Pull networking updates from David Miller:
1) Support 6Ghz band in ath11k driver, from Rajkumar Manoharan.
2) Support UDP segmentation in code TSO code, from Eric Dumazet.
3) Allow flashing different flash images in cxgb4 driver, from Vishal
Kulkarni.
4) Add drop frames counter and flow status to tc flower offloading,
from Po Liu.
5) Support n-tuple filters in cxgb4, from Vishal Kulkarni.
6) Various new indirect call avoidance, from Eric Dumazet and Brian
Vazquez.
7) Fix BPF verifier failures on 32-bit pointer arithmetic, from
Yonghong Song.
8) Support querying and setting hardware address of a port function via
devlink, use this in mlx5, from Parav Pandit.
9) Support hw ipsec offload on bonding slaves, from Jarod Wilson.
10) Switch qca8k driver over to phylink, from Jonathan McDowell.
11) In bpftool, show list of processes holding BPF FD references to
maps, programs, links, and btf objects. From Andrii Nakryiko.
12) Several conversions over to generic power management, from Vaibhav
Gupta.
13) Add support for SO_KEEPALIVE et al. to bpf_setsockopt(), from Dmitry
Yakunin.
14) Various https url conversions, from Alexander A. Klimov.
15) Timestamping and PHC support for mscc PHY driver, from Antoine
Tenart.
16) Support bpf iterating over tcp and udp sockets, from Yonghong Song.
17) Support 5GBASE-T i40e NICs, from Aleksandr Loktionov.
18) Add kTLS RX HW offload support to mlx5e, from Tariq Toukan.
19) Fix the ->ndo_start_xmit() return type to be netdev_tx_t in several
drivers. From Luc Van Oostenryck.
20) XDP support for xen-netfront, from Denis Kirjanov.
21) Support receive buffer autotuning in MPTCP, from Florian Westphal.
22) Support EF100 chip in sfc driver, from Edward Cree.
23) Add XDP support to mvpp2 driver, from Matteo Croce.
24) Support MPTCP in sock_diag, from Paolo Abeni.
25) Commonize UDP tunnel offloading code by creating udp_tunnel_nic
infrastructure, from Jakub Kicinski.
26) Several pci_ --> dma_ API conversions, from Christophe JAILLET.
27) Add FLOW_ACTION_POLICE support to mlxsw, from Ido Schimmel.
28) Add SK_LOOKUP bpf program type, from Jakub Sitnicki.
29) Refactor a lot of networking socket option handling code in order to
avoid set_fs() calls, from Christoph Hellwig.
30) Add rfc4884 support to icmp code, from Willem de Bruijn.
31) Support TBF offload in dpaa2-eth driver, from Ioana Ciornei.
32) Support XDP_REDIRECT in qede driver, from Alexander Lobakin.
33) Support PCI relaxed ordering in mlx5 driver, from Aya Levin.
34) Support TCP syncookies in MPTCP, from Flowian Westphal.
35) Fix several tricky cases of PMTU handling wrt. briding, from Stefano
Brivio.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2056 commits)
net: thunderx: initialize VF's mailbox mutex before first usage
usb: hso: remove bogus check for EINPROGRESS
usb: hso: no complaint about kmalloc failure
hso: fix bailout in error case of probe
ip_tunnel_core: Fix build for archs without _HAVE_ARCH_IPV6_CSUM
selftests/net: relax cpu affinity requirement in msg_zerocopy test
mptcp: be careful on subflow creation
selftests: rtnetlink: make kci_test_encap() return sub-test result
selftests: rtnetlink: correct the final return value for the test
net: dsa: sja1105: use detected device id instead of DT one on mismatch
tipc: set ub->ifindex for local ipv6 address
ipv6: add ipv6_dev_find()
net: openvswitch: silence suspicious RCU usage warning
Revert "vxlan: fix tos value before xmit"
ptp: only allow phase values lower than 1 period
farsync: switch from 'pci_' to 'dma_' API
wan: wanxl: switch from 'pci_' to 'dma_' API
hv_netvsc: do not use VF device if link is down
dpaa2-eth: Fix passing zero to 'PTR_ERR' warning
net: macb: Properly handle phylink on at91sam9x
...
Currently, the PMU specific data task_ctx_data is allocated by the
function kzalloc() in the perf generic code. When there is no specific
alignment requirement for the task_ctx_data, the method works well for
now. However, there will be a problem once a specific alignment
requirement is introduced in future features, e.g., the Architecture LBR
XSAVE feature requires 64-byte alignment. If the specific alignment
requirement is not fulfilled, the XSAVE family of instructions will fail
to save/restore the xstate to/from the task_ctx_data.
The function kzalloc() itself only guarantees a natural alignment. A
new method to allocate the task_ctx_data has to be introduced, which
has to meet the requirements as below:
- must be a generic method can be used by different architectures,
because the allocation of the task_ctx_data is implemented in the
perf generic code;
- must be an alignment-guarantee method (The alignment requirement is
not changed after the boot);
- must be able to allocate/free a buffer (smaller than a page size)
dynamically;
- should not cause extra CPU overhead or space overhead.
Several options were considered as below:
- One option is to allocate a larger buffer for task_ctx_data. E.g.,
ptr = kmalloc(size + alignment, GFP_KERNEL);
ptr &= ~(alignment - 1);
This option causes space overhead.
- Another option is to allocate the task_ctx_data in the PMU specific
code. To do so, several function pointers have to be added. As a
result, both the generic structure and the PMU specific structure
will become bigger. Besides, extra function calls are added when
allocating/freeing the buffer. This option will increase both the
space overhead and CPU overhead.
