This allows comparing hash and len in one operation on 64-bit
architectures. Right now only __d_lookup_rcu() takes advantage of this,
since that is the case we care most about.
The use of anonymous struct/unions hides the alternate 64-bit approach
from most users, the exception being a few cases where we initialize a
'struct qstr' with a static initializer. This makes the problematic
cases use a new QSTR_INIT() helper function for that (but initializing
just the name pointer with a "{ .name = xyzzy }" initializer remains
valid, as does just copying another qstr structure).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
New field of struct super_block - ->s_max_links. Maximal allowed
value of ->i_nlink or 0; in the latter case all checks still need
to be done in ->link/->mkdir/->rename instances. Note that this
limit applies both to directoris and to non-directories.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
vfs_create() ignores everything outside of 16bit subset of its
mode argument; switching it to umode_t is obviously equivalent
and it's the only caller of the method
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
vfs_mkdir() gets int, but immediately drops everything that might not
fit into umode_t and that's the only caller of ->mkdir()...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Replace remaining direct i_nlink updates with a new set_nlink()
updater function.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Tested-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
nilfs2 does not have problems with references to unlinked directories.
CC: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
CC: linux-nilfs@vger.kernel.org
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Only a few file systems need this. Start by pushing it down into each
rename method (except gfs2 and xfs) so that it can be dealt with on a
per-fs basis.
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Only a few file systems need this. Start by pushing it down into each
fs rmdir method (except gfs2 and xfs) so it can be dealt with on a per-fs
basis.
This does not change behavior for any in-tree file systems.
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This directly uses sb->s_fs_info to keep a nilfs filesystem object and
fully removes the intermediate nilfs_sb_info structure. With this
change, the hierarchy of on-memory structures of nilfs will be
simplified as follows:
Before:
super_block
-> nilfs_sb_info
-> the_nilfs
-> cptree --+-> nilfs_root (current file system)
+-> nilfs_root (snapshot A)
+-> nilfs_root (snapshot B)
:
-> nilfs_sc_info (log writer structure)
After:
super_block
-> the_nilfs
-> cptree --+-> nilfs_root (current file system)
+-> nilfs_root (snapshot A)
+-> nilfs_root (snapshot B)
:
-> nilfs_sc_info (log writer structure)
The reason why we didn't design so from the beginning is because the
initial shape also differed from the above. The early hierachy was
composed of "per-mount-point" super_block -> nilfs_sb_info pairs and a
shared nilfs object. On the kernel 2.6.37, it was changed to the
current shape in order to unify super block instances into one per
device, and this cleanup became applicable as the result.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This adds fiemap to nilfs. Two new functions, nilfs_fiemap and
nilfs_find_uncommitted_extent are added.
nilfs_fiemap() implements the fiemap inode operation, and
nilfs_find_uncommitted_extent() helps to get a range of data blocks
whose physical location has not been determined.
nilfs_fiemap() collects extent information by looping through
nilfs_bmap_lookup_contig and nilfs_find_uncommitted_extent routines.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Snapshots of nilfs are read-only.
After super block instances (sb) will be unified, nilfs will need to
check write access by a way other than implicit test with
IS_RDONLY(inode). This is because IS_RDONLY() refers to MS_RDONLY bit
of inode->i_sb->s_flags and it will become inaccurate after the
unification of sb.
To prepare for the issue, this uses i_op->permission to deny write
access to inodes in snapshots.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
The previous export operations cannot handle multiple versions of
a filesystem if they belong to the same sb instance.
This adds a new type of file handle and extends export operations so
that they can get the inode specified by a checkpoint number as well
as an inode number and a generation number.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This puts a pointer to nilfs_root object in the private part of
on-memory inode, and makes nilfs_iget function pick up the inode with
the same root object.
Non-root inodes inherit its nilfs_root object from parent inode. That
of the root inode is allocated through nilfs_attach_checkpoint()
function.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Replace mark_inode_dirty() as nilfs_mark_inode_dirty()
to reduce deep function calls.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Delete mark_inode_dirty() in nilfs_delete_entry() to reduce duplicate
mark_inode_dirty() calls both in nilfs_rename() and nilfs_delete_entry().
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Delete mark_inode_dirty() in nilfs_commit_chunk(), for callers of
nilfs_commit_chunk() will call equivalent mark_inode_dirty()
after calling nilfs_commit_chunk().
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Split nilfs_unlink() to reduce nested transaction and duplicate
mark_inode_dirty() calls when calling nilfs_unlink() from nilfs_rmdir().
nilfs_do_unlink() is an actual unlink functionality which is not
in transaction and does not call mark_inode_dirty() for dentry argument.
nilfs_unlink() is a wrapper function for do_nilfs_unlink() with
transaction and mark_inode_dirty() for dentry argument.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This is an intermidiate patch to reduce redandunt mark_inode_dirty() calls
by calling inode_inc_link_count() and inode_dec_link_count() functions.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
It is redundant to call mark_inode_dirty() in nilfs_new_inode() because
all caller of nilfs_new_inode() will call mark_inode_dirty()
after calling nilfs_new_inode() directly or indirectly in transaction.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Pekka Enberg pointed out that double error handlings found after
nilfs_transaction_end() can be avoided by separating abort operation:
OK, I don't understand this. The only way nilfs_transaction_end() can
fail is if we have NILFS_TI_SYNC set and we fail to construct the
segment. But why do we want to construct a segment if we don't commit?
I guess what I'm asking is why don't we have a separate
nilfs_transaction_abort() function that can't fail for the erroneous
case to avoid this double error value tracking thing?
This does the separation and renames nilfs_transaction_end() to
nilfs_transaction_commit() for clarification.
Since, some calls of these functions were used just for exclusion control
against the segment constructor, they are replaced with semaphore
operations.
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds pathname operations, most of which comes from the ext2 file
system.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>