers. So KASAN doesn't know anything about new memory added by
devm_memremap_pages(). This causes a crash when KASAN tries to access
non-existent shadow memory:
BUG: unable to handle kernel paging request at ffffed0078000000
RIP: 0010:check_memory_region+0x82/0x1e0
Call Trace:
memcpy+0x1f/0x50
pmem_do_bvec+0x163/0x720
pmem_make_request+0x305/0xac0
generic_make_request+0x54f/0xcf0
submit_bio+0x9c/0x370
submit_bh_wbc+0x4c7/0x700
block_read_full_page+0x5ef/0x870
do_read_cache_page+0x2b8/0xb30
read_dev_sector+0xbd/0x3f0
read_lba.isra.0+0x277/0x670
efi_partition+0x41a/0x18f0
check_partition+0x30d/0x5e9
rescan_partitions+0x18c/0x840
__blkdev_get+0x859/0x1060
blkdev_get+0x23f/0x810
__device_add_disk+0x9c8/0xde0
pmem_attach_disk+0x9a8/0xf50
nvdimm_bus_probe+0xf3/0x3c0
driver_probe_device+0x493/0xbd0
bus_for_each_drv+0x118/0x1b0
__device_attach+0x1cd/0x2b0
bus_probe_device+0x1ac/0x260
device_add+0x90d/0x1380
nd_async_device_register+0xe/0x50
async_run_entry_fn+0xc3/0x5d0
process_one_work+0xa0a/0x1810
worker_thread+0x87/0xe80
kthread+0x2d7/0x390
ret_from_fork+0x3a/0x50
Add kasan_add_zero_shadow()/kasan_remove_zero_shadow() - post mm_init()
interface to map/unmap kasan_zero_page at requested virtual addresses.
And use it to add/remove the shadow memory for hotplugged/unplugged
device memory.
Link: http://lkml.kernel.org/r/20180629164932.740-1-aryabinin@virtuozzo.com
Fixes: 41e94a8513 ("add devm_memremap_pages")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
khugepaged_enter_vma_merge() passes a stale vma->vm_flags to
hugepage_vma_check(). The argument vm_flags contains the latest value.
Therefore, it is necessary to pass this vm_flags into
hugepage_vma_check().
With this bug, madvise(MADV_HUGEPAGE) for mmap files in shmem fails to
put memory in huge pages. Here is an example of failed madvise():
/* mount /dev/shm with huge=advise:
* mount -o remount,huge=advise /dev/shm */
/* create file /dev/shm/huge */
#define HUGE_FILE "/dev/shm/huge"
fd = open(HUGE_FILE, O_RDONLY);
ptr = mmap(NULL, FILE_SIZE, PROT_READ, MAP_PRIVATE, fd, 0);
ret = madvise(ptr, FILE_SIZE, MADV_HUGEPAGE);
madvise() will return 0, but this memory region is never put in huge
page (check from /proc/meminfo: ShmemHugePages).
Link: http://lkml.kernel.org/r/20180629181752.792831-1-songliubraving@fb.com
Fixes: 02b75dc8160d ("mm: thp: register mm for khugepaged when merging vma for shmem")
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed integer overflow is undefined according to the C standard. The
overflow in ksys_fadvise64_64() is deliberate, but since it is signed
overflow, UBSAN complains:
UBSAN: Undefined behaviour in mm/fadvise.c:76:10
signed integer overflow:
4 + 9223372036854775805 cannot be represented in type 'long long int'
Use unsigned types to do math. Unsigned overflow is defined so UBSAN
will not complain about it. This patch doesn't change generated code.
[akpm@linux-foundation.org: add comment explaining the casts]
Link: http://lkml.kernel.org/r/20180629184453.7614-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: <icytxw@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mutexes swap_slots_cache_mutex and swap_slots_cache_enable_mutex are
local to the source and do not need to be in global scope, so make them
static.
Cleans up sparse warnings:
symbol 'swap_slots_cache_mutex' was not declared. Should it be static?
symbol 'swap_slots_cache_enable_mutex' was not declared. Should it be static?
Link: http://lkml.kernel.org/r/20180624182536.4937-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The functions zs_page_isolate, zs_page_migrate, zs_page_putback,
lock_zspage, trylock_zspage and structure zsmalloc_aops are local to
source and do not need to be in global scope, so make them static.
Cleans up sparse warnings:
symbol 'zs_page_isolate' was not declared. Should it be static?
symbol 'zs_page_migrate' was not declared. Should it be static?
symbol 'zs_page_putback' was not declared. Should it be static?
symbol 'zsmalloc_aops' was not declared. Should it be static?
symbol 'lock_zspage' was not declared. Should it be static?
symbol 'trylock_zspage' was not declared. Should it be static?
[arnd@arndb.de: hide unused lock_zspage]
Link: http://lkml.kernel.org/r/20180706130924.3891230-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20180624213322.13776-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The buffer_head can consume a significant amount of system memory and is
directly related to the amount of page cache. In our production
environment we have observed that a lot of machines are spending a
significant amount of memory as buffer_head and can not be left as
system memory overhead.
Charging buffer_head is not as simple as adding __GFP_ACCOUNT to the
allocation. The buffer_heads can be allocated in a memcg different from
the memcg of the page for which buffer_heads are being allocated. One
concrete example is memory reclaim. The reclaim can trigger I/O of
pages of any memcg on the system. So, the right way to charge
buffer_head is to extract the memcg from the page for which buffer_heads
are being allocated and then use targeted memcg charging API.
[shakeelb@google.com: use __GFP_ACCOUNT for directed memcg charging]
Link: http://lkml.kernel.org/r/20180702220208.213380-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Directed kmem charging", v8.
The Linux kernel's memory cgroup allows limiting the memory usage of the
jobs running on the system to provide isolation between the jobs. All
the kernel memory allocated in the context of the job and marked with
__GFP_ACCOUNT will also be included in the memory usage and be limited
by the job's limit.
The kernel memory can only be charged to the memcg of the process in
whose context kernel memory was allocated. However there are cases
where the allocated kernel memory should be charged to the memcg
different from the current processes's memcg. This patch series
contains two such concrete use-cases i.e. fsnotify and buffer_head.
The fsnotify event objects can consume a lot of system memory for large
or unlimited queues if there is either no or slow listener. The events
are allocated in the context of the event producer. However they should
be charged to the event consumer. Similarly the buffer_head objects can
be allocated in a memcg different from the memcg of the page for which
buffer_head objects are being allocated.
To solve this issue, this patch series introduces mechanism to charge
kernel memory to a given memcg. In case of fsnotify events, the memcg
of the consumer can be used for charging and for buffer_head, the memcg
of the page can be charged. For directed charging, the caller can use
the scope API memalloc_[un]use_memcg() to specify the memcg to charge
for all the __GFP_ACCOUNT allocations within the scope.
This patch (of 2):
A lot of memory can be consumed by the events generated for the huge or
unlimited queues if there is either no or slow listener. This can cause
system level memory pressure or OOMs. So, it's better to account the
fsnotify kmem caches to the memcg of the listener.
However the listener can be in a different memcg than the memcg of the
producer and these allocations happen in the context of the event
producer. This patch introduces remote memcg charging API which the
producer can use to charge the allocations to the memcg of the listener.
There are seven fsnotify kmem caches and among them allocations from
dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and
inotify_inode_mark_cachep happens in the context of syscall from the
listener. So, SLAB_ACCOUNT is enough for these caches.
The objects from fsnotify_mark_connector_cachep are not accounted as
they are small compared to the notification mark or events and it is
unclear whom to account connector to since it is shared by all events
attached to the inode.
The allocations from the event caches happen in the context of the event
producer. For such caches we will need to remote charge the allocations
to the listener's memcg. Thus we save the memcg reference in the
fsnotify_group structure of the listener.
This patch has also moved the members of fsnotify_group to keep the size
same, at least for 64 bit build, even with additional member by filling
the holes.
[shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it]
Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some architectures just don't have PAGE_KERNEL_EXEC. The mm/nommu.c and
mm/vmalloc.c code have been using PAGE_KERNEL as a fallback for years.
Move this fallback to asm-generic.
Link: http://lkml.kernel.org/r/20180510185507.2439-3-mcgrof@kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
link_mem_sections() and walk_memory_range() share most of the code, so
we can use convert link_mem_sections() into a dummy function that calls
walk_memory_range() with a callback to register_mem_sect_under_node().
This patch converts register_mem_sect_under_node() in order to match a
walk_memory_range's callback, getting rid of the check_nid argument and
checking instead if the system is still boothing, since we only have to
check for the nid if the system is in such state.
Link: http://lkml.kernel.org/r/20180622111839.10071-4-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Suggested-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When hotplugging memory, it is possible that two calls are being made to
register_mem_sect_under_node().
One comes from __add_section()->hotplug_memory_register() and the other
from add_memory_resource()->link_mem_sections() if we had to register a
new node.
In case we had to register a new node, hotplug_memory_register() will
only handle/allocate the memory_block's since
register_mem_sect_under_node() will return right away because the node
it is not online yet.
I think it is better if we leave hotplug_memory_register() to
handle/allocate only memory_block's and make link_mem_sections() to call
register_mem_sect_under_node().
So this patch removes the call to register_mem_sect_under_node() from
hotplug_memory_register(), and moves the call to link_mem_sections() out
of the condition, so it will always be called. In this way we only have
one place where the memory sections are registered.
Link: http://lkml.kernel.org/r/20180622111839.10071-3-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a small cleanup for the memhotplug code. A lot more could be
done, but it is better to start somewhere. I tried to unify/remove
duplicated code.
The following is what this patchset does:
1) add_memory_resource() has code to allocate a node in case it was
offline. Since try_online_node has some code for that as well, I just
made add_memory_resource() to use that so we can remove duplicated
code.. This is better explained in patch 1/4.
