Commit Graph

165 Commits

Author SHA1 Message Date
Matt Helsley 925d1c401f procfs task exe symlink
The kernel implements readlink of /proc/pid/exe by getting the file from
the first executable VMA.  Then the path to the file is reconstructed and
reported as the result.

Because of the VMA walk the code is slightly different on nommu systems.
This patch avoids separate /proc/pid/exe code on nommu systems.  Instead of
walking the VMAs to find the first executable file-backed VMA we store a
reference to the exec'd file in the mm_struct.

That reference would prevent the filesystem holding the executable file
from being unmounted even after unmapping the VMAs.  So we track the number
of VM_EXECUTABLE VMAs and drop the new reference when the last one is
unmapped.  This avoids pinning the mounted filesystem.

[akpm@linux-foundation.org: improve comments]
[yamamoto@valinux.co.jp: fix dup_mmap]
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: David Howells <dhowells@redhat.com>
Cc:"Eric W. Biederman" <ebiederm@xmission.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:17 -07:00
Adrian Bunk 07d45da616 fs/drop_caches.c: make 2 functions static
Make the following needlessly global functions static:

- drop_pagecache()
- drop_slab()

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:00 -07:00
Lee Schermerhorn a6020ed759 mempolicy: document {set|get}_policy() vm_ops APIs
Document mempolicy return value reference semantics assumed by the rest of the
mempolicy code for the set_ and get_policy vm_ops in <linux/mm.h>--where the
prototypes are defined--to inform any future mempolicy vm_op writers what the
rest of the subsystem expects of them.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:24 -07:00
Nick Piggin 423bad6004 mm: add vm_insert_mixed
vm_insert_mixed will insert either a raw pfn or a refcounted struct page into
the page tables, depending on whether vm_normal_page() will return the page or
not.  With the introduction of the new pte bit, this is now a too tricky for
drivers to be doing themselves.

filemap_xip uses this in a subsequent patch.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:23 -07:00
Nick Piggin 7e675137a8 mm: introduce pte_special pte bit
s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory
model (which is more dynamic than most).  Instead, they had proposed to
implement it with an additional path through vm_normal_page(), using a bit in
the pte to determine whether or not the page should be refcounted:

vm_normal_page()
{
	...
        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
                if (vma->vm_flags & VM_MIXEDMAP) {
#ifdef s390
			if (!mixedmap_refcount_pte(pte))
				return NULL;
#else
                        if (!pfn_valid(pfn))
                                return NULL;
#endif
                        goto out;
                }
	...
}

This is fine, however if we are allowed to use a bit in the pte to determine
refcountedness, we can use that to _completely_ replace all the vma based
schemes.  So instead of adding more cases to the already complex vma-based
scheme, we can have a clearly seperate and simple pte-based scheme (and get
slightly better code generation in the process):

vm_normal_page()
{
#ifdef s390
	if (!mixedmap_refcount_pte(pte))
		return NULL;
	return pte_page(pte);
#else
	...
#endif
}

And finally, we may rather make this concept usable by any architecture rather
than making it s390 only, so implement a new type of pte state for this.
Unfortunately the old vma based code must stay, because some architectures may
not be able to spare pte bits.  This makes vm_normal_page a little bit more
ugly than we would like, but the 2 cases are clearly seperate.

So introduce a pte_special pte state, and use it in mm/memory.c.  It is
currently a noop for all architectures, so this doesn't actually result in any
compiled code changes to mm/memory.o.

BTW:
I haven't put vm_normal_page() into arch code as-per an earlier suggestion.
The reason is that, regardless of where vm_normal_page is actually
implemented, the *abstraction* is still exactly the same. Also, while it
depends on whether the architecture has pte_special or not, that is the
only two possible cases, and it really isn't an arch specific function --
the role of the arch code should be to provide primitive functions and
accessors with which to build the core code; pte_special does that. We do
not want architectures to know or care about vm_normal_page itself, and
we definitely don't want them being able to invent something new there
out of sight of mm/ code. If we made vm_normal_page an arch function, then
we have to make vm_insert_mixed (next patch) an arch function too. So I
don't think moving it to arch code fundamentally improves any abstractions,
while it does practically make the code more difficult to follow, for both
mm and arch developers, and easier to misuse.

