binutils is smart enough to know that a branch to a function
descriptor is actually a branch to the functions text address.
Alan tells me that binutils has been doing this for 9 years.
Signed-off-by: Anton Blanchard <anton@samba.org>
In:
commit 742415d6b6
Author: Michael Neuling <mikey@neuling.org>
powerpc: Turn syscall handler into macros
We converted the syscall entry code onto macros, but in doing this we
introduced some cruft that's never run and should never have been added.
This removes that code.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pull powerpc non-virtualized cpuidle from Ben Herrenschmidt:
"This is the branch I mentioned in my other pull request which contains
our improved cpuidle support for the "powernv" platform
(non-virtualized).
It adds support for the "fast sleep" feature of the processor which
provides higher power savings than our usual "nap" mode but at the
cost of losing the timers while asleep, and thus exploits the new
timer broadcast framework to work around that limitation.
It's based on a tip timer tree that you seem to have already merged"
* 'powernv-cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
cpuidle/powernv: Parse device tree to setup idle states
cpuidle/powernv: Add "Fast-Sleep" CPU idle state
powerpc/powernv: Add OPAL call to resync timebase on wakeup
powerpc/powernv: Add context management for Fast Sleep
powerpc: Split timer_interrupt() into timer handling and interrupt handling routines
powerpc: Implement tick broadcast IPI as a fixed IPI message
powerpc: Free up the slot of PPC_MSG_CALL_FUNC_SINGLE IPI message
While checking powersaving mode in machine check handler at 0x200, we
clobber CFAR register. Fix it by saving and restoring it during beq/bgt.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
During "Fast-sleep" and deeper power savings state, decrementer and
timebase could be stopped making it out of sync with rest
of the cores in the system.
Add a firmware call to request platform to resync timebase
using low level platform methods.
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Before adding Fast-Sleep into the cpuidle framework, some low level
support needs to be added to enable it. This includes saving and
restoring of certain registers at entry and exit time of this state
respectively just like we do in the NAP idle state.
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
[Changelog modified by Preeti U. Murthy <preeti@linux.vnet.ibm.com>]
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With recent machine check patch series changes, The exception vectors
starting from 0x4300 are now overflowing with allyesconfig. Fix that by
moving machine_check_common and machine_check_handle_early code out of
that region to make enough room for exception vector area.
Fixes this build error reportes by Stephen:
arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
arch/powerpc/kernel/exceptions-64s.S:958: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:959: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:983: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:984: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1003: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1013: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1014: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1015: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1016: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1017: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1018: Error: attempt to move .org backwards
[Moved the code further down as it introduced link errors due to too long
relative branches to the masked interrupts handlers from the exception
prologs. Also removed the useless feature section --BenH
]
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When machine check real mode handler can not continue into host kernel
in V mode, it returns from the interrupt and we loose MCE event which
never gets logged. In such a situation queue up the MCE event so that
we can log it later when we get back into host kernel with r1 pointing to
kernel stack e.g. during syscall exit.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We can get machine checks from any context. We need to make sure that
we handle all of them correctly. If we are coming from hypervisor user-space,
we can continue in host kernel in virtual mode to deliver the MC event.
If we got woken up from power-saving mode then we may come in with one of
the following state:
a. No state loss
b. Supervisor state loss
c. Hypervisor state loss
For (a) and (b), we go back to nap again. State (c) is fatal, keep spinning.
For all other context which we not sure of queue up the MCE event and return
from the interrupt.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Move machine check entry point into Linux. So far we were dependent on
firmware to decode MCE error details and handover the high level info to OS.