- The third option is to use a kmem_cache to allocate a buffer for the
task_ctx_data. The kmem_cache can be created with a specific alignment
requirement by the PMU at boot time. A new pointer for kmem_cache has
to be added in the generic struct pmu, which would be used to
dynamically allocate a buffer for the task_ctx_data at run time.
Although the new pointer is added to the struct pmu, the existing
variable task_ctx_size is not required anymore. The size of the
generic structure is kept the same.
The third option which meets all the aforementioned requirements is used
to replace kzalloc() for the PMU specific data allocation. A later patch
will remove the kzalloc() method and the related variables.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-17-git-send-email-kan.liang@linux.intel.com
Sanitize and expose get/put_callchain_entry(). This would be used by bpf
stack map.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200630062846.664389-2-songliubraving@fb.com
Record (single instruction) changes to the kernel text (i.e.
self-modifying code) in order to support tracers like Intel PT and
ARM CoreSight.
A copy of the running kernel code is needed as a reference point (e.g.
from /proc/kcore). The text poke event records the old bytes and the
new bytes so that the event can be processed forwards or backwards.
The basic problem is recording the modified instruction in an
unambiguous manner given SMP instruction cache (in)coherence. That is,
when modifying an instruction concurrently any solution with one or
multiple timestamps is not sufficient:
CPU0 CPU1
0
1 write insn A
2 execute insn A
3 sync-I$
4
Due to I$, CPU1 might execute either the old or new A. No matter where
we record tracepoints on CPU0, one simply cannot tell what CPU1 will
have observed, except that at 0 it must be the old one and at 4 it
must be the new one.
To solve this, take inspiration from x86 text poking, which has to
solve this exact problem due to variable length instruction encoding
and I-fetch windows.
1) overwrite the instruction with a breakpoint and sync I$
This guarantees that that code flow will never hit the target
instruction anymore, on any CPU (or rather, it will cause an
exception).
2) issue the TEXT_POKE event
3) overwrite the breakpoint with the new instruction and sync I$
Now we know that any execution after the TEXT_POKE event will either
observe the breakpoint (and hit the exception) or the new instruction.
So by guarding the TEXT_POKE event with an exception on either side;
we can now tell, without doubt, which instruction another CPU will
have observed.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200512121922.8997-2-adrian.hunter@intel.com
Pull networking updates from David Miller:
1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
Augusto von Dentz.
2) Add GSO partial support to igc, from Sasha Neftin.
3) Several cleanups and improvements to r8169 from Heiner Kallweit.
4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
device self-test. From Andrew Lunn.
5) Start moving away from custom driver versions, use the globally
defined kernel version instead, from Leon Romanovsky.
6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.
7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.
8) Add sriov and vf support to hinic, from Luo bin.
9) Support Media Redundancy Protocol (MRP) in the bridging code, from
Horatiu Vultur.
10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.
11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
Dubroca. Also add ipv6 support for espintcp.
12) Lots of ReST conversions of the networking documentation, from Mauro
Carvalho Chehab.
13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
from Doug Berger.
14) Allow to dump cgroup id and filter by it in inet_diag code, from
Dmitry Yakunin.
15) Add infrastructure to export netlink attribute policies to
userspace, from Johannes Berg.
16) Several optimizations to sch_fq scheduler, from Eric Dumazet.
17) Fallback to the default qdisc if qdisc init fails because otherwise
a packet scheduler init failure will make a device inoperative. From
Jesper Dangaard Brouer.
18) Several RISCV bpf jit optimizations, from Luke Nelson.
19) Correct the return type of the ->ndo_start_xmit() method in several
drivers, it's netdev_tx_t but many drivers were using
'int'. From Yunjian Wang.
20) Add an ethtool interface for PHY master/slave config, from Oleksij
Rempel.
21) Add BPF iterators, from Yonghang Song.
22) Add cable test infrastructure, including ethool interfaces, from
Andrew Lunn. Marvell PHY driver is the first to support this
facility.
23) Remove zero-length arrays all over, from Gustavo A. R. Silva.
24) Calculate and maintain an explicit frame size in XDP, from Jesper
Dangaard Brouer.
25) Add CAP_BPF, from Alexei Starovoitov.
26) Support terse dumps in the packet scheduler, from Vlad Buslov.
27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.
28) Add devm_register_netdev(), from Bartosz Golaszewski.
29) Minimize qdisc resets, from Cong Wang.
30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
eliminate set_fs/get_fs calls. From Christoph Hellwig.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
selftests: net: ip_defrag: ignore EPERM
net_failover: fixed rollback in net_failover_open()
Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
vmxnet3: allow rx flow hash ops only when rss is enabled
hinic: add set_channels ethtool_ops support
selftests/bpf: Add a default $(CXX) value
tools/bpf: Don't use $(COMPILE.c)
bpf, selftests: Use bpf_probe_read_kernel
s390/bpf: Use bcr 0,%0 as tail call nop filler
s390/bpf: Maintain 8-byte stack alignment
selftests/bpf: Fix verifier test
selftests/bpf: Fix sample_cnt shared between two threads
bpf, selftests: Adapt cls_redirect to call csum_level helper
bpf: Add csum_level helper for fixing up csum levels
bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
crypto/chtls: IPv6 support for inline TLS
Crypto/chcr: Fixes a coccinile check error
Crypto/chcr: Fixes compilations warnings
...