2) register_mem_sect_under_node() will be called only from
link_mem_sections()
3) Make register_mem_sect_under_node() a callback of
walk_memory_range()
4) Drop unnecessary checks from register_mem_sect_under_node()
I have done some tests and I could not see anything broken because of
this patchset.
add_memory_resource() contains code to allocate a new node in case it is
necessary. Since try_online_node() also has some code for this purpose,
let us make use of that and remove duplicate code.
This introduces __try_online_node(), which is called by
add_memory_resource() and try_online_node(). __try_online_node() has
two new parameters, start_addr of the node, and if the node should be
onlined and registered right away. This is always wanted if we are
calling from do_cpu_up(), but not when we are calling from memhotplug
code. Nothing changes from the point of view of the users of
try_online_node(), since try_online_node passes start_addr=0 and
online_node=true to __try_online_node().
Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__list_lru_count_one() has a single callsite.
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shadow_lru_isolate() disables interrupts and acquires a lock. It could
use spin_lock_irq() instead. It also uses local_irq_enable() while it
could use spin_unlock_irq()/xa_unlock_irq().
Use proper suffix for lock/unlock in order to enable/disable interrupts
during release/acquire of a lock.
Link: http://lkml.kernel.org/r/20180622151221.28167-3-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: use irq locking suffix instead local_irq_disable()".
A small series which avoids using local_irq_disable()/local_irq_enable()
but instead does spin_lock_irq()/spin_unlock_irq() so it is within the
context of the lock which it belongs to. Patch #1 is a cleanup where
local_irq_.*() remained after the lock was removed.
This patch (of 2):
In 0c7c1bed7e ("mm: make counting of list_lru_one::nr_items lockless")
the
spin_lock(&nlru->lock);
statement was replaced with
rcu_read_lock();
in __list_lru_count_one(). The comment in count_shadow_nodes() says
that the local_irq_disable() is required because the lock must be
acquired with disabled interrupts and (spin_lock()) does not do so.
Since the lock is replaced with rcu_read_lock() the local_irq_disable()
is no longer needed. The code path is
list_lru_shrink_count()
-> list_lru_count_one()
-> __list_lru_count_one()
-> rcu_read_lock()
-> list_lru_from_memcg_idx()
-> rcu_read_unlock()
Remove the local_irq_disable() statement.
Link: http://lkml.kernel.org/r/20180622151221.28167-2-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no real reason to blow up just because the caller doesn't know
that __get_free_pages cannot return highmem pages. Simply fix that up
silently. Even if we have some confused users such a fixup will not be
harmful.
[akpm@linux-foundation.org: mask off __GFP_HIGHMEM]
Link: http://lkml.kernel.org/r/20180622162841.25114-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jiankang Chen <chenjiankang1@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is to take better advantage of the general huge page copying
optimization. Where, the target subpage will be copied last to avoid
the cache lines of target subpage to be evicted when copying other
subpages. This works better if the address of the target subpage is
available when copying huge page. So hugetlbfs page fault handlers are
changed to pass that information to hugetlb_cow(). This will benefit
workloads which don't access the begin of the hugetlbfs huge page after
the page fault under heavy cache contention.
Link: http://lkml.kernel.org/r/20180524005851.4079-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To take better advantage of general huge page copying optimization, the
target subpage address will be passed to hugetlb_cow(), then
copy_user_huge_page(). So we will use both target subpage address and
huge page size aligned address in hugetlb_cow(). To distinguish between
them, "haddr" is used for huge page size aligned address to be
consistent with Transparent Huge Page naming convention.
Now, only huge page size aligned address is used in hugetlb_cow(), so
the "address" is renamed to "haddr" in hugetlb_cow() in this patch.
Next patch will use target subpage address in hugetlb_cow() too.
The patch is just code cleanup without any functionality changes.
Link: http://lkml.kernel.org/r/20180524005851.4079-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge page helps to reduce TLB miss rate, but it has higher cache
footprint, sometimes this may cause some issue. For example, when
copying huge page on x86_64 platform, the cache footprint is 4M. But on
a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC
(last level cache). That is, in average, there are 2.5M LLC for each
core and 1.25M LLC for each thread.
If the cache contention is heavy when copying the huge page, and we copy
the huge page from the begin to the end, it is possible that the begin
of huge page is evicted from the cache after we finishing copying the
end of the huge page. And it is possible for the application to access
the begin of the huge page after copying the huge page.
In c79b57e462 ("mm: hugetlb: clear target sub-page last when clearing
huge page"), to keep the cache lines of the target subpage hot, the
order to clear the subpages in the huge page in clear_huge_page() is
changed to clearing the subpage which is furthest from the target
subpage firstly, and the target subpage last. The similar order
changing helps huge page copying too. That is implemented in this
patch. Because we have put the order algorithm into a separate
function, the implementation is quite simple.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on
transparent huge page.
With this patch, the throughput increases ~16.6% in vm-scalability
anon-cow-seq test case with 36 processes on a 2 socket Xeon E5 v3 2699
system (36 cores, 72 threads). The test case set
/sys/kernel/mm/transparent_hugepage/enabled to be always, mmap() a big
anonymous memory area and populate it, then forked 36 child processes,
each writes to the anonymous memory area from the begin to the end, so
cause copy on write. For each child process, other child processes
could be seen as other workloads which generate heavy cache pressure.
At the same time, the IPC (instruction per cycle) increased from 0.63 to
0.78, and the time spent in user space is reduced ~7.2%.
Link: http://lkml.kernel.org/r/20180524005851.4079-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, huge page: Copy target sub-page last when copy huge
page", v2.
Huge page helps to reduce TLB miss rate, but it has higher cache
footprint, sometimes this may cause some issue. For example, when
copying huge page on x86_64 platform, the cache footprint is 4M. But on
a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC
(last level cache). That is, in average, there are 2.5M LLC for each
core and 1.25M LLC for each thread.
If the cache contention is heavy when copying the huge page, and we copy
the huge page from the begin to the end, it is possible that the begin
of huge page is evicted from the cache after we finishing copying the
end of the huge page. And it is possible for the application to access
the begin of the huge page after copying the huge page.
In c79b57e462 ("mm: hugetlb: clear target sub-page last when clearing
huge page"), to keep the cache lines of the target subpage hot, the
order to clear the subpages in the huge page in clear_huge_page() is
changed to clearing the subpage which is furthest from the target
subpage firstly, and the target subpage last. The similar order
changing helps huge page copying too. That is implemented in this
patchset.
The patchset is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patchset, we have tested it with vm-scalability run on
transparent huge page.
With this patchset, the throughput increases ~16.6% in vm-scalability
anon-cow-seq test case with 36 processes on a 2 socket Xeon E5 v3 2699
system (36 cores, 72 threads). The test case set
/sys/kernel/mm/transparent_hugepage/enabled to be always, mmap() a big
anonymous memory area and populate it, then forked 36 child processes,
each writes to the anonymous memory area from the begin to the end, so
cause copy on write. For each child process, other child processes
could be seen as other workloads which generate heavy cache pressure.
At the same time, the IPC (instruction per cycle) increased from 0.63 to
0.78, and the time spent in user space is reduced ~7.2%.
This patch (of 4):
In c79b57e462 ("mm: hugetlb: clear target sub-page last when clearing
huge page"), to keep the cache lines of the target subpage hot, the
order to clear the subpages in the huge page in clear_huge_page() is
changed to clearing the subpage which is furthest from the target
subpage firstly, and the target subpage last. This optimization could
be applied to copying huge page too with the same order algorithm. To
avoid code duplication and reduce maintenance overhead, in this patch,
the order algorithm is moved out of clear_huge_page() into a separate
function: process_huge_page(). So that we can use it for copying huge
page too.
This will change the direct calls to clear_user_highpage() into the
indirect calls. But with the proper inline support of the compilers,
the indirect call will be optimized to be the direct call. Our tests
show no performance change with the patch.
This patch is a code cleanup without functionality change.
Link: http://lkml.kernel.org/r/20180524005851.4079-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed is used
to record the counter of collapsed THP, but it just gets inc'ed in
anonymous THP collapse path, do this for shmem THP collapse too.
Link: http://lkml.kernel.org/r/1529622949-75504-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When merging anonymous page vma, if the size of the vma can fit in at
least one hugepage, the mm will be registered for khugepaged for
collapsing THP in the future.
But it skips shmem vmas. Do so for shmem also, but not for file-private
mappings when merging a vma in order to increase the odds of collapsing
a hugepage via khugepaged.
hugepage_vma_check() sounds like a good fit to do the check. And move
the definition of it before khugepaged_enter_vma_merge() to avoid a
build error.
Link: http://lkml.kernel.org/r/1529697791-6950-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The argument "gfp_t flags" is not used in kasan_unpoison_element() and
remove_element(), so remove it.
Link: http://lkml.kernel.org/r/20180621070332.16633-1-baijiaju1990@gmail.com
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use smaller scan_control fields for order, priority, and reclaim_idx.
Convert fields from int => s8. All easily fit within a byte:
- allocation order range: 0..MAX_ORDER(64?)
- priority range: 0..12(DEF_PRIORITY)
- reclaim_idx range: 0..6(__MAX_NR_ZONES)
Since 6538b8ea88 ("x86_64: expand kernel stack to 16K") x86_64 stack
overflows are not an issue. But it's inefficient to use ints.
Use s8 (signed byte) rather than u8 to allow for loops like:
do {
...
} while (--sc.priority >= 0);
Add BUILD_BUG_ON to verify that s8 is capable of storing max values.
This reduces sizeof(struct scan_control):
- 96 => 80 bytes (x86_64)
- 68 => 56 bytes (i386)
scan_control structure field order is changed to utilize padding. After
this patch there is 1 bit of scan_control padding.
akpm: makes my vmscan.o's .text 572 bytes smaller as well.
Link: http://lkml.kernel.org/r/20180530061212.84915-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lookup_page_ext() finds 'struct page_ext' for a given page. It requires
only read access to the given struct page.