This patch introduces early machine check routine that saves the MCE
information (srr1, srr0, dar and dsisr) to the emergency stack. We allocate
stack frame on emergency stack and set the r1 accordingly. This allows us to be
prepared to take another exception without loosing context. One thing to note
here that, if we get another machine check while ME bit is off then we risk a
checkstop. Hence we restrict ourselves to save only MCE information and
register saved on PACA_EXMC save are before we turn the ME bit on. We use
paca->in_mce flag to differentiate between first entry and nested machine check
entry which helps proper use of emergency stack. We increment paca->in_mce
every time we enter in early machine check handler and decrement it while
leaving. When we enter machine check early handler first time (paca->in_mce ==
0), we are sure nobody is using MC emergency stack and allocate a stack frame
at the start of the emergency stack. During subsequent entry (paca->in_mce >
0), we know that r1 points inside emergency stack and we allocate separate
stack frame accordingly. This prevents us from clobbering MCE information
during nested machine checks.
The early machine check handler changes are placed under CPU_FTR_HVMODE
section. This makes sure that the early machine check handler will get executed
only in hypervisor kernel.
This is the code flow:
Machine Check Interrupt
|
V
0x200 vector ME=0, IR=0, DR=0
|
V
+-----------------------------------------------+
|machine_check_pSeries_early: | ME=0, IR=0, DR=0
| Alloc frame on emergency stack |
| Save srr1, srr0, dar and dsisr on stack |
+-----------------------------------------------+
|
(ME=1, IR=0, DR=0, RFID)
|
V
machine_check_handle_early ME=1, IR=0, DR=0
|
V
+-----------------------------------------------+
| machine_check_early (r3=pt_regs) | ME=1, IR=0, DR=0
| Things to do: (in next patches) |
| Flush SLB for SLB errors |
| Flush TLB for TLB errors |
| Decode and save MCE info |
+-----------------------------------------------+
|
(Fall through existing exception handler routine.)
|
V
machine_check_pSerie ME=1, IR=0, DR=0
|
(ME=1, IR=1, DR=1, RFID)
|
V
machine_check_common ME=1, IR=1, DR=1
.
.
.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch add a new callback kvmppc_ops. This will help us in enabling
both HV and PR KVM together in the same kernel. The actual change to
enable them together is done in the later patch in the series.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: squash in booke changes]
Signed-off-by: Alexander Graf <agraf@suse.de>
With later patches supporting PR kvm as a kernel module, the changes
that has to be built into the main kernel binary to enable PR KVM module
is now selected via KVM_BOOK3S_PR_POSSIBLE
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Both PR and HV KVM have separate, identical copies of the
kvmppc_skip_interrupt and kvmppc_skip_Hinterrupt handlers that are
used for the situation where an interrupt happens when loading the
instruction that caused an exit from the guest. To eliminate this
duplication and make it easier to compile in both PR and HV KVM,
this moves this code to arch/powerpc/kernel/exceptions-64s.S along
with other kernel interrupt handler code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This makes back traces and profiles easier to read.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The symbols that name some of our exception trampolines are ahead of the
location they name. In most cases this is OK because the code is tightly
packed, but in some cases it means the symbol floats ahead of the
correct location, eg:
c000000000000ea0 <performance_monitor_pSeries_1>:
...
c000000000000f00: 7d b2 43 a6 mtsprg 2,r13
Fix them all by moving the symbol after the set of the location.
While we're moving them anyway, rename them to loose the camelcase and
to make it clear that they are trampolines.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The denormalized exception handler (denorm_exception_hv) has a couple
of bugs. If the CONFIG_PPC_DENORMALISATION option is not selected,
or the HSRR1_DENORM bit is not set in HSRR1, we don't test whether the
interrupt occurred within a KVM guest. On the other hand, if the
HSRR1_DENORM bit is set and CONFIG_PPC_DENORMALISATION is enabled,
we corrupt the CFAR and PPR.
To correct these problems, this replaces the open-coded version of
EXCEPTION_PROLOG_1 that is there currently, and that is missing the
saving of PPR and CFAR values to the PACA, with an instance of
EXCEPTION_PROLOG_1. This adds an explicit KVMTEST after testing
whether the exception is one we can handle, and adds code to restore
the CFAR on exit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently if we take hypervisor facility unavaliable (from 0xf80/0x4f80) we
mark it as an OS facility unavaliable (0xf60) as the two share the same code
path.