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200511201227.GA14041@embeddedor
Instead of having all the sysctl handlers deal with user pointers, which
is rather hairy in terms of the BPF interaction, copy the input to and
from userspace in common code. This also means that the strings are
always NUL-terminated by the common code, making the API a little bit
safer.
As most handler just pass through the data to one of the common handlers
a lot of the changes are mechnical.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Open access to monitoring of kernel code, CPUs, tracepoints and
namespaces data for a CAP_PERFMON privileged process. Providing the
access under CAP_PERFMON capability singly, without the rest of
CAP_SYS_ADMIN credentials, excludes chances to misuse the credentials
and makes operation more secure.
CAP_PERFMON implements the principle of least privilege for performance
monitoring and observability operations (POSIX IEEE 1003.1e 2.2.2.39
principle of least privilege: A security design principle that states
that a process or program be granted only those privileges (e.g.,
capabilities) necessary to accomplish its legitimate function, and only
for the time that such privileges are actually required)
For backward compatibility reasons the access to perf_events subsystem
remains open for CAP_SYS_ADMIN privileged processes but CAP_SYS_ADMIN
usage for secure perf_events monitoring is discouraged with respect to
CAP_PERFMON capability.
Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Igor Lubashev <ilubashe@akamai.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: linux-man@vger.kernel.org
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: intel-gfx@lists.freedesktop.org
Cc: linux-doc@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Cc: selinux@vger.kernel.org
Link: http://lore.kernel.org/lkml/471acaef-bb8a-5ce2-923f-90606b78eef9@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The PERF_SAMPLE_CGROUP bit is to save (perf_event) cgroup information in
the sample. It will add a 64-bit id to identify current cgroup and it's
the file handle in the cgroup file system. Userspace should use this
information with PERF_RECORD_CGROUP event to match which cgroup it
belongs.
I put it before PERF_SAMPLE_AUX for simplicity since it just needs a
64-bit word. But if we want bigger samples, I can work on that
direction too.
Committer testing:
$ pahole perf_sample_data | grep -w cgroup -B5 -A5
/* --- cacheline 4 boundary (256 bytes) was 56 bytes ago --- */
struct perf_regs regs_intr; /* 312 16 */
/* --- cacheline 5 boundary (320 bytes) was 8 bytes ago --- */
u64 stack_user_size; /* 328 8 */
u64 phys_addr; /* 336 8 */
u64 cgroup; /* 344 8 */
/* size: 384, cachelines: 6, members: 22 */
/* padding: 32 */
};
$
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lore.kernel.org/lkml/20200325124536.2800725-3-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The storage required for visit_groups_merge's min heap needs to vary in
order to support more iterators, such as when multiple nested cgroups'
events are being visited. This change allows for 2 iterators and doesn't
support growth.
Based-on-work-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ian Rogers <irogers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200214075133.181299-5-irogers@google.com
The low level index is the index in the underlying hardware buffer of
the most recently captured taken branch which is always saved in
branch_entries[0]. It is very useful for reconstructing the call stack.
For example, in Intel LBR call stack mode, the depth of reconstructed
LBR call stack limits to the number of LBR registers. With the low level
index information, perf tool may stitch the stacks of two samples. The
reconstructed LBR call stack can break the HW limitation.
Add a new branch sample type to retrieve low level index of raw branch
records. The low level index is between -1 (unknown) and max depth which
can be retrieved in /sys/devices/cpu/caps/branches.
Only when the new branch sample type is set, the low level index
information is dumped into the PERF_SAMPLE_BRANCH_STACK output.
Perf tool should check the attr.branch_sample_type, and apply the
corresponding format for PERF_SAMPLE_BRANCH_STACK samples.
Otherwise, some user case may be broken. For example, users may parse a
perf.data, which include the new branch sample type, with an old version
perf tool (without the check). Users probably get incorrect information
without any warning.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200127165355.27495-2-kan.liang@linux.intel.com
- Kernel fixes:
- Install cgroup events to the correct CPU context to prevent a
potential list double add
- Prevent am intgeer underflow in the perf mlock acounting
- Add a missing prototyp for arch_perf_update_userpage()
- Tooling:
- Add a missing unlock in the error path of maps__insert() in perf maps.
- Fix the build with the latest libbfd
- Fix the perf parser so it does not delete parse event terms, which
caused a regression for using perf with the ARM CoreSight as the sink
confuguration was missing due to the deletion.