Current implemnentation takes 'struct page *' as an argument. It makes
compiler complain when 'const struct page *' passed.
Change the argument to 'const struct page *'.
Link: http://lkml.kernel.org/r/20180531135457.20167-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_seconds() is deprecated because it will lead to a 32-bit overflow in
2038 or 2106. We don't need the i_generation to be strictly monotonic
anyway, and other file systems like ext4 and xfs just use prandom_u32(),
so let's use the same one here.
If this is considered too slow, we could also use ktime_get_seconds() or
ktime_get_real_seconds() to keep the previous behavior. Both of these
return a time64_t and are not deprecated, but only return a unique value
once per second, and are predictable.
Link: http://lkml.kernel.org/r/20180620082556.581543-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_slowpath() has for a long time contained code to ignore
node restrictions from memory policies for high priority allocations.
The current code that resets the zonelist iterator however does
effectively nothing after commit 7810e6781e ("mm, page_alloc: do not
break __GFP_THISNODE by zonelist reset") removed a buggy zonelist reset.
Even before that commit, mempolicy restrictions were still not ignored,
as they are passed in ac->nodemask which is untouched by the code.
We can either remove the code, or make it work as intended. Since
ac->nodemask can be set from task's mempolicy via alloc_pages_current()
and thus also alloc_pages(), it may indeed affect kernel allocations,
and it makes sense to ignore it to allow progress for high priority
allocations.
Thus, this patch resets ac->nodemask to NULL in such cases. This
assumes all callers can handle it (i.e. there are no guarantees as in
the case of __GFP_THISNODE) which seems to be the case. The same
assumption is already present in check_retry_cpuset() for some time.
The expected effect is that high priority kernel allocations in the
context of userspace tasks (e.g. OOM victims) restricted by mempolicies
will have higher chance to succeed if they are restricted to nodes with
depleted memory, while there are other nodes with free memory left.
It's not a new intention, but for the first time the code will match the
intention, AFAICS. It was intended by commit 183f6371aa ("mm: ignore
mempolicies when using ALLOC_NO_WATERMARK") in v3.6 but I think it never
really worked, as mempolicy restriction was already encoded in nodemask,
not zonelist, at that time.
So originally that was for ALLOC_NO_WATERMARK only. Then it was
adjusted by e46e7b77c9 ("mm, page_alloc: recalculate the preferred
zoneref if the context can ignore memory policies") and cd04ae1e2d
("mm, oom: do not rely on TIF_MEMDIE for memory reserves access") to the
current state. So even GFP_ATOMIC would now ignore mempolicies after
the initial attempts fail - if the code worked as people thought it
does.
Link: http://lkml.kernel.org/r/20180612122624.8045-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit eca56ff906 ("mm, shmem: add internal shmem resident
memory accounting"), MM_SHMEMPAGES is added to separate the shmem
accounting from regular files. So, all shmem pages should be accounted
to MM_SHMEMPAGES instead of MM_FILEPAGES.
And, normal 4K shmem pages have been accounted to MM_SHMEMPAGES, so
shmem thp pages should be not treated differently. Account them to
MM_SHMEMPAGES via mm_counter_file() since shmem pages are swap backed to
keep consistent with normal 4K shmem pages.
This will not change the rss counter of processes since shmem pages are
still a part of it.
The /proc/pid/status and /proc/pid/statm counters will however be more
accurate wrt shmem usage, as originally intended. And as eca56ff906
("mm, shmem: add internal shmem resident memory accounting") mentioned,
oom also could report more accurate "shmem-rss".
Link: http://lkml.kernel.org/r/1529442518-17398-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The role of zero_resv_unavail() is to make sure that every struct page
that is allocated but is not backed by memory that is accessible by
kernel is zeroed and not in some uninitialized state.
Since struct pages are allocated in blocks (2M pages in x86 case), we
can skip pageblock_nr_pages at a time, when the first one is found to be
invalid.
This optimization may help since now on x86 every hole in e820 maps is
marked as reserved in memblock, and thus will go through this function.
This function is called before sched_clock() is initialized, so I used
my x86 early boot clock patches to measure the performance improvement.
With 1T hole on i7-8700 currently we would take 0.606918s of boot time,
but with this optimization 0.001103s.
Link: http://lkml.kernel.org/r/20180615155733.1175-1-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
Ref-> commit 1c8f422059 ("mm: change return type to vm_fault_t")
In this patch all the caller of handle_mm_fault() are changed to return
vm_fault_t type.
Link: http://lkml.kernel.org/r/20180617084810.GA6730@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: David S. Miller <davem@davemloft.net>
Cc: Richard Weinberger <richard@nod.at>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Levin, Alexander (Sasha Levin)" <alexander.levin@verizon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In SLUB, prefetch_freepointer() is used when allocating an object from
cache's freelist, to make sure the next object in the list is cache-hot,
since it's probable it will be allocated soon.
Commit 2482ddec67 ("mm: add SLUB free list pointer obfuscation") has
unintentionally changed the prefetch in a way where the prefetch is
turned to a real fetch, and only the next->next pointer is prefetched.
In case there is not a stream of allocations that would benefit from
prefetching, the extra real fetch might add a useless cache miss to the
allocation. Restore the previous behavior.
Link: http://lkml.kernel.org/r/20180809085245.22448-1-vbabka@suse.cz
Fixes: 2482ddec67 ("mm: add SLUB free list pointer obfuscation")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is reworked from an earlier patch that Dan has posted:
https://patchwork.kernel.org/patch/10131727/
VM_MIXEDMAP is used by dax to direct mm paths like vm_normal_page() that
the memory page it is dealing with is not typical memory from the linear
map. The get_user_pages_fast() path, since it does not resolve the vma,
is already using {pte,pmd}_devmap() as a stand-in for VM_MIXEDMAP, so we
use that as a VM_MIXEDMAP replacement in some locations. In the cases
where there is no pte to consult we fallback to using vma_is_dax() to
detect the VM_MIXEDMAP special case.
Now that we have explicit driver pfn_t-flag opt-in/opt-out for
get_user_pages() support for DAX we can stop setting VM_MIXEDMAP. This
also means we no longer need to worry about safely manipulating vm_flags
in a future where we support dynamically changing the dax mode of a
file.
DAX should also now be supported with madvise_behavior(), vma_merge(),
and copy_page_range().
This patch has been tested against ndctl unit test. It has also been
tested against xfstests commit: 625515d using fake pmem created by
memmap and no additional issues have been observed.
Link: http://lkml.kernel.org/r/152847720311.55924.16999195879201817653.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the source statements of arch-independent Kconfig files instead of
duplicating the includes in every arch/$(SRCARCH)/Kconfig.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJbdFsfAAoJED2LAQed4NsGxHsP/1tmA57OOOj8oGxO2OXhXVbr
Q0MZqCoV4bqMvK/hgCQdl9f+tp0m+j12x4xDLdVf4OqnTXMbqvPDu3uQVKvaj/k1
gHhsFA1tFgSbuJ8InltUsrPEQqbceeJsj50xHVAKijqI6LYeRPPSU7aE9obn+OzH
n2nd5sLKvMI/dqdJvW6i5KPydqTH3r3iA7D+ne/XQj0s0EMXvXUPmDT1+ijTnM4a
yfm6W5p7L/c3Ugf1Pz5PfnPl4BxBwZMfW5ie/UO8j5C6Rl0iPaOGuuHurocaaJb3
MefR/7NEAR3G8MhJyL2+70jbbwhjpqR2b5ooz1vpuulPHxjeU45BY60XIBWq1afR
ewsc12MMCYB695ieYWoHdaWgxD/jhffyRuajfpkXKIZEMgDxS03sMhdULXENVMx1
M0ZQ01g/NLWt9ti9DY3eTKB3ymOhnBa1sa77nGGUHkITq4DQKwPX1J9FP/HT6RNt
uOvzeH5kGzc7tqOlZAO0kHbwhQG1uqGcd78IYd4lgf/XfkSgDERTWjnJmnQbwr9m
3PFuST2u8eyO+8Lh1MK76TXOEkXsHMdFugPmb6SlgtMEPKGVLDPlsj52o/LFtgzl
eygfMiBFr2+ttkZ6IpNcpmQ4IztmDpz6XoMk3PqDAfUTUSYpCnq1gAEuff/eisCM
Odva1ZZaeQ7WpxhsP8rr
=gsQJ
-----END PGP SIGNATURE-----
Merge tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kconfig consolidation from Masahiro Yamada:
"Consolidation of Kconfig files by Christoph Hellwig.
Move the source statements of arch-independent Kconfig files instead
of duplicating the includes in every arch/$(SRCARCH)/Kconfig"
* tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kconfig: add a Memory Management options" menu
kconfig: move the "Executable file formats" menu to fs/Kconfig.binfmt
kconfig: use a menu in arch/Kconfig to reduce clutter
kconfig: include kernel/Kconfig.preempt from init/Kconfig
Kconfig: consolidate the "Kernel hacking" menu
kconfig: include common Kconfig files from top-level Kconfig
kconfig: remove duplicate SWAP symbol defintions
um: create a proper drivers Kconfig
um: cleanup Kconfig files
um: stop abusing KBUILD_KCONFIG
- add "hardened_usercopy=off" rare performance needs (Chris von Recklinghausen)
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAltx6hAWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJrrsEAChFhTgko1nNKYhks9KIIMZ7YWc
bCWpXMnBkmTbPa192a/4aDvvwuor5EFDavWY+vEciOvT2iY6h6uus/BzKB5JlHZ9
QsZS2uLr6SJX76Ri2r8alWT0hWovp/tFopXfnFt4fOHgSK+6rcWJRFzFefsZkcYd
xNEw2HnS0kYpgw0aEe3BsnsEn6u0/CxzyGTv6OLcnXU5riOkFUqm8ehLSA44aJW4
cfqWmdelfhvs0thR0rJItUUUmhVM3i6Zccvv0HCt6z8Xz9LIZgyxnnD9Ac7mGz8y
WjNPipLqXhu8/JVsd0Y6GK6b8bYh8uNID20fgr/6aWDZkOvUHe54/ChCkjs7cW6F
JWGn1hS1tg75rdw09tr4POVw4tUIe1JcqCfsJ7IzXA7oc6PsXzlGl8USDtK9f/fK
ryC60NQKo1dXGlY+18i1iw7HsMuWbtaIiWf8Zudy7JethDn3RbHshyF5tGpx0nFB
/qRTtMaC5WqIfZAbVb1Qou71gJzmS+k/RjltCO0AnhZrvFr0Qq3eQKRTkGhzOKRq
1dvOHb9ScNeehlQeaC+k0mm8ANf16gzXSGmGg3Z/7LfECbCqc7R7B767dN52hx2X
48P5cDNKUuXgHNk+p20Yr5m16oJDkAOxSHvFN9Kizy/eL7RbgOZREQcB4an9S+A0
yb6uQKU9CQ3n/NSZyA==
=j2xG
-----END PGP SIGNATURE-----
Merge tag 'hardened-usercopy-v4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardened usercopy updates from Kees Cook:
"This cleans up a minor Kconfig issue and adds a kernel boot option for
disabling hardened usercopy for distro users that may have corner-case
performance issues (e.g. high bandwidth small-packet UDP traffic).