The becomes a problem in facility_unavailable_exception() as we aren't able to
see the hypervisor facility unavailable exceptions.
Below fixes this by duplication the required macros.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Cc: <stable@vger.kernel.org> [v3.10]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQEcBAABAgAGBQJR0K2gAAoJEHm+PkMAQRiGWsEH+gMZSN1qRm34hZ82q1Tx7HvL
Eb/Gsl3Qw/7G2TlTqgjBUs36IdqV9O2cui/aa3/TfXvdvrx+0GlhRkEwQPc+ygcO
Mvoyoke4tT4+4jVFdCg1J8avREsa28/6oaHs0ZZxuVmJBBLTJH7aXaNsGn6eU1q9
9+p798MQis6naIiPC63somlZcCIiBhsuWCPWpEfLMn8G1HWAFTM3xXIbNBqe/brS
bmIOfhomlIZ5dcdaXGvjtP3+KJhkNDwhkPC4tVYu8JqqgSlrE+a+EGyEuuGqKk10
U+swiqyuD31uBI9ga54u/2FzSqDiAu6YOcMXevjo/m3g9XLdYbYLvN+nvN8alCQ=
=Ob6Z
-----END PGP SIGNATURE-----
Merge tag 'v3.10' into next
Merge 3.10 in order to get some of the last minute powerpc
changes, resolve conflicts and add additional fixes on top
of them.
Similar to the facility unavailble exception, except the facilities are
controlled by HFSCR.
Adapt the facility_unavailable_exception() so it can be called for
either the regular or Hypervisor facility unavailable exceptions.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
CC: <stable@vger.kernel.org> [v3.10]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The exception at 0xf60 is not the TM (Transactional Memory) unavailable
exception, it is the "Facility Unavailable Exception", rename it as
such.
Flesh out the handler to acknowledge the fact that it can be called for
many reasons, one of which is TM being unavailable.
Use STD_EXCEPTION_COMMON() for the exception body, for some reason we
had it open-coded, I've checked the generated code is identical.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
CC: <stable@vger.kernel.org> [v3.10]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
KVMTEST is a macro which checks whether we are taking an exception from
guest context, if so we branch out of line and eventually call into the
KVM code to handle the switch.
When running real guests on bare metal (HV KVM) the hardware ensures
that we never take a relocation on exception when transitioning from
guest to host. For PR KVM we disable relocation on exceptions ourself in
kvmppc_core_init_vm(), as of commit a413f47 "Disable relocation on
exceptions whenever PR KVM is active".
So convert all the RELON macros to use NOTEST, and drop the remaining
KVM_HANDLER() definitions we have for 0xe40 and 0xe80.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
CC: <stable@vger.kernel.org> [v3.9+]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We have relocation on exception handlers defined for h_data_storage and
h_instr_storage. However we will never take relocation on exceptions for
these because they can only come from a guest, and we never take
relocation on exceptions when we transition from guest to host.
We also have a handler for hmi_exception (Hypervisor Maintenance) which
is defined in the architecture to never be delivered with relocation on,
see see v2.07 Book III-S section 6.5.
So remove the handlers, leaving a branch to self just to be double extra
paranoid.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
CC: <stable@vger.kernel.org> [v3.9+]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Normally, the kernel emulates a few instructions that are unimplemented
on some processors (e.g. the old dcba instruction), or privileged (e.g.
mfpvr). The emulation of unimplemented instructions is currently not
working on the PowerNV platform. The reason is that on these machines,
unimplemented and illegal instructions cause a hypervisor emulation
assist interrupt, rather than a program interrupt as on older CPUs.
Our vector for the emulation assist interrupt just calls
program_check_exception() directly, without setting the bit in SRR1
that indicates an illegal instruction interrupt. This fixes it by
making the emulation assist interrupt set that bit before calling
program_check_interrupt(). With this, old programs that use no-longer
implemented instructions such as dcba now work again.
CC: <stable@vger.kernel.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
POWER8 can take a denormalisation exception on any VSX registers.