[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:23 -07:00
Jared Hulbert b379d79019 mm: introduce VM_MIXEDMAP
This series introduces some important infrastructure work.  The overall result
is that:

1. We now support XIP backed filesystems using memory that have no
   struct page allocated to them. And patches 6 and 7 actually implement
   this for s390.

   This is pretty important in a number of cases. As far as I understand,
   in the case of virtualisation (eg. s390), each guest may mount a
   readonly copy of the same filesystem (eg. the distro). Currently,
   guests need to allocate struct pages for this image. So if you have
   100 guests, you already need to allocate more memory for the struct
   pages than the size of the image. I think. (Carsten?)

   For other (eg. embedded) systems, you may have a very large non-
   volatile filesystem. If you have to have struct pages for this, then
   your RAM consumption will go up proportionally to fs size. Even
   though it is just a small proportion, the RAM can be much more costly
   eg in terms of power, so every KB less that Linux uses makes it more
   attractive to a lot of these guys.

2. VM_MIXEDMAP allows us to support mappings where you actually do want
   to refcount _some_ pages in the mapping, but not others, and support
   COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM
   filesystem in progress. Future iterations of this filesystem will
   most likely want to migrate pages between pagecache and XIP backing,
   which is where the requirement for mixed (some refcounted, some not)
   comes from.

3. pte_special also has a peripheral usage that I need for my lockless
   get_user_pages patch. That was shown to speed up "oltp" on db2 by
   10% on a 2 socket system, which is kind of significant because they
   scrounge for months to try to find 0.1% improvement on these
   workloads. I'm hoping we might finally be faster than AIX on
   pSeries with this :). My reference to lockless get_user_pages is not
   meant to justify this patchset (which doesn't include lockless gup),
   but just to show that pte_special is not some s390 specific thing that
   should be hidden in arch code or xip code: I definitely want to use it
   on at least x86 and powerpc as well.

This patch:

Introduce a new type of mapping, VM_MIXEDMAP.  This is unlike VM_PFNMAP in
that it can support COW mappings of arbitrary ranges including ranges without
struct page *and* ranges with a struct page that we actually want to refcount
(PFNMAP can only support COW in those cases where the un-COW-ed translations
are mapped linearly in the virtual address, and can only support non
refcounted ranges).

VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not
refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it
needs to avoid refcounting pfn_valid pages eg.  for /dev/mem mappings).

Signed-off-by: Jared Hulbert <jaredeh@gmail.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:22 -07:00
Christoph Lameter 9223b4190f pageflags: get rid of FLAGS_RESERVED
NR_PAGEFLAGS specifies the number of page flags we are using.  From that we
can calculate the number of bits leftover that can be used for zone, node (and
maybe the sections id).  There is no need anymore for FLAGS_RESERVED if we use
NR_PAGEFLAGS.

Use the new methods to make NR_PAGEFLAGS available via the preprocessor.
NR_PAGEFLAGS is used to calculate field boundaries in the page flags fields.
These field widths have to be available to the preprocessor.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Miller <davem@davemloft.net>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00
Andrew Morton 726b801272 page_mapping(): add ifdef around reference to swapper_space
This fixes the superh build when the pageflags patches are applied.

But it shouldn't unless it's a gcc bug.

Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00
Christoph Lameter 308c05e35e sparsemem: vmemmap does not need section bits
A set of patches that attempts to improve page flag handling.  First of all a
method is introduced to generate the page flag functions using macros.  Then
the number of page flags used by sparsemem is reduced.  All page flag
operations will no longer be macros.  All flags will use inline function.

Then we add a way to export enum constants to the preprocessor which allows us
to get rid of __ZONE_COUNT and use the NR_PAGEFLAGS for the dynamic
calculation of actually available page flags for fields.

This patch:

Sparsemem vmemmap does not need any section bits.  This patch has the effect
of reducing the number of bits used in page->flags by at least 6.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:21 -07:00
Nick Piggin 3c18ddd160 mm: remove nopage
Nothing in the tree uses nopage any more.  Remove support for it in the
core mm code and documentation (and a few stray references to it in
comments).