- Fix the double free in the perf CPU map merging test case
- Add the missing ustring support for the perf probe command
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl5AC0ITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaJtD/4jEdN6KNGVJIQ5jOYdchXK/zb68plS
3By6CegbaNq1SU5UPIdMX4BkznVGaVtJU/0hWuvD/ycpBTAMgKjwalYJtAC+anVi
JhG7NiPRV1Nhm+7eZ/78mUpW4CUimTlvZVzU/yneYdFm2klvcxUHblJYSqEGp0AS
r2aZRsqQnWSoI/+z+0THO8tI+HLSpkmKy2slLxaZphI0VjSrjWPDHfF6eAOyl/dq
lTCz+tjd6EytELL+lhWFsGXYAi6HPKP3T4yPRH+eDYKQmByYaEYbK3E8wg/0XB/J
2AHgSBf9pSPDBIkLOWOidmkmWgZD9ykCTyOPu4N0S70+NeaCm2nXLTOQ7dnyLE7t
WCx8mvnIS2hshNUoXMkarG5LYexPupDMMEfHyUT5+T2rKxacKWLaRoIV+JCsUpQb
m6eU3+n/YsN1C05V75Fuztt4irGhltlQxcG8F3gH/vqSy6VDdZb8lMU6+iyE2VKG
ezsI7AMQkT6LrTGa2hXHHnnluaxHHSA32GPe4W1QTwMCMWMtRTwQHBBLoJ4mC0wk
iujB9DVuh7ljmr7QSG9ZYV91eplpzJDUC54P6Qs/p7ouG4YzkIO6glt6BOgBmbp7
YkrJtGpV6npjJmLckktcSd9rtnCzot6yGxeaIVfLPhhtf2KECSCckCyddwkakt0A
wwVVBe8RNxXf2A==
=xu7D
-----END PGP SIGNATURE-----
Merge tag 'perf-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Thomas Gleixner:
"A set of fixes and improvements for the perf subsystem:
Kernel fixes:
- Install cgroup events to the correct CPU context to prevent a
potential list double add
- Prevent an integer underflow in the perf mlock accounting
- Add a missing prototype for arch_perf_update_userpage()
Tooling:
- Add a missing unlock in the error path of maps__insert() in perf
maps.
- Fix the build with the latest libbfd
- Fix the perf parser so it does not delete parse event terms, which
caused a regression for using perf with the ARM CoreSight as the
sink configuration was missing due to the deletion.
- Fix the double free in the perf CPU map merging test case
- Add the missing ustring support for the perf probe command"
* tag 'perf-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf maps: Add missing unlock to maps__insert() error case
perf probe: Add ustring support for perf probe command
perf: Make perf able to build with latest libbfd
perf test: Fix test case Merge cpu map
perf parse: Copy string to perf_evsel_config_term
perf parse: Refactor 'struct perf_evsel_config_term'
kernel/events: Add a missing prototype for arch_perf_update_userpage()
perf/cgroups: Install cgroup events to correct cpuctx
perf/core: Fix mlock accounting in perf_mmap()
... in order to fix a -Wmissing-prototype warning.
No functional changes.
Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200109131351.9468-1-b.thiel@posteo.de
eBPF requires needing to know the size of the perf ring buffer structure.
But it unfortunately has the same name as the generic ring buffer used by
tracing and oprofile. To make it less ambiguous, rename the perf ring buffer
structure to "perf_buffer".
As other parts of the ring buffer code has "perf_" as the prefix, it only
makes sense to give the ring buffer the "perf_" prefix as well.
Link: https://lore.kernel.org/r/20191213153553.GE20583@krava
Acked-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Pull perf updates from Ingo Molnar:
"The main kernel side changes in this cycle were:
- Various Intel-PT updates and optimizations (Alexander Shishkin)
- Prohibit kprobes on Xen/KVM emulate prefixes (Masami Hiramatsu)
- Add support for LSM and SELinux checks to control access to the
perf syscall (Joel Fernandes)
- Misc other changes, optimizations, fixes and cleanups - see the
shortlog for details.
There were numerous tooling changes as well - 254 non-merge commits.
Here are the main changes - too many to list in detail:
- Enhancements to core tooling infrastructure, perf.data, libperf,
libtraceevent, event parsing, vendor events, Intel PT, callchains,
BPF support and instruction decoding.
- There were updates to the following tools:
perf annotate
perf diff
perf inject
perf kvm
perf list
perf maps
perf parse
perf probe
perf record
perf report
perf script
perf stat
perf test
perf trace
- And a lot of other changes: please see the shortlog and Git log for
more details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (279 commits)
perf parse: Fix potential memory leak when handling tracepoint errors
perf probe: Fix spelling mistake "addrees" -> "address"
libtraceevent: Fix memory leakage in copy_filter_type
libtraceevent: Fix header installation
perf intel-bts: Does not support AUX area sampling
perf intel-pt: Add support for decoding AUX area samples
perf intel-pt: Add support for recording AUX area samples
perf pmu: When using default config, record which bits of config were changed by the user
perf auxtrace: Add support for queuing AUX area samples
perf session: Add facility to peek at all events
perf auxtrace: Add support for dumping AUX area samples
perf inject: Cut AUX area samples
perf record: Add aux-sample-size config term
perf record: Add support for AUX area sampling
perf auxtrace: Add support for AUX area sample recording
perf auxtrace: Move perf_evsel__find_pmu()
perf record: Add a function to test for kernel support for AUX area sampling
perf tools: Add kernel AUX area sampling definitions
perf/core: Make the mlock accounting simple again
perf report: Jump to symbol source view from total cycles view
...
Exporting perf_event_pause() as an external accessor for kernel users (such
as KVM) who may do both disable perf_event and read count with just one
time to hold perf_event_ctx_lock. Also the value could be reset optionally.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, perf_event_period() is used by user tools via ioctl. Based on
naming convention, exporting perf_event_period() for kernel users (such
as KVM) who may recalibrate the event period for their assigned counter
according to their requirements.
The perf_event_period() is an external accessor, just like the
perf_event_{en,dis}able() and should thus use perf_event_ctx_lock().
Suggested-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AUX data can be used to annotate perf events such as performance counters
or tracepoints/breakpoints by including it in sample records when
PERF_SAMPLE_AUX flag is set. Such samples would be instrumental in debugging
and profiling by providing, for example, a history of instruction flow
leading up to the event's overflow.
The implementation makes use of grouping an AUX event with all the events
that wish to take samples of the AUX data, such that the former is the
group leader. The samplees should also specify the desired size of the AUX
sample via attr.aux_sample_size.