Summary:
- drop unneeded Kconfig "select BUG" (Kamal Mostafa)
- add "hardened_usercopy=off" rare performance needs (Chris von
Recklinghausen)"
* tag 'hardened-usercopy-v4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
usercopy: Allow boot cmdline disabling of hardening
usercopy: Do not select BUG with HARDENED_USERCOPY
small fixes and updates. We also have new ktime_get_*() docs from Arnd,
some kernel-doc fixes, a new set of Italian translations (non so se vale la
pena, ma non fa male - speriamo bene), and some extensive early
memory-management documentation improvements from Mike Rapoport.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbcZVtAAoJEI3ONVYwIuV64ekP/jgTlMi/fErRu6zlsrsWgiIK
ir8ueCQ1OSiwOA+N2fUb+2+zlLlfTLgQ+o5IwmZk6rizG87fQ3Rp6i+bvYAZWITh
YUuls3VhtRlJZqG1EW7gww1Q2IhRO6GhcpsIamAvhrSLFPaCKiN3JomJi/X47Pfj
Ibl24HsruI2fDM1JwWRwCtE5J6vCL9lH1/5v4zVv7xdrVgTrwkZ/hAsE7HBNNat5
dSku2u9HSAXa4KR4sLWrVJ8UI5+fylwilz/57HhCeduQDwKCHE/mfhxLdqL4Oa4q
oHTCNq2zTUj4w7GTvHS1g0P3y/iWMYjAzH2is+BokilpIC65NwwsKx2ybZd3Srdh
zwP/kYk5U+mYSgdDlyNqwPCibw8KDXB3srKMzyQSN6tkosKCOHFSXF0Js0eupi7t
NqmGigl3Qozj1uvU6Wy7vh58u+GFeuO4PF566t2m70Jp0cWzuVKLrBvgNO1X37rB
aEBrpOYB/H54t/qf79IFW//pptWXFNZ3S9AgyDVIcmX5C2ihaCoaPNRTom+KbH/D
QEoH9rwWSoCi2DGoR83D+G8thCUfB4yfEGulSSIA4pUR7qvIR5rd1ZioI/qtgAHm
l7MjTbLpPwiMnpFkBrxxxlFFb4gbETakMBGYoYee8ww5WbQLu0qA93AbwIXyjhE8
mqCOLyBdCAZ0mNxqPSsc
=x/P0
-----END PGP SIGNATURE-----
Merge tag 'docs-4.19' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet:
"This was a moderately busy cycle for docs, with the usual collection
of small fixes and updates.
We also have new ktime_get_*() docs from Arnd, some kernel-doc fixes,
a new set of Italian translations (non so se vale la pena, ma non fa
male - speriamo bene), and some extensive early memory-management
documentation improvements from Mike Rapoport"
* tag 'docs-4.19' of git://git.lwn.net/linux: (52 commits)
Documentation: corrections to console/console.txt
Documentation: add ioctl number entry for v4l2-subdev.h
Remove gendered language from management style documentation
scripts/kernel-doc: Escape all literal braces in regexes
docs/mm: add description of boot time memory management
docs/mm: memblock: add overview documentation
docs/mm: memblock: add kernel-doc description for memblock types
docs/mm: memblock: add kernel-doc comments for memblock_add[_node]
docs/mm: memblock: update kernel-doc comments
mm/memblock: add a name for memblock flags enumeration
docs/mm: bootmem: add overview documentation
docs/mm: bootmem: add kernel-doc description of 'struct bootmem_data'
docs/mm: bootmem: fix kernel-doc warnings
docs/mm: nobootmem: fixup kernel-doc comments
mm/bootmem: drop duplicated kernel-doc comments
Documentation: vm.txt: Adding 'nr_hugepages_mempolicy' parameter description.
doc:it_IT: translation for kernel-hacking
docs: Fix the reference labels in Locking.rst
doc: tracing: Fix a typo of trace_stat
mm: Introduce new type vm_fault_t
...
- Add a new framework for CPU idle time injection (Daniel Lezcano).
- Add AVS support to the armada-37xx cpufreq driver (Gregory CLEMENT).
- Add support for current CPU frequency reporting to the ACPI CPPC
cpufreq driver (George Cherian).
- Rework the cooling device registration in the imx6q/thermal
driver (Bastian Stender).
- Make the pcc-cpufreq driver refuse to work with dynamic
scaling governors on systems with many CPUs to avoid
scalability issues with it (Rafael Wysocki).
- Fix the intel_pstate driver to report different maximum CPU
frequencies on systems where they really are different and to
ignore the turbo active ratio if hardware-managend P-states (HWP)
are in use; make it use the match_string() helper (Xie Yisheng,
Srinivas Pandruvada).
- Fix a minor deferred probe issue in the qcom-kryo cpufreq
driver (Niklas Cassel).
- Add a tracepoint for the tracking of frequency limits changes
(from Andriod) to the cpufreq core (Ruchi Kandoi).
- Fix a circular lock dependency between CPU hotplug and sysfs
locking in the cpufreq core reported by lockdep (Waiman Long).
- Avoid excessive error reports on driver registration failures
in the ARM cpuidle driver (Sudeep Holla).
- Add a new device links flag to the driver core to make links go
away automatically on supplier driver removal (Vivek Gautam).
- Eliminate potential race condition between system-wide power
management transitions and system shutdown (Pingfan Liu).
- Add a quirk to save NVS memory on system suspend for the ASUS
1025C laptop (Willy Tarreau).
- Make more systems use suspend-to-idle (instead of ACPI S3) by
default (Tristian Celestin).
- Get rid of stack VLA usage in the low-level hibernation code on
64-bit x86 (Kees Cook).
- Fix error handling in the hibernation core and mark an expected
fall-through switch in it (Chengguang Xu, Gustavo Silva).
- Extend the generic power domains (genpd) framework to support
attaching a device to a power domain by name (Ulf Hansson).
- Fix device reference counting and user limits initialization in
the devfreq core (Arvind Yadav, Matthias Kaehlcke).
- Fix a few issues in the rk3399_dmc devfreq driver and improve its
documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
- Drop a redundant error message from the exynos-ppmu devfreq driver
(Markus Elfring).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJbcqOqAAoJEILEb/54YlRxOxMP/2ZFvnXU0pey/VX/+TelLMS7
/ROVGQ+s75QP1c9P/3BjvnXc0dsMRLRFPog+7wyoG/2DbEIV25COyAYsmSE0TRni
XUaZO6YAx4/e3pm2AfamYbLCPvjw85eucHg5QJQ4b1mSVRNJOsNv+fUo6lmxwvnm
j9kHvfttFeIhoa/3wa7hbhPKLln46atnpVSxCIceY7L5EFNhkKBvQt6B5yx9geb9
QMY6ohgkyN+bnK9QySXX+trcWpzx1uGX0apI07NkX7n9QGFdU4lCW8lsAf8jMC3g
PPValTsUQsdRONUJJsrgqBioq4tvtgQWibyS2tfRrOGXYvHpJNpGmHVplfsrf/SE
cvlsciR47YbmrXZuqg/r8hql+qefNN16/rnZIZ9VnbcG806VBy2z8IzI5wcdWR7p
vzxhbCqVqOHcEdEwRwvuM2io67MWvkGtKsbCP+33DBh8SubpsECpKN4nIDboa3SE
CJ15RUqXnF6enmmfCKOoHZeu7iXWDz6Pi71XmRzaj9DqbITVV281IerqLgV3rbal
BVa53+202iD0IP+2b7KedGe/5ALlI97ffN0gB+L/eB832853DKSZQKzcvvpRhEN7
Iv2crnUwuQED9ns8P7hzp1Bk9CFCAOLW8UM43YwZRPWnmdeSsPJusJ5lzkAf7bss
wfsFoUE3RaY4msnuHyCh
=kv2M
-----END PGP SIGNATURE-----
Merge tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These add a new framework for CPU idle time injection, to be used by
all of the idle injection code in the kernel in the future, fix some
issues and add a number of relatively small extensions in multiple
places.
Specifics:
- Add a new framework for CPU idle time injection (Daniel Lezcano).
- Add AVS support to the armada-37xx cpufreq driver (Gregory
CLEMENT).
- Add support for current CPU frequency reporting to the ACPI CPPC
cpufreq driver (George Cherian).
- Rework the cooling device registration in the imx6q/thermal driver
(Bastian Stender).
- Make the pcc-cpufreq driver refuse to work with dynamic scaling
governors on systems with many CPUs to avoid scalability issues
with it (Rafael Wysocki).