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Yinghai Lu c2b91e2eec x86_64/mm: check and print vmemmap allocation continuous
On big systems with lots of memory, don't print out too much during
bootup, and make it easy to find if it is continuous.

on 256G 8 sockets system will get
 [ffffe20000000000-ffffe20002bfffff] PMD -> [ffff810001400000-ffff810003ffffff] on node 0
[ffffe2001c700000-ffffe2001c7fffff] potential offnode page_structs
 [ffffe20002c00000-ffffe2001c7fffff] PMD -> [ffff81000c000000-ffff8100255fffff] on node 0
[ffffe20038700000-ffffe200387fffff] potential offnode page_structs
 [ffffe2001c800000-ffffe200387fffff] PMD -> [ffff810820200000-ffff81083c1fffff] on node 1
 [ffffe20040000000-ffffe2007fffffff] PUD ->ffff811027a00000 on node 2
 [ffffe20038800000-ffffe2003fffffff] PMD -> [ffff811020200000-ffff8110279fffff] on node 2
[ffffe20054700000-ffffe200547fffff] potential offnode page_structs
 [ffffe20040000000-ffffe200547fffff] PMD -> [ffff811027c00000-ffff81103c3fffff] on node 2
[ffffe20070700000-ffffe200707fffff] potential offnode page_structs
 [ffffe20054800000-ffffe200707fffff] PMD -> [ffff811820200000-ffff81183c1fffff] on node 3
 [ffffe20080000000-ffffe200bfffffff] PUD ->ffff81202fa00000 on node 4
 [ffffe20070800000-ffffe2007fffffff] PMD -> [ffff812020200000-ffff81202f9fffff] on node 4
[ffffe2008c700000-ffffe2008c7fffff] potential offnode page_structs
 [ffffe20080000000-ffffe2008c7fffff] PMD -> [ffff81202fc00000-ffff81203c3fffff] on node 4
[ffffe200a8700000-ffffe200a87fffff] potential offnode page_structs
 [ffffe2008c800000-ffffe200a87fffff] PMD -> [ffff812820200000-ffff81283c1fffff] on node 5
 [ffffe200c0000000-ffffe200ffffffff] PUD ->ffff813037a00000 on node 6
 [ffffe200a8800000-ffffe200bfffffff] PMD -> [ffff813020200000-ffff8130379fffff] on node 6
[ffffe200c4700000-ffffe200c47fffff] potential offnode page_structs
 [ffffe200c0000000-ffffe200c47fffff] PMD -> [ffff813037c00000-ffff81303c3fffff] on node 6
 [ffffe200c4800000-ffffe200e07fffff] PMD -> [ffff813820200000-ffff81383c1fffff] on node 7

instead of a very long print out...

Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-26 22:51:09 +02:00
Paul Mundt 0738c4bb8f nommu: Provide is_vmalloc_addr() stub.
Introduced in commit-id 9e2779fa28 and
ifdef'ed out for nommu in 8ca3ed87db, both
approaches end up breaking the nommu build in different ways. An
impressive feat for a 2-liner.

Current is_vmalloc_addr() users fall in to two camps:

	- Determining whether to use vfree()/kfree()
	- Whether to do vmlist traversal (only /proc/kcore).

Since we don't support /proc/kcore on nommu, that leaves the
vfree()/kfree() determination use cases. nommu vfree() happens to be a
wrapper to kfree() anyways, so is_vmalloc_addr() can always return 0
and end up with the right behaviour.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-12 12:34:37 -07:00
David Howells 8ca3ed87db NOMMU: is_vmalloc_addr() won't compile if !MMU
Make is_vmalloc_addr() contingent on CONFIG_MMU=y, as it won't compile
in !MMU mode.

[ Bug introduced in commit 9e2779fa281cfda13ac060753d674bbcaa23367e:
  "is_vmalloc_addr(): Check if an address is within the vmalloc
  boundaries" ].

Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Greg Ungerer <gerg@snapgear.com>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-23 17:12:14 -08:00
Rafael J. Wysocki 8a235efad5 Hibernation: Handle DEBUG_PAGEALLOC on x86
Make hibernation work with CONFIG_DEBUG_PAGEALLOC set on x86, by
checking if the pages to be copied are marked as present in the
kernel mapping and temporarily marking them as present if that's not
the case.  No functional modifications are introduced if
CONFIG_DEBUG_PAGEALLOC is unset.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-02-21 02:15:28 -05:00
Harvey Harrison b3c9752868 include/linux: Remove all users of FASTCALL() macro
FASTCALL() is always expanded to empty, remove it.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-13 16:21:18 -08:00
Martin Schwidefsky 2f569afd9c CONFIG_HIGHPTE vs. sub-page page tables.
Background: I've implemented 1K/2K page tables for s390.  These sub-page
page tables are required to properly support the s390 virtualization
instruction with KVM.  The SIE instruction requires that the page tables
have 256 page table entries (pte) followed by 256 page status table entries
(pgste).  The pgstes are only required if the process is using the SIE
instruction.  The pgstes are updated by the hardware and by the hypervisor
for a number of reasons, one of them is dirty and reference bit tracking.
To avoid wasting memory the standard pte table allocation should return
1K/2K (31/64 bit) and 2K/4K if the process is using SIE.