AUX capable PMUs need to explicitly add support for sampling, because it
relies on a new callback to take a snapshot of the buffer without touching
the event states.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Cc: mathieu.poirier@linaro.org
Link: https://lkml.kernel.org/r/20191025140835.53665-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Declare swap_task_ctx() methods at the generic and x86 specific
pmu types to bridge calls to platform specific PMU code on optimized
context switch path between equivalent task perf event contexts.
Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/9a0aa84a-f062-9b64-3133-373658550c4b@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In current mainline, the degree of access to perf_event_open(2) system
call depends on the perf_event_paranoid sysctl. This has a number of
limitations:
1. The sysctl is only a single value. Many types of accesses are controlled
based on the single value thus making the control very limited and
coarse grained.
2. The sysctl is global, so if the sysctl is changed, then that means
all processes get access to perf_event_open(2) opening the door to
security issues.
This patch adds LSM and SELinux access checking which will be used in
Android to access perf_event_open(2) for the purposes of attaching BPF
programs to tracepoints, perf profiling and other operations from
userspace. These operations are intended for production systems.
5 new LSM hooks are added:
1. perf_event_open: This controls access during the perf_event_open(2)
syscall itself. The hook is called from all the places that the
perf_event_paranoid sysctl is checked to keep it consistent with the
systctl. The hook gets passed a 'type' argument which controls CPU,
kernel and tracepoint accesses (in this context, CPU, kernel and
tracepoint have the same semantics as the perf_event_paranoid sysctl).
Additionally, I added an 'open' type which is similar to
perf_event_paranoid sysctl == 3 patch carried in Android and several other
distros but was rejected in mainline [1] in 2016.
2. perf_event_alloc: This allocates a new security object for the event
which stores the current SID within the event. It will be useful when
the perf event's FD is passed through IPC to another process which may
try to read the FD. Appropriate security checks will limit access.
3. perf_event_free: Called when the event is closed.
4. perf_event_read: Called from the read(2) and mmap(2) syscalls for the event.
5. perf_event_write: Called from the ioctl(2) syscalls for the event.
[1] https://lwn.net/Articles/696240/
Since Peter had suggest LSM hooks in 2016 [1], I am adding his
Suggested-by tag below.
To use this patch, we set the perf_event_paranoid sysctl to -1 and then
apply selinux checking as appropriate (default deny everything, and then
add policy rules to give access to domains that need it). In the future
we can remove the perf_event_paranoid sysctl altogether.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Co-developed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: James Morris <jmorris@namei.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: rostedt@goodmis.org
Cc: Yonghong Song <yhs@fb.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: jeffv@google.com
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: primiano@google.com
Cc: Song Liu <songliubraving@fb.com>
Cc: rsavitski@google.com
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Matthew Garrett <matthewgarrett@google.com>
Link: https://lkml.kernel.org/r/20191014170308.70668-1-joel@joelfernandes.org
In some cases, ordinary (non-AUX) events can generate data for AUX events.
For example, PEBS events can come out as records in the Intel PT stream
instead of their usual DS records, if configured to do so.
One requirement for such events is to consistently schedule together, to
ensure that the data from the "AUX output" events isn't lost while their
corresponding AUX event is not scheduled. We use grouping to provide this
guarantee: an "AUX output" event can be added to a group where an AUX event
is a group leader, and provided that the former supports writing to the
latter.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: kan.liang@linux.intel.com
Link: https://lkml.kernel.org/r/20190806084606.4021-2-alexander.shishkin@linux.intel.com
So far, we tried to disallow grouping exclusive events for the fear of
complications they would cause with moving between contexts. Specifically,
moving a software group to a hardware context would violate the exclusivity
rules if both groups contain matching exclusive events.
This attempt was, however, unsuccessful: the check that we have in the
perf_event_open() syscall is both wrong (looks at wrong PMU) and
insufficient (group leader may still be exclusive), as can be illustrated
by running:
$ perf record -e '{intel_pt//,cycles}' uname
$ perf record -e '{cycles,intel_pt//}' uname
ultimately successfully.
Furthermore, we are completely free to trigger the exclusivity violation
by:
perf -e '{cycles,intel_pt//}' -e '{intel_pt//,instructions}'
even though the helpful perf record will not allow that, the ABI will.
The warning later in the perf_event_open() path will also not trigger, because
it's also wrong.
Fix all this by validating the original group before moving, getting rid
of broken safeguards and placing a useful one to perf_install_in_context().
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: mathieu.poirier@linaro.org
Cc: will.deacon@arm.com
Fixes: bed5b25ad9 ("perf: Add a pmu capability for "exclusive" events")
Link: https://lkml.kernel.org/r/20190701110755.24646-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently perf_rotate_context assumes that if the context's nr_events !=
nr_active a rotation is necessary for perf event multiplexing. With
cgroups, nr_events is the total count of events for all cgroups and
nr_active will not include events in a cgroup other than the current
task's. This makes rotation appear necessary for cgroups when it is not.
Add a perf_event_context flag that is set when rotation is necessary.
Clear the flag during sched_out and set it when a flexible sched_in
fails due to resources.
Signed-off-by: Ian Rogers <irogers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190601082722.44543-1-irogers@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Adding attr_update attribute group into pmu, to allow
having multiple attribute groups for same group name.
This will allow us to update "events" or "format"
directories with attributes that depend on various
HW conditions.