- Fix the intel_pstate driver to report different maximum CPU
frequencies on systems where they really are different and to
ignore the turbo active ratio if hardware-managend P-states (HWP)
are in use; make it use the match_string() helper (Xie Yisheng,
Srinivas Pandruvada).
- Fix a minor deferred probe issue in the qcom-kryo cpufreq driver
(Niklas Cassel).
- Add a tracepoint for the tracking of frequency limits changes (from
Andriod) to the cpufreq core (Ruchi Kandoi).
- Fix a circular lock dependency between CPU hotplug and sysfs
locking in the cpufreq core reported by lockdep (Waiman Long).
- Avoid excessive error reports on driver registration failures in
the ARM cpuidle driver (Sudeep Holla).
- Add a new device links flag to the driver core to make links go
away automatically on supplier driver removal (Vivek Gautam).
- Eliminate potential race condition between system-wide power
management transitions and system shutdown (Pingfan Liu).
- Add a quirk to save NVS memory on system suspend for the ASUS 1025C
laptop (Willy Tarreau).
- Make more systems use suspend-to-idle (instead of ACPI S3) by
default (Tristian Celestin).
- Get rid of stack VLA usage in the low-level hibernation code on
64-bit x86 (Kees Cook).
- Fix error handling in the hibernation core and mark an expected
fall-through switch in it (Chengguang Xu, Gustavo Silva).
- Extend the generic power domains (genpd) framework to support
attaching a device to a power domain by name (Ulf Hansson).
- Fix device reference counting and user limits initialization in the
devfreq core (Arvind Yadav, Matthias Kaehlcke).
- Fix a few issues in the rk3399_dmc devfreq driver and improve its
documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
- Drop a redundant error message from the exynos-ppmu devfreq driver
(Markus Elfring)"
* tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (35 commits)
PM / reboot: Eliminate race between reboot and suspend
PM / hibernate: Mark expected switch fall-through
cpufreq: intel_pstate: Ignore turbo active ratio in HWP
cpufreq: Fix a circular lock dependency problem
cpu/hotplug: Add a cpus_read_trylock() function
x86/power/hibernate_64: Remove VLA usage
cpufreq: trace frequency limits change
cpufreq: intel_pstate: Show different max frequency with turbo 3 and HWP
cpufreq: pcc-cpufreq: Disable dynamic scaling on many-CPU systems
cpufreq: qcom-kryo: Silently error out on EPROBE_DEFER
cpufreq / CPPC: Add cpuinfo_cur_freq support for CPPC
cpufreq: armada-37xx: Add AVS support
dt-bindings: marvell: Add documentation for the Armada 3700 AVS binding
PM / devfreq: rk3399_dmc: Fix duplicated opp table on reload.
PM / devfreq: Init user limits from OPP limits, not viceversa
PM / devfreq: rk3399_dmc: fix spelling mistakes.
PM / devfreq: rk3399_dmc: do not print error when get supply and clk defer.
dt-bindings: devfreq: rk3399_dmc: move interrupts to be optional.
PM / devfreq: rk3399_dmc: remove wait for dcf irq event.
dt-bindings: clock: add rk3399 DDR3 standard speed bins.
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAltwvasQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpv65EACTq5gSLnJBI6ZPr1RAHruVDnjfzO2Veitl
tUtjm0XfWmnEiwQ3dYvnyhy99xbyaG3900d9BClCTlH6xaUdSiQkDpcKG/R2F36J
5mZitYukQcpFAQJWF8YKsTTE7JPl4VglCIDqYiC4+C3rOSVi8lrKn2qp4J4MMCFn
thRg3jCcq7c5s9Eigsop1pXWQSasubkXfk55Krcp4oybKYpYRKXXf74Mj14QAbwJ
QHN3VisyAUWoBRg7UQZo1Npe2oPk6bbnJypnjf8M0M2EnlvddEkIlHob91sodka8
6p4APOEu5cbyXOBCAQsw/koff14mb8aEadqeQA68WvXfIdX9ZjfxCX0OoC3sBEXk
yqJhZ0C980AM13zIBD8ejv4uasGcPca8W+47mE5P8sRiI++5kBsFWDZPCtUBna0X
2Kh24NsmEya9XRR5vsB84dsIPQ3tLMkxg/IgQRVDaSnfJz0c/+zm54xDyKRaFT4l
5iERk2WSkm9+8jNfVmWG0edrv6nRAXjpGwFfOCPh6/LCSCi4xQRULYN7sVzsX8ZK
FRjt24HftBI8mJbh4BtweJvg+ppVe1gAk3IO3HvxAQhv29Hz+uvFYe9kL+3N8LJA
Qosr9n9O4+wKYizJcDnw+5iPqCHfAwOm9th4pyedR+R7SmNcP3yNC8AbbheNBiF5
Zolos5H+JA==
=b9ib
-----END PGP SIGNATURE-----
Merge tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"First pull request for this merge window, there will also be a
followup request with some stragglers.
This pull request contains:
- Fix for a thundering heard issue in the wbt block code (Anchal
Agarwal)
- A few NVMe pull requests:
* Improved tracepoints (Keith)
* Larger inline data support for RDMA (Steve Wise)
* RDMA setup/teardown fixes (Sagi)
* Effects log suppor for NVMe target (Chaitanya Kulkarni)
* Buffered IO suppor for NVMe target (Chaitanya Kulkarni)
* TP4004 (ANA) support (Christoph)
* Various NVMe fixes
- Block io-latency controller support. Much needed support for
properly containing block devices. (Josef)
- Series improving how we handle sense information on the stack
(Kees)
- Lightnvm fixes and updates/improvements (Mathias/Javier et al)
- Zoned device support for null_blk (Matias)
- AIX partition fixes (Mauricio Faria de Oliveira)
- DIF checksum code made generic (Max Gurtovoy)
- Add support for discard in iostats (Michael Callahan / Tejun)
- Set of updates for BFQ (Paolo)
- Removal of async write support for bsg (Christoph)
- Bio page dirtying and clone fixups (Christoph)
- Set of bcache fix/changes (via Coly)
- Series improving blk-mq queue setup/teardown speed (Ming)
- Series improving merging performance on blk-mq (Ming)
- Lots of other fixes and cleanups from a slew of folks"
* tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block: (190 commits)
blkcg: Make blkg_root_lookup() work for queues in bypass mode
bcache: fix error setting writeback_rate through sysfs interface
null_blk: add lock drop/acquire annotation
Blk-throttle: reduce tail io latency when iops limit is enforced
block: paride: pd: mark expected switch fall-throughs
block: Ensure that a request queue is dissociated from the cgroup controller
block: Introduce blk_exit_queue()
blkcg: Introduce blkg_root_lookup()
block: Remove two superfluous #include directives
blk-mq: count the hctx as active before allocating tag
block: bvec_nr_vecs() returns value for wrong slab
bcache: trivial - remove tailing backslash in macro BTREE_FLAG
bcache: make the pr_err statement used for ENOENT only in sysfs_attatch section
bcache: set max writeback rate when I/O request is idle
bcache: add code comments for bset.c
bcache: fix mistaken comments in request.c
bcache: fix mistaken code comments in bcache.h
bcache: add a comment in super.c
bcache: avoid unncessary cache prefetch bch_btree_node_get()
bcache: display rate debug parameters to 0 when writeback is not running
...
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
Merge changes in the PM core, system-wide PM infrastructure, generic
power domains (genpd) framework, ACPI PM infrastructure and cpuidle
for 4.19.
* pm-core:
driver core: Add flag to autoremove device link on supplier unbind
driver core: Rename flag AUTOREMOVE to AUTOREMOVE_CONSUMER
* pm-domains:
PM / Domains: Introduce dev_pm_domain_attach_by_name()
PM / Domains: Introduce option to attach a device by name to genpd
PM / Domains: dt: Add a power-domain-names property
* pm-sleep:
PM / reboot: Eliminate race between reboot and suspend
PM / hibernate: Mark expected switch fall-through
x86/power/hibernate_64: Remove VLA usage
PM / hibernate: cast PAGE_SIZE to int when comparing with error code
* acpi-pm:
ACPI / PM: save NVS memory for ASUS 1025C laptop
ACPI / PM: Default to s2idle in all machines supporting LP S0
* pm-cpuidle:
ARM: cpuidle: silence error on driver registration failure
Pull vfs open-related updates from Al Viro:
- "do we need fput() or put_filp()" rules are gone - it's always fput()
now. We keep track of that state where it belongs - in ->f_mode.
- int *opened mess killed - in finish_open(), in ->atomic_open()
instances and in fs/namei.c code around do_last()/lookup_open()/atomic_open().
- alloc_file() wrappers with saner calling conventions are introduced
(alloc_file_clone() and alloc_file_pseudo()); callers converted, with
much simplification.
- while we are at it, saner calling conventions for path_init() and
link_path_walk(), simplifying things inside fs/namei.c (both on
open-related paths and elsewhere).
* 'work.open3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
few more cleanups of link_path_walk() callers
allow link_path_walk() to take ERR_PTR()
make path_init() unconditionally paired with terminate_walk()
document alloc_file() changes
make alloc_file() static
do_shmat(): grab shp->shm_file earlier, switch to alloc_file_clone()
new helper: alloc_file_clone()
create_pipe_files(): switch the first allocation to alloc_file_pseudo()
anon_inode_getfile(): switch to alloc_file_pseudo()
hugetlb_file_setup(): switch to alloc_file_pseudo()
ocxlflash_getfile(): switch to alloc_file_pseudo()
cxl_getfile(): switch to alloc_file_pseudo()
... and switch shmem_file_setup() to alloc_file_pseudo()
__shmem_file_setup(): reorder allocations
new wrapper: alloc_file_pseudo()
kill FILE_{CREATED,OPENED}
switch atomic_open() and lookup_open() to returning 0 in all success cases
document ->atomic_open() changes
->atomic_open(): return 0 in all success cases
get rid of 'opened' in path_openat() and the helpers downstream
...