Problem: Page size on s390 is 4K, page table size is 1K or 2K.  That means
the s390 version for pte_alloc_one cannot return a pointer to a struct
page.  Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one
cannot return a pointer to a pte either, since that would require more than
32 bit for the return value of pte_alloc_one (and the pte * would not be
accessible since its not kmapped).

Solution: The only solution I found to this dilemma is a new typedef: a
pgtable_t.  For s390 pgtable_t will be a (pte *) - to be introduced with a
later patch.  For everybody else it will be a (struct page *).  The
additional problem with the initialization of the ptl lock and the
NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and
a destructor pgtable_page_dtor.  The page table allocation and free
functions need to call these two whenever a page table page is allocated or
freed.  pmd_populate will get a pgtable_t instead of a struct page pointer.
 To get the pgtable_t back from a pmd entry that has been installed with
pmd_populate a new function pmd_pgtable is added.  It replaces the pmd_page
call in free_pte_range and apply_to_pte_range.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 09:22:42 -08:00
Matt Mackall e6473092bd maps4: introduce a generic page walker
Introduce a general page table walker

Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:16 -08:00
Christoph Lameter aec2c3ed01 VM: allow get_page_unless_zero on compound pages
Both slab defrag and the large blocksize patches need to ability to take
refcounts on compound pages.  May be useful in other places as well.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:14 -08:00
Christoph Lameter 9e2779fa28 is_vmalloc_addr(): Check if an address is within the vmalloc boundaries
Checking if an address is a vmalloc address is done in a couple of places.
Define a common version in mm.h and replace the other checks.

Again the include structures suck.  The definition of VMALLOC_START and
VMALLOC_END is not available in vmalloc.h since highmem.c cannot be included
there.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:14 -08:00
Christoph Lameter b3bdda02aa vmalloc: add const to void* parameters
Make vmalloc functions work the same way as kfree() and friends that
take a const void * argument.

[akpm@linux-foundation.org: fix consts, coding-style]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:14 -08:00
Christoph Lameter 48667e7a43 Move vmalloc_to_page() to mm/vmalloc.
We already have page table manipulation for vmalloc in vmalloc.c. Move the
vmalloc_to_page() function there as well.

Move the definitions for vmalloc related functions in mm.h to a newly created
section.  A better place would be vmalloc.h but mm.h is basic and may depend
on these functions.  An alternative would be to include vmalloc.h in mm.h
(like done for vmstat.h).

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:13 -08:00
Ingo Molnar 12d6f21eac x86: do not PSE on CONFIG_DEBUG_PAGEALLOC=y
get more testing of the c_p_a() code done by not turning off
PSE on DEBUG_PAGEALLOC.

this simplifies the early pagetable setup code, and tests
the largepage-splitup code quite heavily.

In the end, all the largepages will be split up pretty quickly,
so there's no difference to how DEBUG_PAGEALLOC worked before.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:33:58 +01:00
Andi Kleen 03252919b7 x86: print which shared library/executable faulted in segfault etc. messages v3
They now look like:

hal-resmgr[13791]: segfault at 3c rip 2b9c8caec182 rsp 7fff1e825d30 error 4 in libacl.so.1.1.0[2b9c8caea000+6000]

This makes it easier to pinpoint bugs to specific libraries.

And printing the offset into a mapping also always allows to find the
correct fault point in a library even with randomized mappings. Previously
there was no way to actually find the correct code address inside
the randomized mapping.

Relies on earlier patch to shorten the printk formats.

They are often now longer than 80 characters, but I think that's worth it.

[includes fix from Eric Dumazet to check d_path error value]

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:33:18 +01:00
James Morris 42d7896ebc Security: remove security.h include from mm.h
Remove security.h include from mm.h, as it is only needed for a single
extern declaration, and pulls in all kinds of crud.