For example having group_format_extra group that updates
"format" directory only if pmu version is 2 and higher:
static umode_t
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
return x86_pmu.version >= 2 ? attr->mode : 0;
}
static struct attribute_group group_format_extra = {
.name = "format",
.is_visible = exra_is_visible,
};
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-3-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
memory and performance optimizations.
* x86: support for accessing memory not backed by struct page, fixes and refactoring
* Generic: dirty page tracking improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
=D0+p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for SVE and Pointer Authentication in guests
- PMU improvements
POWER:
- support for direct access to the POWER9 XIVE interrupt controller
- memory and performance optimizations
x86:
- support for accessing memory not backed by struct page
- fixes and refactoring
Generic:
- dirty page tracking improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
kvm: fix compilation on aarch64
Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
kvm: x86: Fix L1TF mitigation for shadow MMU
KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
tests: kvm: Add tests for KVM_SET_NESTED_STATE
KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
tests: kvm: Add tests to .gitignore
KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
KVM: Fix the bitmap range to copy during clear dirty
KVM: arm64: Fix ptrauth ID register masking logic
KVM: x86: use direct accessors for RIP and RSP
KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
KVM: x86: Omit caching logic for always-available GPRs
kvm, x86: Properly check whether a pfn is an MMIO or not
...
Pull perf updates from Ingo Molnar:
"The main kernel changes were:
- add support for Intel's "adaptive PEBS v4" - which embedds LBS data
in PEBS records and can thus batch up and reduce the IRQ (NMI) rate
significantly - reducing overhead and making call-graph profiling
less intrusive.
- add Intel CPU core and uncore support updates for Tremont, Icelake,
- extend the x86 PMU constraints scheduler with 'constraint ranges'
to better support Icelake hw constraints,
- make x86 call-chain support work better with CONFIG_FRAME_POINTER=y
- misc other changes
Tooling changes:
- updates to the main tools: 'perf record', 'perf trace', 'perf
stat'
- updated Intel and S/390 vendor events
- libtraceevent updates
- misc other updates and fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER
watchdog: Fix typo in comment
perf/x86/intel: Add Tremont core PMU support
perf/x86/intel/uncore: Add Intel Icelake uncore support
perf/x86/msr: Add Icelake support
perf/x86/intel/rapl: Add Icelake support
perf/x86/intel/cstate: Add Icelake support
perf/x86/intel: Add Icelake support
perf/x86: Support constraint ranges
perf/x86/lbr: Avoid reading the LBRs when adaptive PEBS handles them
perf/x86/intel: Support adaptive PEBS v4
perf/x86/intel/ds: Extract code of event update in short period
perf/x86/intel: Extract memory code PEBS parser for reuse
perf/x86: Support outputting XMM registers
perf/x86/intel: Force resched when TFA sysctl is modified
perf/core: Add perf_pmu_resched() as global function
perf/headers: Fix stale comment for struct perf_addr_filter
perf/core: Make perf_swevent_init_cpu() static
perf/x86: Add sanity checks to x86_schedule_events()
perf/x86: Optimize x86_schedule_events()
...
Now that all AUX allocations are high-order by default, the software
double buffering PMU capability doesn't make sense any more, get rid
of it. In case some PMUs choose to opt out, we can re-introduce it.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Link: http://lkml.kernel.org/r/20190503085536.24119-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Inject a PMI for KVM guest when Intel PT working
in Host-Guest mode and Guest ToPA entry memory buffer
was completely filled.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently perf callchain doesn't work well with ORC unwinder
when sampling from trace point. We'll get useless in kernel callchain
like this:
perf 6429 [000] 22.498450: kmem:mm_page_alloc: page=0x176a17 pfn=1534487 order=0 migratetype=0 gfp_flags=GFP_KERNEL
ffffffffbe23e32e __alloc_pages_nodemask+0x22e (/lib/modules/5.1.0-rc3+/build/vmlinux)
7efdf7f7d3e8 __poll+0x18 (/usr/lib64/libc-2.28.so)
5651468729c1 [unknown] (/usr/bin/perf)
5651467ee82a main+0x69a (/usr/bin/perf)
7efdf7eaf413 __libc_start_main+0xf3 (/usr/lib64/libc-2.28.so)
5541f689495641d7 [unknown] ([unknown])
The root cause is that, for trace point events, it doesn't provide a
real snapshot of the hardware registers. Instead perf tries to get
required caller's registers and compose a fake register snapshot
which suppose to contain enough information for start a unwinding.
However without CONFIG_FRAME_POINTER, if failed to get caller's BP as the
frame pointer, so current frame pointer is returned instead. We get
a invalid register combination which confuse the unwinder, and end the
stacktrace early.
So in such case just don't try dump BP, and let the unwinder start
directly when the register is not a real snapshot. Use SP
as the skip mark, unwinder will skip all the frames until it meet
the frame of the trace point caller.
Tested with frame pointer unwinder and ORC unwinder, this makes perf
callchain get the full kernel space stacktrace again like this:
perf 6503 [000] 1567.570191: kmem:mm_page_alloc: page=0x16c904 pfn=1493252 order=0 migratetype=0 gfp_flags=GFP_KERNEL
ffffffffb523e2ae __alloc_pages_nodemask+0x22e (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52383bd __get_free_pages+0xd (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52fd28a __pollwait+0x8a (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb521426f perf_poll+0x2f (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52fe3e2 do_sys_poll+0x252 (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52ff027 __x64_sys_poll+0x37 (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb500418b do_syscall_64+0x5b (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb5a0008c entry_SYSCALL_64_after_hwframe+0x44 (/lib/modules/5.1.0-rc3+/build/vmlinux)
7f71e92d03e8 __poll+0x18 (/usr/lib64/libc-2.28.so)
55a22960d9c1 [unknown] (/usr/bin/perf)
55a22958982a main+0x69a (/usr/bin/perf)
7f71e9202413 __libc_start_main+0xf3 (/usr/lib64/libc-2.28.so)
5541f689495641d7 [unknown] ([unknown])
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Young <dyoung@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190422162652.15483-1-kasong@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch add perf_pmu_resched() a global function that can be called
to force rescheduling of events for a given PMU. The function locks
both cpuctx and task_ctx internally. This will be used by a subsequent
patch.