Pull x86 PTI updates from Thomas Gleixner:
"The Speck brigade sadly provides yet another large set of patches
destroying the perfomance which we carefully built and preserved
- PTI support for 32bit PAE. The missing counter part to the 64bit
PTI code implemented by Joerg.
- A set of fixes for the Global Bit mechanics for non PCID CPUs which
were setting the Global Bit too widely and therefore possibly
exposing interesting memory needlessly.
- Protection against userspace-userspace SpectreRSB
- Support for the upcoming Enhanced IBRS mode, which is preferred
over IBRS. Unfortunately we dont know the performance impact of
this, but it's expected to be less horrible than the IBRS
hammering.
- Cleanups and simplifications"
* 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/mm/pti: Move user W+X check into pti_finalize()
x86/relocs: Add __end_rodata_aligned to S_REL
x86/mm/pti: Clone kernel-image on PTE level for 32 bit
x86/mm/pti: Don't clear permissions in pti_clone_pmd()
x86/mm/pti: Fix 32 bit PCID check
x86/mm/init: Remove freed kernel image areas from alias mapping
x86/mm/init: Add helper for freeing kernel image pages
x86/mm/init: Pass unconverted symbol addresses to free_init_pages()
mm: Allow non-direct-map arguments to free_reserved_area()
x86/mm/pti: Clear Global bit more aggressively
x86/speculation: Support Enhanced IBRS on future CPUs
x86/speculation: Protect against userspace-userspace spectreRSB
x86/kexec: Allocate 8k PGDs for PTI
Revert "perf/core: Make sure the ring-buffer is mapped in all page-tables"
x86/mm: Remove in_nmi() warning from vmalloc_fault()
x86/entry/32: Check for VM86 mode in slow-path check
perf/core: Make sure the ring-buffer is mapped in all page-tables
x86/pti: Check the return value of pti_user_pagetable_walk_pmd()
x86/pti: Check the return value of pti_user_pagetable_walk_p4d()
x86/entry/32: Add debug code to check entry/exit CR3
...
Pull x86 mm updates from Thomas Gleixner:
- Make lazy TLB mode even lazier to avoid pointless switch_mm()
operations, which reduces CPU load by 1-2% for memcache workloads
- Small cleanups and improvements all over the place
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Remove redundant check for kmem_cache_create()
arm/asm/tlb.h: Fix build error implicit func declaration
x86/mm/tlb: Make clear_asid_other() static
x86/mm/tlb: Skip atomic operations for 'init_mm' in switch_mm_irqs_off()
x86/mm/tlb: Always use lazy TLB mode
x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs
x86/mm/tlb: Make lazy TLB mode lazier
x86/mm/tlb: Restructure switch_mm_irqs_off()
x86/mm/tlb: Leave lazy TLB mode at page table free time
mm: Allocate the mm_cpumask (mm->cpu_bitmap[]) dynamically based on nr_cpu_ids
x86/mm: Add TLB purge to free pmd/pte page interfaces
ioremap: Update pgtable free interfaces with addr
x86/mm: Disable ioremap free page handling on x86-PAE
ioremap_prot() can return NULL which could lead to an oops.
Link: http://lkml.kernel.org/r/1533195441-58594-1-git-send-email-chenjie6@huawei.com
Signed-off-by: chen jie <chenjie6@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: chenjie <chenjie6@huawei.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At present, "systemctl suspend" and "shutdown" can run in parrallel. A
system can suspend after devices_shutdown(), and resume. Then the shutdown
task goes on to power off. This causes many devices are not really shut
off. Hence replacing reboot_mutex with system_transition_mutex (renamed
from pm_mutex) to achieve the exclusion. The renaming of pm_mutex as
system_transition_mutex can be better to reflect the purpose of the mutex.
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAltU8z0eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG5X8H/2fJr7m3k242+t76
sitwvx1eoPqTgryW59dRKm9IuXAGA+AjauvHzaz1QxomeQa50JghGWefD0eiJfkA
1AphQ/24EOiAbbVk084dAI/C2p122dE4D5Fy7CrfLnuouyrbFaZI5STbnrRct7sR
9deeYW0GDHO1Uenp4WDCj0baaqJqaevZ+7GG09DnWpya2nQtSkGBjqn6GpYmrfOU
mqFuxAX8mEOW6cwK16y/vYtnVjuuMAiZ63/OJ8AQ6d6ArGLwAsdn7f8Fn4I4tEr2
L0d3CRLUyegms4++Dmlu05k64buQu46WlPhjCZc5/Ts4kjrNxBuHejj2/jeSnUSt
vJJlibI=
=42a5
-----END PGP SIGNATURE-----
Merge tag 'v4.18-rc6' into for-4.19/block2
Pull in 4.18-rc6 to get the NVMe core AEN change to avoid a
merge conflict down the line.
Signed-of-by: Jens Axboe <axboe@kernel.dk>
free_reserved_area() takes pointers as arguments to show which addresses
should be freed. However, it does this in a somewhat ambiguous way. If it
gets a kernel direct map address, it always works. However, if it gets an
address that is part of the kernel image alias mapping, it can fail.
It fails if all of the following happen:
* The specified address is part of the kernel image alias
* Poisoning is requested (forcing a memset())
* The address is in a read-only portion of the kernel image
The memset() fails on the read-only mapping, of course.
free_reserved_area() *is* called both on the direct map and on kernel image
alias addresses. We've just lucked out thus far that the kernel image
alias areas it gets used on are read-write. I'm fairly sure this has been
just a happy accident.
It is quite easy to make free_reserved_area() work for all cases: just
convert the address to a direct map address before doing the memset(), and
do this unconditionally. There is little chance of a regression here
because we previously did a virt_to_page() on the address for the memset,
so we know these are not highmem pages for which virt_to_page() would fail.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@google.com
Cc: aarcange@redhat.com
Cc: jgross@suse.com
Cc: jpoimboe@redhat.com
Cc: gregkh@linuxfoundation.org
Cc: peterz@infradead.org
Cc: hughd@google.com
Cc: torvalds@linux-foundation.org
Cc: bp@alien8.de
Cc: luto@kernel.org
Cc: ak@linux.intel.com
Cc: Kees Cook <keescook@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20180802225826.1287AE3E@viggo.jf.intel.com
Commit 05ea88608d ("mm, hugetlbfs: introduce ->pagesize() to
vm_operations_struct") adds a new ->pagesize() function to
hugetlb_vm_ops, intended to cover all hugetlbfs backed files.
With System V shared memory model, if "huge page" is specified, the
"shared memory" is backed by hugetlbfs files, but the mappings initiated
via shmget/shmat have their original vm_ops overwritten with shm_vm_ops,
so we need to add a ->pagesize function to shm_vm_ops. Otherwise,
vma_kernel_pagesize() returns PAGE_SIZE given a hugetlbfs backed vma,
result in below BUG:
fs/hugetlbfs/inode.c
443 if (unlikely(page_mapped(page))) {
444 BUG_ON(truncate_op);
resulting in
hugetlbfs: oracle (4592): Using mlock ulimits for SHM_HUGETLB is deprecated
------------[ cut here ]------------
kernel BUG at fs/hugetlbfs/inode.c:444!
Modules linked in: nfsv3 rpcsec_gss_krb5 nfsv4 ...
CPU: 35 PID: 5583 Comm: oracle_5583_sbt Not tainted 4.14.35-1829.el7uek.x86_64 #2
RIP: 0010:remove_inode_hugepages+0x3db/0x3e2
....
Call Trace:
hugetlbfs_evict_inode+0x1e/0x3e
evict+0xdb/0x1af
iput+0x1a2/0x1f7
dentry_unlink_inode+0xc6/0xf0
__dentry_kill+0xd8/0x18d
dput+0x1b5/0x1ed
__fput+0x18b/0x216
____fput+0xe/0x10
task_work_run+0x90/0xa7
exit_to_usermode_loop+0xdd/0x116
do_syscall_64+0x187/0x1ae
entry_SYSCALL_64_after_hwframe+0x150/0x0
[jane.chu@oracle.com: relocate comment]
Link: http://lkml.kernel.org/r/20180731044831.26036-1-jane.chu@oracle.com
Link: http://lkml.kernel.org/r/20180727211727.5020-1-jane.chu@oracle.com
Fixes: 05ea88608d ("mm, hugetlbfs: introduce ->pagesize() to vm_operations_struct")
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Manfred Spraul <manfred@colorfullife.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In case of memcg_online_kmem() failure, memcg_cgroup::id remains hashed
in mem_cgroup_idr even after memcg memory is freed. This leads to leak
of ID in mem_cgroup_idr.
This patch adds removal into mem_cgroup_css_alloc(), which fixes the
problem. For better readability, it adds a generic helper which is used
in mem_cgroup_alloc() and mem_cgroup_id_put_many() as well.
Link: http://lkml.kernel.org/r/152354470916.22460.14397070748001974638.stgit@localhost.localdomain
Fixes 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* make memblock_discard description kernel-doc compatible
* add brief description for memblock_setclr_flag and describe its
parameters
* fixup return value descriptions
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Since kernel-doc does not like anonymous enums the name is required for
adding documentation. While on it, I've also updated all the function
declarations to use 'enum memblock_flags' instead of unsigned long.
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Add descriptions of the return value where they were missing and fixup the
syntax for present ones.
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
* add kernel-doc marking to free_bootmem_late() description
* add return value descriptions
* mention that address parameter of free_bootmem{_node} is a physical address
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Parts of the bootmem interfaces are duplicated in nobootmem.c along with
the kernel-doc comments. There is no point to keep two copies of the
comments, so let's drop the bootmem.c copy.
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This moves all the options under a proper menu.
Based on a patch from Randy Dunlap.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Delete the old VM_BUG_ON_VMA() from zap_pmd_range(), which asserted
that mmap_sem must be held when splitting an "anonymous" vma there.
Whether that's still strictly true nowadays is not entirely clear,
but the danger of sometimes crashing on the BUG is now fairly clear.