Fine-by-me: David Chinner <dgc@sgi.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-01-25 11:29:49 +11:00
Eric Paris 7cd94146cd Security: round mmap hint address above mmap_min_addr
If mmap_min_addr is set and a process attempts to mmap (not fixed) with a
non-null hint address less than mmap_min_addr the mapping will fail the
security checks.  Since this is just a hint address this patch will round
such a hint address above mmap_min_addr.

gcj was found to try to be very frugal with vm usage and give hint addresses
in the 8k-32k range.  Without this patch all such programs failed and with
the patch they happily get a higher address.

This patch is wrappad in CONFIG_SECURITY since mmap_min_addr doesn't exist
without it and there would be no security check possible no matter what.  So
we should not bother compiling in this rounding if it is just a waste of
time.

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2007-12-06 00:25:10 +11:00
Alexey Dobriyan 4af3c9cc4f Drop some headers from mm.h
mm.h doesn't use directly anything from mutex.h and backing-dev.h, so
remove them and add them back to files which need them.

Cross-compile tested on many configs and archs.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:55 -07:00
Adrian Bunk d8dc74f212 mm/shmem.c: make 3 functions static
This patch makes three needlessly global functions static.

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:03 -07:00
Yasunori Goto 98f3cfc1dc memory hotplug: Hot-add with sparsemem-vmemmap
This patch is to avoid panic when memory hot-add is executed with
sparsemem-vmemmap.  Current vmemmap-sparsemem code doesn't support memory
hot-add.  Vmemmap must be populated when hot-add.  This is for
2.6.23-rc2-mm2.

Todo: # Even if this patch is applied, the message "[xxxx-xxxx] potential
        offnode page_structs" is displayed. To allocate memmap on its node,
        memmap (and pgdat) must be initialized itself like chicken and
        egg relationship.

      # vmemmap_unpopulate will be necessary for followings.
         - For cancel hot-add due to error.
         - For unplug.

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:02 -07:00
Christoph Lameter 8e65d24c7c SLUB: Do not use page->mapping
After moving the lockless_freelist to kmem_cache_cpu we no longer need
page->lockless_freelist. Restructure the use of the struct page fields in
such a way that we never touch the mapping field.

This is turn allows us to remove the special casing of SLUB when determining
the mapping of a page (needed for corner cases of virtual caches machines that
need to flush caches of processors mapping a page).

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:01 -07:00
Martin Schwidefsky c92ff1bde0 move mm_struct and vm_area_struct
Move the definitions of struct mm_struct and struct vma_area_struct to
include/mm_types.h.  This allows to define more function in asm/pgtable.h
and friends with inline assemblies instead of macros.  Compile tested on
i386, powerpc, powerpc64, s390-32, s390-64 and x86_64.

[aurelien@aurel32.net: build fix]
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:53 -07:00
Nick Piggin 557ed1fa26 remove ZERO_PAGE
The commit b5810039a5 contains the note

  A last caveat: the ZERO_PAGE is now refcounted and managed with rmap
  (and thus mapcounted and count towards shared rss).  These writes to
  the struct page could cause excessive cacheline bouncing on big
  systems.  There are a number of ways this could be addressed if it is
  an issue.

And indeed this cacheline bouncing has shown up on large SGI systems.
There was a situation where an Altix system was essentially livelocked
tearing down ZERO_PAGE pagetables when an HPC app aborted during startup.
This situation can be avoided in userspace, but it does highlight the
potential scalability problem with refcounting ZERO_PAGE, and corner
cases where it can really hurt (we don't want the system to livelock!).

There are several broad ways to fix this problem:
1. add back some special casing to avoid refcounting ZERO_PAGE
2. per-node or per-cpu ZERO_PAGES
3. remove the ZERO_PAGE completely

I will argue for 3. The others should also fix the problem, but they
result in more complex code than does 3, with little or no real benefit
that I can see.

Why? Inserting a ZERO_PAGE for anonymous read faults appears to be a
false optimisation: if an application is performance critical, it would
not be doing many read faults of new memory, or at least it could be
expected to write to that memory soon afterwards. If cache or memory use
is critical, it should not be working with a significant number of
ZERO_PAGEs anyway (a more compact representation of zeroes should be
used).