Signed-off-by: Stephane Eranian <eranian@google.com>
[ Simplified the calling convention. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Cc: nelson.dsouza@intel.com
Cc: tonyj@suse.com
Link: https://lkml.kernel.org/r/20190408173252.37932-2-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The @inode field has been removed after:
9511bce9fe ("perf/core: Fix bad use of igrab()")
Update the description.
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/1554274464-5739-1-git-send-email-zhangshaokun@hisilicon.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
perf annotate:
Wei Li:
- Fix getting source line failure
perf script:
Andi Kleen:
- Handle missing fields with -F +...
perf data:
Jiri Olsa:
- Prep work to support per-cpu files in a directory.
Intel PT:
Adrian Hunter:
- Improve thread_stack__no_call_return()
- Hide x86 retpolines in thread stacks.
- exported SQL viewer refactorings, new 'top calls' report..
Alexander Shishkin:
- Copy parent's address filter offsets on clone
- Fix address filters for vmas with non-zero offset. Applies to
ARM's CoreSight as well.
python scripts:
Tony Jones:
- Python3 support for several 'perf script' python scripts.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQR2GiIUctdOfX2qHhGyPKLppCJ+JwUCXHRYNwAKCRCyPKLppCJ+
J8XmAQDKY7gb3GhkX+4aE8cGffFYB2YV5mD9Bbu4AM9tuFFBJwD+KAq87FMCy7m7
h7xyWk3UILpz6y235AVdfOmgcNDkpAQ=
=SJCG
-----END PGP SIGNATURE-----
Merge tag 'perf-core-for-mingo-5.1-20190225' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/core
Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo:
perf annotate:
Wei Li:
- Fix getting source line failure
perf script:
Andi Kleen:
- Handle missing fields with -F +...
perf data:
Jiri Olsa:
- Prep work to support per-cpu files in a directory.
Intel PT:
Adrian Hunter:
- Improve thread_stack__no_call_return()
- Hide x86 retpolines in thread stacks.
- exported SQL viewer refactorings, new 'top calls' report..
Alexander Shishkin:
- Copy parent's address filter offsets on clone
- Fix address filters for vmas with non-zero offset. Applies to
ARM's CoreSight as well.
python scripts:
Tony Jones:
- Python3 support for several 'perf script' python scripts.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the address range calculation for file-based filters works as
long as the vma that maps the matching part of the object file starts
from offset zero into the file (vm_pgoff==0). Otherwise, the resulting
filter range would be off by vm_pgoff pages. Another related problem is
that in case of a partially matching vma, that is, a vma that matches
part of a filter region, the filter range size wouldn't be adjusted.
Fix the arithmetics around address filter range calculations, taking
into account vma offset, so that the entire calculation is done before
the filter configuration is passed to the PMU drivers instead of having
those drivers do the final bit of arithmetics.
Based on the patch by Adrian Hunter <adrian.hunter.intel.com>.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Fixes: 375637bc52 ("perf/core: Introduce address range filtering")
Link: http://lkml.kernel.org/r/20190215115655.63469-3-alexander.shishkin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Vince (and later on Ravi) reported crashes in the BTS code during
fuzzing with the following backtrace:
general protection fault: 0000 [#1] SMP PTI
...
RIP: 0010:perf_prepare_sample+0x8f/0x510
...
Call Trace:
<IRQ>
? intel_pmu_drain_bts_buffer+0x194/0x230
intel_pmu_drain_bts_buffer+0x160/0x230
? tick_nohz_irq_exit+0x31/0x40
? smp_call_function_single_interrupt+0x48/0xe0
? call_function_single_interrupt+0xf/0x20
? call_function_single_interrupt+0xa/0x20
? x86_schedule_events+0x1a0/0x2f0
? x86_pmu_commit_txn+0xb4/0x100
? find_busiest_group+0x47/0x5d0
? perf_event_set_state.part.42+0x12/0x50
? perf_mux_hrtimer_restart+0x40/0xb0
intel_pmu_disable_event+0xae/0x100
? intel_pmu_disable_event+0xae/0x100
x86_pmu_stop+0x7a/0xb0
x86_pmu_del+0x57/0x120
event_sched_out.isra.101+0x83/0x180
group_sched_out.part.103+0x57/0xe0
ctx_sched_out+0x188/0x240
ctx_resched+0xa8/0xd0
__perf_event_enable+0x193/0x1e0
event_function+0x8e/0xc0
remote_function+0x41/0x50
flush_smp_call_function_queue+0x68/0x100
generic_smp_call_function_single_interrupt+0x13/0x30
smp_call_function_single_interrupt+0x3e/0xe0
call_function_single_interrupt+0xf/0x20
</IRQ>
The reason is that while event init code does several checks
for BTS events and prevents several unwanted config bits for
BTS event (like precise_ip), the PERF_EVENT_IOC_PERIOD allows
to create BTS event without those checks being done.