This does the extra 32 VSX registers we don't currently handle.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The following simplifies the denorm code by using macros to generate the long
stream of almost identical instructions.
This patch results in no changes to the output binary, but removes a lot of
lines of code.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We were not saving DAR and DSISR on MCE. Save then and also print the values
along with exception details in xmon.
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Building a 64-bit powerpc kernel with PR KVM enabled currently gives
this error:
AS arch/powerpc/kernel/head_64.o
arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
arch/powerpc/kernel/exceptions-64s.S:258: Error: attempt to move .org backwards
make[2]: *** [arch/powerpc/kernel/head_64.o] Error 1
This happens because the MASKABLE_EXCEPTION_PSERIES macro turns into
33 instructions, but we only have space for 32 at the decrementer
interrupt vector (from 0x900 to 0x980).
In the code generated by the MASKABLE_EXCEPTION_PSERIES macro, we
currently have two instances of the HMT_MEDIUM macro, which has the
effect of setting the SMT thread priority to medium. One is the
first instruction, and is overwritten by a no-op on processors where
we save the PPR (processor priority register), that is, POWER7 or
later. The other is after we have saved the PPR.
In order to reduce the code at 0x900 by one instruction, we omit the
first HMT_MEDIUM. On processors without SMT this will have no effect
since HMT_MEDIUM is a no-op there. On POWER5 and RS64 machines this
will mean that the first few instructions take a little longer in the
case where a decrementer interrupt occurs when the hardware thread is
running at low SMT priority. On POWER6 and later machines, the
hardware automatically boosts the thread priority when a decrementer
interrupt is taken if the thread priority was below medium, so this
change won't make any difference.
The alternative would be to branch out of line after saving the CFAR.
However, that would incur an extra overhead on all processors, whereas
the approach adopted here only adds overhead on older threaded processors.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
POWER8 allows us to take interrupts with the MMU on. This gives us a
second set of vectors offset at 0x4000.
Unfortunately when coping these vectors we missed checking for MSR HV
for hardware interrupts (0x500). This results in us trying to use
HSRR0/1 when HV=0, rather than SRR0/1 on HW IRQs
The below fixes this to check CPU_FTR_HVMODE when patching the code at
0x4500.
Also we remove the check for CPU_FTR_ARCH_206 since relocation on IRQs
are only available in arch 2.07 and beyond.
Thanks to benh for helping find this.
Signed-off-by: Michael Neuling <mikey@neuling.org>
CC: <stable@vger.kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit c1fb6816fb ("powerpc: Add
relocation on exception vector handlers") added two lines of code that
depend on the macro CONFIG_HVC_SCOM. That macro doesn't exist. Perhaps
it was intended to use CONFIG_PPC_SCOM here. But since
"maintence_interrupt" is a typo and there's nothing in arch/powerpc that
looks like maintenance_interrupt it seems best to just delete these
lines.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Acked-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
The FWNMI region is fixed at 0x7000 and the vector are now overflowing
that with allmodconfig. Fix that by moving slb_miss_realmode code out
of that region as it doesn't need to be that close to the call sites
(it is a _GLOBAL function)
Fixes this build error:
arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
arch/powerpc/kernel/exceptions-64s.S:1304: Error: attempt to move .org backwards
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Now we use ESID_BITS of kernel address to build proto vsid. So rename
USER_ESIT_BITS to ESID_BITS
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: <stable@vger.kernel.org> [v3.8]
This patch change the kernel VSID range so that we limit VSID_BITS to 37.
This enables us to support 64TB with 65 bit VA (37+28). Without this patch
we have boot hangs on platforms that only support 65 bit VA.
With this patch we now have proto vsid generated as below:
We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
from mmu context id and effective segment id of the address.
For user processes max context id is limited to ((1ul << 19) - 5)
for kernel space, we use the top 4 context ids to map address as below
0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: <stable@vger.kernel.org> [v3.8]
Currently we use the link register to branch up high in the early MMU on
syscall entry path. Unfortunately, this trashes the link stack as the
address we are going to is not associated with the earlier mflr.