Even with the new stricter rules for anonymous vma marking, the
condition it checks for can possible trigger. Commit 44960f2a7b
("staging: ashmem: Fix SIGBUS crash when traversing mmaped ashmem
pages") is good, and originally I thought it was safe from that
VM_BUG_ON_VMA(), because the /dev/ashmem fd exposed to the user is
disconnected from the vm_file in the vma, and madvise(,,MADV_REMOVE)
insists on VM_SHARED.
But after I read John's earlier mail, drawing attention to the
vfs_fallocate() in there: I may be wrong, and I don't know if Android
has THP in the config anyway, but it looks to me like an
unmap_mapping_range() from ashmem's vfs_fallocate() could hit precisely
the VM_BUG_ON_VMA(), once it's vma_is_anonymous().
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ondemand_readahead() checks bdi->io_pages to cap the maximum pages
that need to be processed. This works until the readit section. If
we would do an async only readahead (async size = sync size) and
target is at beginning of window we expand the pages by another
get_next_ra_size() pages. Btrace for large reads shows that kernel
always issues a doubled size read at the beginning of processing.
Add an additional check for io_pages in the lower part of the func.
The fix helps devices that hard limit bio pages and rely on proper
handling of max_hw_read_sectors (e.g. older FusionIO cards). For
that reason it could qualify for stable.
Fixes: 9491ae4a ("mm: don't cap request size based on read-ahead setting")
Cc: stable@vger.kernel.org
Signed-off-by: Markus Stockhausen stockhausen@collogia.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
/sys/../zswap/stored_pages keeps rising in a zswap test with
"zswap.max_pool_percent=0" parameter. But it should not compress or
store pages any more since there is no space in the compressed pool.
Reproduce steps:
1. Boot kernel with "zswap.enabled=1"
2. Set the max_pool_percent to 0
# echo 0 > /sys/module/zswap/parameters/max_pool_percent
3. Do memory stress test to see if some pages have been compressed
# stress --vm 1 --vm-bytes $mem_available"M" --timeout 60s
4. Watching the 'stored_pages' number increasing or not
The root cause is:
When zswap_max_pool_percent is set to 0 via kernel parameter,
zswap_is_full() will always return true due to zswap_shrink(). But if
the shinking is able to reclain a page successfully the code then
proceeds to compressing/storing another page, so the value of
stored_pages will keep changing.
To solve the issue, this patch adds a zswap_is_full() check again after
zswap_shrink() to make sure it's now under the max_pool_percent, and to
not compress/store if we reached the limit.
Link: http://lkml.kernel.org/r/20180530103936.17812-1-liwang@redhat.com
Signed-off-by: Li Wang <liwang@redhat.com>
Acked-by: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Huang Ying <huang.ying.caritas@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure to initialize all VMAs properly, not only those which come
from vm_area_cachep.
Link: http://lkml.kernel.org/r/20180724121139.62570-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mce: Uncorrected hardware memory error in user-access at af34214200
{1}[Hardware Error]: It has been corrected by h/w and requires no further action
mce: [Hardware Error]: Machine check events logged
{1}[Hardware Error]: event severity: corrected
Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users
[..]
Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed
mce: Memory error not recovered
In contrast to typical memory, dev_pagemap pages may be dax mapped. With
dax there is no possibility to map in another page dynamically since dax
establishes 1:1 physical address to file offset associations. Also
dev_pagemap pages associated with NVDIMM / persistent memory devices can
internal remap/repair addresses with poison. While memory_failure()
assumes that it can discard typical poisoned pages and keep them
unmapped indefinitely, dev_pagemap pages may be returned to service
after the error is cleared.
Teach memory_failure() to detect and handle MEMORY_DEVICE_HOST
dev_pagemap pages that have poison consumed by userspace. Mark the
memory as UC instead of unmapping it completely to allow ongoing access
via the device driver (nd_pmem). Later, nd_pmem will grow support for
marking the page back to WB when the error is cleared.
Cc: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
In preparation for supporting memory_failure() for dax mappings, teach
collect_procs() to also determine the mapping size. Unlike typical
mappings the dax mapping size is determined by walking page-table
entries rather than using the compound-page accounting for THP pages.
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
The madvise_inject_error() routine uses get_user_pages() to lookup the
pfn and other information for injected error, but it does not release
that pin. The assumption is that failed pages should be taken out of
circulation.
However, for dax mappings it is not possible to take pages out of
circulation since they are 1:1 physically mapped as filesystem blocks,
or device-dax capacity. They also typically represent persistent memory
which has an error clearing capability.
In preparation for adding a special handler for dax mappings, shift the
responsibility of taking the page reference to memory_failure(). I.e.
drop the page reference and do not specify MF_COUNT_INCREASED to
memory_failure().
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
MEMORY_DEVICE_FS_DAX relies on typical page semantics whereby ->mapping
is only ever cleared by truncation, not final put.
Without this fix dax pages may forget their mapping association at the
end of every page pin event.
Move this atypical behavior that HMM wants into the HMM ->page_free()
callback.
Cc: <stable@vger.kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Fixes: d2c997c0f1 ("fs, dax: use page->mapping...")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Like vm_area_dup(), it initializes the anon_vma_chain head, and the
basic mm pointer.
The rest of the fields end up being different for different users,
although the plan is to also initialize the 'vm_ops' field to a dummy
entry.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
.. and re-initialize th eanon_vma_chain head.
This removes some boiler-plate from the users, and also makes it clear
why it didn't need use the 'zalloc()' version.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vm_area_struct is one of the most fundamental memory management
objects, but the management of it is entirely open-coded evertwhere,
ranging from allocation and freeing (using kmem_cache_[z]alloc and
kmem_cache_free) to initializing all the fields.
We want to unify this in order to end up having some unified
initialization of the vmas, and the first step to this is to at least
have basic allocation functions.
Right now those functions are literally just wrappers around the
kmem_cache_*() calls. This is a purely mechanical conversion:
# new vma:
kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL) -> vm_area_alloc()
# copy old vma
kmem_cache_alloc(vm_area_cachep, GFP_KERNEL) -> vm_area_dup(old)
# free vma
kmem_cache_free(vm_area_cachep, vma) -> vm_area_free(vma)
to the point where the old vma passed in to the vm_area_dup() function
isn't even used yet (because I've left all the old manual initialization
alone).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was reported that a kernel crash happened in mem_cgroup_iter(), which
can be triggered if the legacy cgroup-v1 non-hierarchical mode is used.
Unable to handle kernel paging request at virtual address 6b6b6b6b6b6b8f
......
Call trace:
mem_cgroup_iter+0x2e0/0x6d4
shrink_zone+0x8c/0x324
balance_pgdat+0x450/0x640
kswapd+0x130/0x4b8
kthread+0xe8/0xfc
ret_from_fork+0x10/0x20
mem_cgroup_iter():
......
if (css_tryget(css)) <-- crash here
break;
......
The crashing reason is that mem_cgroup_iter() uses the memcg object whose
pointer is stored in iter->position, which has been freed before and
filled with POISON_FREE(0x6b).
And the root cause of the use-after-free issue is that
invalidate_reclaim_iterators() fails to reset the value of iter->position
to NULL when the css of the memcg is released in non- hierarchical mode.
Link: http://lkml.kernel.org/r/1531994807-25639-1-git-send-email-jing.xia@unisoc.com
Fixes: 6df38689e0 ("mm: memcontrol: fix possible memcg leak due to interrupted reclaim")
Signed-off-by: Jing Xia <jing.xia.mail@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <chunyan.zhang@unisoc.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__split_huge_pmd_locked() must check if the cleared huge pmd was dirty,
and propagate that to PageDirty: otherwise, data may be lost when a huge
tmpfs page is modified then split then reclaimed.
How has this taken so long to be noticed? Because there was no problem
when the huge page is written by a write system call (shmem_write_end()
calls set_page_dirty()), nor when the page is allocated for a write fault
(fault_dirty_shared_page() calls set_page_dirty()); but when allocated for
a read fault (which MAP_POPULATE simulates), no set_page_dirty().
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1807111741430.1106@eggly.anvils
Fixes: d21b9e57c7 ("thp: handle file pages in split_huge_pmd()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Ashwin Chaugule <ashwinch@google.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 26f09e9b3a ("mm/memblock: add memblock memory allocation apis")
introduced two new function definitions:
memblock_virt_alloc_try_nid_nopanic()
memblock_virt_alloc_try_nid()
and commit ea1f5f3712 ("mm: define memblock_virt_alloc_try_nid_raw")
introduced the following function definition:
memblock_virt_alloc_try_nid_raw()
This commit adds an include of header file <linux/bootmem.h> to provide
the missing function prototypes. This silences the following gcc warning
(W=1):
mm/memblock.c:1334:15: warning: no previous prototype for `memblock_virt_alloc_try_nid_raw' [-Wmissing-prototypes]
mm/memblock.c:1371:15: warning: no previous prototype for `memblock_virt_alloc_try_nid_nopanic' [-Wmissing-prototypes]
mm/memblock.c:1407:15: warning: no previous prototype for `memblock_virt_alloc_try_nid' [-Wmissing-prototypes]
Also adds #ifdef blockers to prevent compilation failure on mips/ia64
where CONFIG_NO_BOOTMEM=n as could be seen in commit commit 6cc22dc08a
("revert "mm/memblock: add missing include <linux/bootmem.h>"").
Because Makefile already does:
obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o
The #ifdef has been simplified from:
#if defined(CONFIG_HAVE_MEMBLOCK) && defined(CONFIG_NO_BOOTMEM)
to simply:
#if defined(CONFIG_NO_BOOTMEM)
Link: http://lkml.kernel.org/r/20180626184422.24974-1-malat@debian.org
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Suggested-by: Tony Luck <tony.luck@intel.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This passes the information we already have at the call sight into
do_send_sig_info. Ultimately allowing for better handling of signals
sent to a group of processes during fork.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Given that dax / device-mapped pages are never subject to page
allocations remove them from consideration by the soft-offline
mechanism.