Following sequence will cause the crash:
If we create an 'almost' BTS event with precise_ip and callchains,
and it into a BTS event it will crash the perf_prepare_sample()
function because precise_ip events are expected to come
in with callchain data initialized, but that's not the
case for intel_pmu_drain_bts_buffer() caller.
Adding a check_period callback to be called before the period
is changed via PERF_EVENT_IOC_PERIOD. It will deny the change
if the event would become BTS. Plus adding also the limit_period
check as well.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190204123532.GA4794@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When pmu::setup_aux() is called the coresight PMU needs to know which
sink to use for the session by looking up the information in the
event's attr::config2 field.
As such simply replace the cpu information by the complete perf_event
structure and change all affected customers.
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Suzuki Poulouse <suzuki.poulose@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Link: http://lkml.kernel.org/r/20190131184714.20388-2-mathieu.poirier@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable perf_event_context.refcount is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
** Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts. Please check Documentation/core-api/refcount-vs-atomic.rst
for more information.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the perf_event_context.refcount it might make a difference
in following places:
- get_ctx(), perf_event_ctx_lock_nested(), perf_lock_task_context()
and __perf_event_ctx_lock_double(): increment in
refcount_inc_not_zero() only guarantees control dependency
on success vs. fully ordered atomic counterpart
- put_ctx(): decrement in refcount_dec_and_test() provides
RELEASE ordering and ACQUIRE ordering + control dependency on success
vs. fully ordered atomic counterpart
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: namhyung@kernel.org
Link: https://lkml.kernel.org/r/1548678448-24458-2-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For better performance analysis of BPF programs, this patch introduces
PERF_RECORD_BPF_EVENT, a new perf_event_type that exposes BPF program
load/unload information to user space.
Each BPF program may contain up to BPF_MAX_SUBPROGS (256) sub programs.
The following example shows kernel symbols for a BPF program with 7 sub
programs:
ffffffffa0257cf9 t bpf_prog_b07ccb89267cf242_F
ffffffffa02592e1 t bpf_prog_2dcecc18072623fc_F
ffffffffa025b0e9 t bpf_prog_bb7a405ebaec5d5c_F
ffffffffa025dd2c t bpf_prog_a7540d4a39ec1fc7_F
ffffffffa025fcca t bpf_prog_05762d4ade0e3737_F
ffffffffa026108f t bpf_prog_db4bd11e35df90d4_F
ffffffffa0263f00 t bpf_prog_89d64e4abf0f0126_F
ffffffffa0257cf9 t bpf_prog_ae31629322c4b018__dummy_tracepoi
When a bpf program is loaded, PERF_RECORD_KSYMBOL is generated for each
of these sub programs. Therefore, PERF_RECORD_BPF_EVENT is not needed
for simple profiling.
For annotation, user space need to listen to PERF_RECORD_BPF_EVENT and
gather more information about these (sub) programs via sys_bpf.
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradeaed.org>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kernel-team@fb.com
Cc: netdev@vger.kernel.org
Link: http://lkml.kernel.org/r/20190117161521.1341602-4-songliubraving@fb.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
For better performance analysis of dynamically JITed and loaded kernel
functions, such as BPF programs, this patch introduces
PERF_RECORD_KSYMBOL, a new perf_event_type that exposes kernel symbol
register/unregister information to user space.
The following data structure is used for PERF_RECORD_KSYMBOL.
/*
* struct {
* struct perf_event_header header;
* u64 addr;
* u32 len;
* u16 ksym_type;
* u16 flags;
* char name[];
* struct sample_id sample_id;
* };
*/
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kernel-team@fb.com
Cc: netdev@vger.kernel.org
Link: http://lkml.kernel.org/r/20190117161521.1341602-2-songliubraving@fb.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
For the original mode of operation it isn't needed, since we report back
errors via PERF_RECORD_LOST records in the ring buffer, but for use in
bpf_perf_event_output() it is convenient to return the errors, basically
-ENOSPC.
Currently bpf_perf_event_output() returns an error indication, the last
thing it does, which is to push it to the ring buffer is that can fail
and if so, this failure won't be reported back to its users, fix it.
Reported-by: Jamal Hadi Salim <jhs@mojatatu.com>
Tested-by: Jamal Hadi Salim <jhs@mojatatu.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/r/20190118150938.GN5823@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
It is already included a little bit higher up in that file.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20190117072504.14428-1-yuehaibing@huawei.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Many PMU drivers do not have the capability to exclude counting events
that occur in specific contexts such as idle, kernel, guest, etc. These
drivers indicate this by returning an error in their event_init upon
testing the events attribute flags. This approach is error prone and
often inconsistent.
Let's instead allow PMU drivers to advertise their inability to exclude
based on context via a new capability: PERF_PMU_CAP_NO_EXCLUDE. This
allows the perf core to reject requests for exclusion events where
there is no support in the PMU.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sascha Hauer <s.hauer@pengutronix.de>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: robin.murphy@arm.com
Cc: suzuki.poulose@arm.com
Link: https://lkml.kernel.org/r/1547128414-50693-4-git-send-email-andrew.murray@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a function that tests if any of the perf event exclusion flags
are set on a given event.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sascha Hauer <s.hauer@pengutronix.de>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: robin.murphy@arm.com
Cc: suzuki.poulose@arm.com
Link: https://lkml.kernel.org/r/1547128414-50693-3-git-send-email-andrew.murray@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>