The slave MII bus registered by the DSA code is using the parent MII bus
as part of its name (ds->master_mii_bus_id), in case the parent MII bus
name is already 16 characters long (such as d0072004.mdio-mi) we will
get the following WARN_ON in dsa_switch_setup() when calling
mdiobus_register():
[ 79.088782] ------------[ cut here ]------------
[ 79.093448] WARNING: at fs/sysfs/dir.c:536 sysfs_add_one+0x80/0xa0()
[ 79.099831] sysfs: cannot create duplicate filename
'/class/mdio_bus/d0072004.mdio-mi'
This is a genuine warning, because the DSA slave MII bus will also be
named d0072004.mdio-mi, and since MII_BUS_ID_SIZE is 17 characters long
(with null-terminator) the following will truncate the slave MII bus id:
snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-%d:%.2x",
ds->master_mii_bus->id, ds->pd->sw_addr);
Fix this by using dsa-<switch index->:<sw_add> which is guaranteed to be
unique.
Signed-off-by: Florian Fainelli <florian@openwrt.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The flags argument of the phy_{attach,connect,connect_direct} functions
is then used to assign a struct phy_device dev_flags with its value.
All callers but the tg3 driver pass the flag 0, which results in the
underlying PHY drivers in drivers/net/phy/ not being able to actually
use any of the flags they would set in dev_flags. This patch gets rid of
the flags argument, and passes phydev->dev_flags to the internal PHY
library call phy_attach_direct() such that drivers which actually modify
a phy device dev_flags get the value preserved for use by the underlying
phy driver.
Acked-by: Kosta Zertsekel <konszert@marvell.com>
Signed-off-by: Florian Fainelli <florian@openwrt.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use strlcpy where possible to ensure the string is \0 terminated.
Use always sizeof(string) instead of 32, ETHTOOL_BUSINFO_LEN
and custom defines.
Use snprintf instead of sprint.
Remove unnecessary inits of ->fw_version
Remove unnecessary inits of drvinfo struct.
Signed-off-by: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the new bool function ether_addr_equal to add
some clarity and reduce the likelihood for misuse
of compare_ether_addr for sorting.
Done via cocci script:
$ cat compare_ether_addr.cocci
@@
expression a,b;
@@
- !compare_ether_addr(a, b)
+ ether_addr_equal(a, b)
@@
expression a,b;
@@
- compare_ether_addr(a, b)
+ !ether_addr_equal(a, b)
@@
expression a,b;
@@
- !ether_addr_equal(a, b) == 0
+ ether_addr_equal(a, b)
@@
expression a,b;
@@
- !ether_addr_equal(a, b) != 0
+ !ether_addr_equal(a, b)
@@
expression a,b;
@@
- ether_addr_equal(a, b) == 0
+ !ether_addr_equal(a, b)
@@
expression a,b;
@@
- ether_addr_equal(a, b) != 0
+ ether_addr_equal(a, b)
@@
expression a,b;
@@
- !!ether_addr_equal(a, b)
+ ether_addr_equal(a, b)
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove set_sg from DSA slave ethtool_ops. Features inheritance looks
broken/not fully implemented anyway.
Signed-off-by: Michał Mirosław <mirq-linux@rere.qmqm.pl>
Signed-off-by: David S. Miller <davem@davemloft.net>
The phy_mii_ioctl() function unnecessarily throws away the original ifreq.
We need access to the ifreq in order to support PHYs that can perform
hardware time stamping.
Two maverick drivers filter the ioctl commands passed to phy_mii_ioctl().
This is unnecessary since phylib will check the command in any case.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Signed-off-by: David S. Miller <davem@davemloft.net>
+little renaming of unicast functions to be smooth with multicast ones
Signed-off-by: Jiri Pirko <jpirko@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch converts unicast address list to standard list_head using
previously introduced struct netdev_hw_addr. It also relaxes the
locking. Original spinlock (still used for multicast addresses) is not
needed and is no longer used for a protection of this list. All
reading and writing takes place under rtnl (with no changes).
I also removed a possibility to specify the length of the address
while adding or deleting unicast address. It's always dev->addr_len.
The convertion touched especially e1000 and ixgbe codes when the
change is not so trivial.
Signed-off-by: Jiri Pirko <jpirko@redhat.com>
drivers/net/bnx2.c | 13 +--
drivers/net/e1000/e1000_main.c | 24 +++--
drivers/net/ixgbe/ixgbe_common.c | 14 ++--
drivers/net/ixgbe/ixgbe_common.h | 4 +-
drivers/net/ixgbe/ixgbe_main.c | 6 +-
drivers/net/ixgbe/ixgbe_type.h | 4 +-
drivers/net/macvlan.c | 11 +-
drivers/net/mv643xx_eth.c | 11 +-
drivers/net/niu.c | 7 +-
drivers/net/virtio_net.c | 7 +-
drivers/s390/net/qeth_l2_main.c | 6 +-
drivers/scsi/fcoe/fcoe.c | 16 ++--
include/linux/netdevice.h | 18 ++--
net/8021q/vlan.c | 4 +-
net/8021q/vlan_dev.c | 10 +-
net/core/dev.c | 195 +++++++++++++++++++++++++++-----------
net/dsa/slave.c | 10 +-
net/packet/af_packet.c | 4 +-
18 files changed, 227 insertions(+), 137 deletions(-)
Signed-off-by: David S. Miller <davem@davemloft.net>
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
..so that we can parse the DSA topology from 'ip link' output:
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
4: lan1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
5: lan2@eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue
6: lan3@eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue
7: lan4@eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert this driver to use net_device_ops
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Before commit b6c40d68ff ("net: only
invoke dev->change_rx_flags when device is UP"), the dsa driver could
sort-of get away with only fiddling with the master interface's
allmulti/promisc counts in ->change_rx_flags() and not touching them
in ->open() or ->stop(). After this commit (note that it was merged
almost simultaneously with the dsa patches, which is why this wasn't
caught initially), the breakage that was already there became more
apparent.
Since it makes no sense to keep the master interface's allmulti or
promisc count pinned for a slave interface that is down, copy the vlan
driver's sync logic (which does exactly what we want) over to dsa to
fix this.
Bug report from Dirk Teurlings <dirk@upexia.nl> and Peter van Valderen
<linux@ddcrew.com>.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds support for the Trailer switch tagging format. This is
another tagging that doesn't explicitly mark tagged packets with a
distinct ethertype, so that we need to add a similar hack in the
receive path as for the Original DSA tagging format.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Most of the DSA switches currently in the field do not support the
Ethertype DSA tagging format that one of the previous patches added
support for, but only the original DSA tagging format.
The original DSA tagging format carries the same information as the
Ethertype DSA tagging format, but with the difference that it does not
have an ethertype field. In other words, when receiving a packet that
is tagged with an original DSA tag, there is no way of telling in
eth_type_trans() that this packet is in fact a DSA-tagged packet.
This patch adds a hook into eth_type_trans() which is only compiled in
if support for a switch chip that doesn't support Ethertype DSA is
selected, and which checks whether there is a DSA switch driver
instance attached to this network device which uses the old tag format.
If so, it sets the protocol field to ETH_P_DSA without looking at the
packet, so that the packet ends up in the right place.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>