This patch simply converts us to used the count register (volatile over
syscalls anyway) instead. This is much better at predicting in this
scenario and doesn't trash link stack causing a bunch of additional
branch mispredicts later. Benchmarking this on POWER8 saves a bunch of
cycles on Anton's null syscall benchmark here:
http://ozlabs.org/~anton/junkcode/null_syscall.c
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This hooks the new transactional memory code into context switching, FP/VMX/VMX
unavailable and exception return.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
These should never happen since we always turn on MSR TM when in userspace. We
don't do lazy TM.
Hence if we hit this, we barf and kill the task as something's gone horribly
wrong.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Some of the interrupt vectors on 64-bit POWER server processors are
only 32 bytes long, which is not enough for the full first-level
interrupt handler. For these we currently just have a branch to an
out-of-line handler. However, this means that we corrupt the CFAR
(come-from address register) on POWER7 and later processors.
To fix this, we split the EXCEPTION_PROLOG_1 macro into two pieces:
EXCEPTION_PROLOG_0 contains the part up to the point where the CFAR
is saved in the PACA, and EXCEPTION_PROLOG_1 contains the rest. We
then put EXCEPTION_PROLOG_0 in the short interrupt vectors before
we branch to the out-of-line handler, which contains the rest of the
first-level interrupt handler. To facilitate this, we define new
_OOL (out of line) variants of STD_EXCEPTION_PSERIES, etc.
In order to get EXCEPTION_PROLOG_0 to be short enough, i.e., no more
than 6 instructions, it was necessary to move the stores that move
the PPR and CFAR values into the PACA into __EXCEPTION_PROLOG_1 and
to get rid of one of the two HMT_MEDIUM instructions. Previously
there was a HMT_MEDIUM_PPR_DISCARD before the prolog, which was
nop'd out on processors with the PPR (POWER7 and later), and then
another HMT_MEDIUM inside the HMT_MEDIUM_PPR_SAVE macro call inside
__EXCEPTION_PROLOG_1, which was nop'd out on processors without PPR.
Now the HMT_MEDIUM inside EXCEPTION_PROLOG_0 is there unconditionally
and the HMT_MEDIUM_PPR_DISCARD is not strictly necessary, although
this leaves it in for the interrupt vectors where there is room for
it.
Previously we had a handler for hypervisor maintenance interrupts at
0xe50, which doesn't leave enough room for the vector for hypervisor
emulation assist interrupts at 0xe40, since we need 8 instructions.
The 0xe50 vector was only used on POWER6, as the HMI vector was moved
to 0xe60 on POWER7. Since we don't support running in hypervisor mode
on POWER6, we just remove the handler at 0xe50.
This also changes denorm_exception_hv to use EXCEPTION_PROLOG_0
instead of open-coding it, and removes the HMT_MEDIUM_PPR_DISCARD
from the relocation-on vectors (since any CPU that supports
relocation-on interrupts also has the PPR).
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The Cell processor doesn't support relocation-on interrupts, so we
don't need relocation-on versions of the interrupt vectors that are
purely Cell-specific. This removes them.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The FWNMI region is fixed at 0x7000 and the vector are now
overflowing that with some configurations. Fix that by moving
some hash management code out of that region as it doesn't need
to be that close to the call sites (isn't accessed using
conditional branches).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This is a rewrite so that we don't assume we are using the DABR throughout the
code. We now use the arch_hw_breakpoint to store the breakpoint in a generic
manner in the thread_struct, rather than storing the raw DABR value.
The ptrace GET/SET_DEBUGREG interface currently passes the raw DABR in from
userspace. We keep this functionality, so that future changes (like the POWER8
DAWR), will still fake the DABR to userspace.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[PATCH 6/6] powerpc: Implement PPR save/restore
When the task enters in to kernel space, the user defined priority (PPR)
will be saved in to PACA at the beginning of first level exception
vector and then copy from PACA to thread_info in second level vector.