Reported-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Use new return type vm_fault_t for fault and huge_fault handler. For
now, this is just documenting that the function returns a VM_FAULT value
rather than an errno. Once all instances are converted, vm_fault_t will
become a distinct type.
Commit 1c8f422059 ("mm: change return type to vm_fault_t")
Previously vm_insert_mixed() returned an error code which driver mapped into
VM_FAULT_* type. The new function vmf_insert_mixed() will replace this
inefficiency by returning VM_FAULT_* type.
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Andy discovered that speculative memory accesses while in lazy
TLB mode can crash a system, when a CPU tries to dereference a
speculative access using memory contents that used to be valid
page table memory, but have since been reused for something else
and point into la-la land.
The latter problem can be prevented in two ways. The first is to
always send a TLB shootdown IPI to CPUs in lazy TLB mode, while
the second one is to only send the TLB shootdown at page table
freeing time.
The second should result in fewer IPIs, since operationgs like
mprotect and madvise are very common with some workloads, but
do not involve page table freeing. Also, on munmap, batching
of page table freeing covers much larger ranges of virtual
memory than the batching of unmapped user pages.
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-3-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The mm_struct always contains a cpumask bitmap, regardless of
CONFIG_CPUMASK_OFFSTACK. That means the first step can be to
simplify things, and simply have one bitmask at the end of the
mm_struct for the mm_cpumask.
This does necessitate moving everything else in mm_struct into
an anonymous sub-structure, which can be randomized when struct
randomization is enabled.
The second step is to determine the correct size for the
mm_struct slab object from the size of the mm_struct
(excluding the CPU bitmap) and the size the cpumask.
For init_mm we can simply allocate the maximum size this
kernel is compiled for, since we only have one init_mm
in the system, anyway.
Pointer magic by Mike Galbraith, to evade -Wstringop-overflow
getting confused by the dynamically sized array.
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-2-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Moving zero_resv_unavail before memmap_init_zone(), caused a regression on
x86-32.
The cause is that we access struct pages before they are allocated when
CONFIG_FLAT_NODE_MEM_MAP is used.
free_area_init_nodes()
zero_resv_unavail()
mm_zero_struct_page(pfn_to_page(pfn)); <- struct page is not alloced
free_area_init_node()
if CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map()
memblock_virt_alloc_node_nopanic() <- struct page alloced here
On the other hand memblock_virt_alloc_node_nopanic() zeroes all the memory
that it returns, so we do not need to do zero_resv_unavail() here.
Fixes: e181ae0c5d ("mm: zero unavailable pages before memmap init")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Matt Hart <matt@mattface.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc fixes from Andrew Morton:
"11 fixes"
* emailed patches form Andrew Morton <akpm@linux-foundation.org>:
reiserfs: fix buffer overflow with long warning messages
checkpatch: fix duplicate invalid vsprintf pointer extension '%p<foo>' messages
mm: do not bug_on on incorrect length in __mm_populate()
mm/memblock.c: do not complain about top-down allocations for !MEMORY_HOTREMOVE
fs, elf: make sure to page align bss in load_elf_library
x86/purgatory: add missing FORCE to Makefile target
net/9p/client.c: put refcount of trans_mod in error case in parse_opts()
mm: allow arch to supply p??_free_tlb functions
autofs: fix slab out of bounds read in getname_kernel()
fs/proc/task_mmu.c: fix Locked field in /proc/pid/smaps*
mm: do not drop unused pages when userfaultd is running
syzbot has noticed that a specially crafted library can easily hit
VM_BUG_ON in __mm_populate
kernel BUG at mm/gup.c:1242!
invalid opcode: 0000 [#1] SMP
CPU: 2 PID: 9667 Comm: a.out Not tainted 4.18.0-rc3 #644
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 05/19/2017
RIP: 0010:__mm_populate+0x1e2/0x1f0
Code: 55 d0 65 48 33 14 25 28 00 00 00 89 d8 75 21 48 83 c4 20 5b 41 5c 41 5d 41 5e 41 5f 5d c3 e8 75 18 f1 ff 0f 0b e8 6e 18 f1 ff <0f> 0b 31 db eb c9 e8 93 06 e0 ff 0f 1f 00 55 48 89 e5 53 48 89 fb
Call Trace:
vm_brk_flags+0xc3/0x100
vm_brk+0x1f/0x30
load_elf_library+0x281/0x2e0
__ia32_sys_uselib+0x170/0x1e0
do_fast_syscall_32+0xca/0x420
entry_SYSENTER_compat+0x70/0x7f
The reason is that the length of the new brk is not page aligned when we
try to populate the it. There is no reason to bug on that though.
do_brk_flags already aligns the length properly so the mapping is
expanded as it should. All we need is to tell mm_populate about it.
Besides that there is absolutely no reason to to bug_on in the first
place. The worst thing that could happen is that the last page wouldn't
get populated and that is far from putting system into an inconsistent
state.
Fix the issue by moving the length sanitization code from do_brk_flags
up to vm_brk_flags. The only other caller of do_brk_flags is brk
syscall entry and it makes sure to provide the proper length so t here
is no need for sanitation and so we can use do_brk_flags without it.
Also remove the bogus BUG_ONs.
[osalvador@techadventures.net: fix up vm_brk_flags s@request@len@]
Link: http://lkml.kernel.org/r/20180706090217.GI32658@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: syzbot <syzbot+5dcb560fe12aa5091c06@syzkaller.appspotmail.com>
Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Rapoport is converting architectures from bootmem to nobootmem
allocator. While doing so for m68k Geert has noticed that he gets a
scary looking warning:
WARNING: CPU: 0 PID: 0 at mm/memblock.c:230
memblock_find_in_range_node+0x11c/0x1be
memblock: bottom-up allocation failed, memory hotunplug may be affected
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted
4.18.0-rc3-atari-01343-gf2fb5f2e09a97a3c-dirty #7
Call Trace: __warn+0xa8/0xc2
kernel_pg_dir+0x0/0x1000
netdev_lower_get_next+0x2/0x22
warn_slowpath_fmt+0x2e/0x36
memblock_find_in_range_node+0x11c/0x1be
memblock_find_in_range_node+0x11c/0x1be
memblock_find_in_range_node+0x0/0x1be
vprintk_func+0x66/0x6e
memblock_virt_alloc_internal+0xd0/0x156
netdev_lower_get_next+0x2/0x22
netdev_lower_get_next+0x2/0x22
kernel_pg_dir+0x0/0x1000
memblock_virt_alloc_try_nid_nopanic+0x58/0x7a
netdev_lower_get_next+0x2/0x22
kernel_pg_dir+0x0/0x1000
kernel_pg_dir+0x0/0x1000
EXPTBL+0x234/0x400
EXPTBL+0x234/0x400
alloc_node_mem_map+0x4a/0x66
netdev_lower_get_next+0x2/0x22
free_area_init_node+0xe2/0x29e
EXPTBL+0x234/0x400
paging_init+0x430/0x462
kernel_pg_dir+0x0/0x1000
printk+0x0/0x1a
EXPTBL+0x234/0x400
setup_arch+0x1b8/0x22c
start_kernel+0x4a/0x40a
_sinittext+0x344/0x9e8
The warning is basically saying that a top-down allocation can break
memory hotremove because memblock allocation is not movable. But m68k
doesn't even support MEMORY_HOTREMOVE so there is no point to warn about
it.
Make the warning conditional only to configurations that care.
Link: http://lkml.kernel.org/r/20180706061750.GH32658@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Sam Creasey <sammy@sammy.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KVM guests on s390 can notify the host of unused pages. This can result
in pte_unused callbacks to be true for KVM guest memory.
If a page is unused (checked with pte_unused) we might drop this page
instead of paging it. This can have side-effects on userfaultd, when
the page in question was already migrated:
The next access of that page will trigger a fault and a user fault
instead of faulting in a new and empty zero page. As QEMU does not
expect a userfault on an already migrated page this migration will fail.
The most straightforward solution is to ignore the pte_unused hint if a
userfault context is active for this VMA.
Link: http://lkml.kernel.org/r/20180703171854.63981-1-borntraeger@de.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Cornelia Huck <cohuck@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We must zero struct pages for memory that is not backed by physical
memory, or kernel does not have access to.
Recently, there was a change which zeroed all memmap for all holes in
e820. Unfortunately, it introduced a bug that is discussed here:
https://www.spinics.net/lists/linux-mm/msg156764.html
Linus, also saw this bug on his machine, and confirmed that reverting
commit 124049decb ("x86/e820: put !E820_TYPE_RAM regions into
memblock.reserved") fixes the issue.
The problem is that we incorrectly zero some struct pages after they
were setup.
The fix is to zero unavailable struct pages prior to initializing of
struct pages.
A more detailed fix should come later that would avoid double zeroing
cases: one in __init_single_page(), the other one in
zero_resv_unavail().
Fixes: 124049decb ("x86/e820: put !E820_TYPE_RAM regions into memblock.reserved")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
... so that it could set both ->f_flags and ->f_mode, without callers
having to set ->f_flags manually.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We noticed in testing we'd get pretty bad latency stalls under heavy
pressure because read ahead would try to do its thing while the cgroup
was under severe pressure. If we're under this much pressure we want to
do as little IO as possible so we can still make progress on real work
if we're a throttled cgroup, so just skip readahead if our group is
under pressure.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Memory allocations can induce swapping via kswapd or direct reclaim. If
we are having IO done for us by kswapd and don't actually go into direct
reclaim we may never get scheduled for throttling. So instead check to
see if our cgroup is congested, and if so schedule the throttling.
Before we return to user space the throttling stuff will only throttle
if we actually required it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For backcharging we need to know who the page belongs to when swapping
it out. We don't worry about things that do ->rw_page (zram etc) at the
moment, we're only worried about pages that actually go to a block
device.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>