As a sanity check -- mesuring on my desktop system, there are never many
mappings to the ZERO_PAGE (eg. 2 or 3), thus memory usage here should not
increase much without it.

When running a make -j4 kernel compile on my dual core system, there are
about 1,000 mappings to the ZERO_PAGE created per second, but about 1,000
ZERO_PAGE COW faults per second (less than 1 ZERO_PAGE mapping per second
is torn down without being COWed). So removing ZERO_PAGE will save 1,000
page faults per second when running kbuild, while keeping it only saves
less than 1 page clearing operation per second. 1 page clear is cheaper
than a thousand faults, presumably, so there isn't an obvious loss.

Neither the logical argument nor these basic tests give a guarantee of no
regressions. However, this is a reasonable opportunity to try to remove
the ZERO_PAGE from the pagefault path. If it is found to cause regressions,
we can reintroduce it and just avoid refcounting it.

The /dev/zero ZERO_PAGE usage and TLB tricks also get nuked.  I don't see
much use to them except on benchmarks.  All other users of ZERO_PAGE are
converted just to use ZERO_PAGE(0) for simplicity. We can look at
replacing them all and maybe ripping out ZERO_PAGE completely when we are
more satisfied with this solution.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus "snif" Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:53 -07:00
Fengguang Wu 535443f515 readahead: remove several readahead macros
Remove VM_MAX_CACHE_HIT, MAX_RA_PAGES and MIN_RA_PAGES.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:52 -07:00
Andy Whitcroft 29c71111d0 vmemmap: generify initialisation via helpers
Convert the common vmemmap population into initialisation helpers for use by
architecture vmemmap populators.  All architecture implementing the
SPARSEMEM_VMEMMAP variant supply an architecture specific vmemmap_populate()
initialiser, which may make use of the helpers.

This allows us to clean up and remove the initialisation Kconfig entries.
With this patch there is a single SPARSEMEM_VMEMMAP_ENABLE Kconfig option to
indicate use of that variant.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:51 -07:00
Christoph Lameter 8f6aac419b Generic Virtual Memmap support for SPARSEMEM
SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all
the arches.  It would be great if it could be the default so that we can get
rid of various forms of DISCONTIG and other variations on memory maps.  So far
what has hindered this are the additional lookups that SPARSEMEM introduces
for virt_to_page and page_address.  This goes so far that the code to do this
has to be kept in a separate function and cannot be used inline.

This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap
is mapped into a virtually contigious area, only the active sections are
physically backed.  This allows virt_to_page page_address and cohorts become
simple shift/add operations.  No page flag fields, no table lookups, nothing
involving memory is required.

The two key operations pfn_to_page and page_to_page become:

   #define __pfn_to_page(pfn)      (vmemmap + (pfn))
   #define __page_to_pfn(page)     ((page) - vmemmap)

By having a virtual mapping for the memmap we allow simple access without
wasting physical memory.  As kernel memory is typically already mapped 1:1
this introduces no additional overhead.  The virtual mapping must be big
enough to allow a struct page to be allocated and mapped for all valid
physical pages.  This vill make a virtual memmap difficult to use on 32 bit
platforms that support 36 address bits.

However, if there is enough virtual space available and the arch already maps
its 1-1 kernel space using TLBs (f.e.  true of IA64 and x86_64) then this
technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM.
FLATMEM needs to read the contents of the mem_map variable to get the start of
the memmap and then add the offset to the required entry.  vmemmap is a
constant to which we can simply add the offset.

This patch has the potential to allow us to make SPARSMEM the default (and
even the only) option for most systems.  It should be optimal on UP, SMP and
NUMA on most platforms.  Then we may even be able to remove the other memory
models: FLATMEM, DISCONTIG etc.

[apw@shadowen.org: config cleanups, resplit code etc]
[kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init]
[apw@shadowen.org: vmemmap: remove excess debugging]
[apw@shadowen.org: simplify initialisation code and reduce duplication]
[apw@shadowen.org: pull out the vmemmap code into its own file]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:51 -07:00
Alan Cox 34b4e4aa3c fix NULL pointer dereference in __vm_enough_memory()
The new exec code inserts an accounted vma into an mm struct which is not
current->mm.  The existing memory check code has a hard coded assumption
that this does not happen as does the security code.