PPR will be restored from thread_info before exits the kernel space.
P7/P8 temporarily raises the thread priority to higher level during
exception until the program executes HMT_* calls. But it will not modify
PPR register. So we save PPR value whenever some register is available
to use and then calls HMT_MEDIUM to increase the priority. This feature
supports on P7 or later processors.
We save/ restore PPR for all exception vectors except system call entry.
GLIBC will be saving / restore for system calls. So the default PPR
value (3) will be set for the system call exit when the task returned
to the user space.
Signed-off-by: Haren Myneni <haren@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds the logic to properly handle doorbells that come in when
interrupts have been soft disabled and to replay them when interrupts
are re-enabled:
- masked_##_H##interrupt is modified to leave interrupts enabled when a
doorbell has come in since doorbells are edge sensitive and as such
won't be automatically re-raised.
- __check_irq_replay now tests if a doorbell happened on book3s, and
returns either 0xe80 or 0xa00 depending on whether we are the
hypervisor or not.
- restore_check_irq_replay now tests for the two possible server
doorbell vector numbers to replay.
- __replay_interrupt also adds tests for the two server doorbell vector
numbers, and is modified to use a compare instruction rather than an
andi. on the single bit difference between 0x500 and 0x900.
The last two use a CPU feature section to avoid needlessly testing
against the hypervisor vector if it is not the hypervisor, and vice
versa.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Directed Privileged Doorbell Interrupts come in at 0xa00 (or
0xc000000000004a00 if relocation on exception is enabled), so add
exception vectors at these locations.
If doorbell support is not compiled in we handle it as an
unknown_exception.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Tested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Directed Hypervisor Doorbell Interrupts come in at 0xe80 (or
0xc000000000004e80 if relocation on exceptions is enabled), so add
exception vectors at these locations.
If doorbell support is not compiled in we handle it as an
unknown_exception.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Tested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
POWER8/v2.07 allows exceptions to be taken with the MMU still on.
A new set of exception vectors is added at 0xc000_0000_0000_4xxx. When the HW
takes us here, MSR IR/DR will be set already and we no longer need a costly
RFID to turn the MMU back on again.
The original 0x0 based exception vectors remain for when the HW can't leave the
MMU on. Examples of this are when we can't trust the current MMU mappings,
like when we are changing from guest to hypervisor (HV 0 -> 1) or when the MMU
was off already. In these cases the HW will take us to the original 0x0 based
exception vectors with the MMU off as before.
This uses the new macros added previously too implement these new execption
vectors at 0xc000_0000_0000_4xxx. We exit these exception vectors using
mflr/blr (rather than mtspr SSR0/RFID), since we don't need the costly MMU
switch anymore.
This moves the __end_interrupts marker down past these new 0x4000 vectors since
they will need to be copied down to 0x0 when the kernel is not at 0x0.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
POWER8/v2.07 allows exceptions to be taken with the MMU still on.
A new set of exception vectors is added at 0xc000_0000_0000_4xxx. When the HW
takes us here, MSR IR/DR will be set already and we no longer need a costly
RFID to turn the MMU back on again.
The original 0x0 based exception vectors remain for when the HW can't leave the
MMU on. Examples of this are when we can't trust the current the MMU mappings,
like when we are changing from guest to hypervisor (HV 0 -> 1) or when the MMU
was off already. In these cases the HW will take us to the original 0x0 based
exception vectors with the MMU off as before.
The below macros are copies of the macros used at the 0x0 offset but modified
to handle the MMU being on. In these macros we use the link register to jump
to the secondary handlers rather than using RFID (RFID was also use to turn on
the MMU).
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This turns the syscall handler into macros as we are going to want to reuse
them again later.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
If we change load_hander() to use an ori instead of addi, we can load handlers
upto 64k away provided we are still 64k aligned.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This removes the large gap between 0x1800 and 0x3000.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Remove redundancy spaces and make tab usage consistent.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>