Commit dca1a4b5ff ("clk: at91: keep slow clk enabled to prevent system
hang") added a workaround for the slow clock as it is not properly handled
by its users.
Get and use the slow clock as it is necessary for the timer counters.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Thierry Reding <thierry.reding@gmail.com>
Move resource retrieval from atmel_tc_alloc to tc_probe to avoid lately
reporting resource related issues when a TC block user request a TC block.
Moreover, resources retrieval are usually done in the probe function,
thus moving them add some consistency with other drivers.
Initialization is done once, ie not every time a tc block is requested.
If it fails, the device is not appended to the list of tc blocks.
Furhermore, the device id is retrieved at probe as well, avoiding parsing
DT every time the user requests of tc block.
Signed-off-by: Gaël PORTAY <gael.portay@gmail.com>
Acked-by: Thierry Reding <thierry.reding@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Some SoC have a 32 bit variant of Timer Counter Blocks. We do not
need the chaining of two 16 bit counters anymore for them.
The SoC nature is deduced from the device tree "compatible" string.
For non-device-tree configurations, backward compatibility is maintained
by using the default 16 bit counter configuration.
This patch addresses both the atmel_tclib and its user: tcb_clksrc
clocksource.
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Acked-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
Device tree support added to atmel_tclib: the generic Timer Counter
library. This is used by the clocksource/clockevent driver tcb_clksrc.
The current DT enabled platforms are also modified to use it:
- .dtsi files are modified to add Timer Counter Block entries
- alias are created to allow identification of each block
- clkdev lookup tables are added for clocks identification.
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Acked-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
Requesting iomem region and ioremaping is now done using
the resource size specified instead of a constant value.
Each <SoC>_device.c file is modified accordingly to reflect
actual user interface size.
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Acked-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
We will need this to avoid build failures pending a future implicit
module.h presence cleanup.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
request_mem_region() will call kzalloc to allocate memory for struct
resource. release_resource() unregisters the resource but does not free
the allocated memory, thus use release_mem_region() instead to fix the
memory leak.
Signed-off-by: Axel Lin <axel.lin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Create <linux/atmel_tc.h> based on <asm-arm/arch-at91/at91-tc.h> and the
at91sam9263 and at32ap7000 datasheets. Most AT91 and AT32 SOCs have one
or two of these TC blocks, which include three 16-bit timers that can be
interconnected in various ways.
These TC blocks can be used for external interfacing (such as PWM and
measurement), or used as somewhat quirky sixteen-bit timers.
Changes relative to the original version:
* Drop unneeded inclusion of <linux/mutex.h>
* Support an arbitrary number of TC blocks
* Return a struct with information about a TC block from
atmel_tc_alloc() instead of using a combination of return values
and "out" parameters.
* ioremap() the I/O registers on allocation
* Look up clocks and irqs for all channels
* Add "name" parameter to atmel_tc_alloc() and use this when
requesting the iomem resource.
* Check if the platform provided the necessary resources at probe()
time instead of when the TCB is allocated.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>