As the correct mm is known we pass the mm to the security method and the
helper function.  A new security test is added for the case where we need
to pass the mm and the existing one is modified to pass current->mm to
avoid the need to change large amounts of code.

(Thanks to Tobias for fixing rejects and testing)

Signed-off-by: Alan Cox <alan@redhat.com>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Cc: James Morris <jmorris@redhat.com>
Cc: Tobias Diedrich <ranma+kernel@tdiedrich.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-22 19:52:45 -07:00
Alexey Dobriyan 4e950f6f01 Remove fs.h from mm.h
Remove fs.h from mm.h. For this,
 1) Uninline vma_wants_writenotify(). It's pretty huge anyway.
 2) Add back fs.h or less bloated headers (err.h) to files that need it.

As result, on x86_64 allyesconfig, fs.h dependencies cut down from 3929 files
rebuilt down to 3444 (-12.3%).

Cross-compile tested without regressions on my two usual configs and (sigh):

alpha              arm-mx1ads        mips-bigsur          powerpc-ebony
alpha-allnoconfig  arm-neponset      mips-capcella        powerpc-g5
alpha-defconfig    arm-netwinder     mips-cobalt          powerpc-holly
alpha-up           arm-netx          mips-db1000          powerpc-iseries
arm                arm-ns9xxx        mips-db1100          powerpc-linkstation
arm-assabet        arm-omap_h2_1610  mips-db1200          powerpc-lite5200
arm-at91rm9200dk   arm-onearm        mips-db1500          powerpc-maple
arm-at91rm9200ek   arm-picotux200    mips-db1550          powerpc-mpc7448_hpc2
arm-at91sam9260ek  arm-pleb          mips-ddb5477         powerpc-mpc8272_ads
arm-at91sam9261ek  arm-pnx4008       mips-decstation      powerpc-mpc8313_rdb
arm-at91sam9263ek  arm-pxa255-idp    mips-e55             powerpc-mpc832x_mds
arm-at91sam9rlek   arm-realview      mips-emma2rh         powerpc-mpc832x_rdb
arm-ateb9200       arm-realview-smp  mips-excite          powerpc-mpc834x_itx
arm-badge4         arm-rpc           mips-fulong          powerpc-mpc834x_itxgp
arm-carmeva        arm-s3c2410       mips-ip22            powerpc-mpc834x_mds
arm-cerfcube       arm-shannon       mips-ip27            powerpc-mpc836x_mds
arm-clps7500       arm-shark         mips-ip32            powerpc-mpc8540_ads
arm-collie         arm-simpad        mips-jazz            powerpc-mpc8544_ds
arm-corgi          arm-spitz         mips-jmr3927         powerpc-mpc8560_ads
arm-csb337         arm-trizeps4      mips-malta           powerpc-mpc8568mds
arm-csb637         arm-versatile     mips-mipssim         powerpc-mpc85xx_cds
arm-ebsa110        i386              mips-mpc30x          powerpc-mpc8641_hpcn
arm-edb7211        i386-allnoconfig  mips-msp71xx         powerpc-mpc866_ads
arm-em_x270        i386-defconfig    mips-ocelot          powerpc-mpc885_ads
arm-ep93xx         i386-up           mips-pb1100          powerpc-pasemi
arm-footbridge     ia64              mips-pb1500          powerpc-pmac32
arm-fortunet       ia64-allnoconfig  mips-pb1550          powerpc-ppc64
arm-h3600          ia64-bigsur       mips-pnx8550-jbs     powerpc-prpmc2800
arm-h7201          ia64-defconfig    mips-pnx8550-stb810  powerpc-ps3
arm-h7202          ia64-gensparse    mips-qemu            powerpc-pseries
arm-hackkit        ia64-sim          mips-rbhma4200       powerpc-up
arm-integrator     ia64-sn2          mips-rbhma4500       s390
arm-iop13xx        ia64-tiger        mips-rm200           s390-allnoconfig
arm-iop32x         ia64-up           mips-sb1250-swarm    s390-defconfig
arm-iop33x         ia64-zx1          mips-sead            s390-up
arm-ixp2000        m68k              mips-tb0219          sparc
arm-ixp23xx        m68k-amiga        mips-tb0226          sparc-allnoconfig
arm-ixp4xx         m68k-apollo       mips-tb0287          sparc-defconfig
arm-jornada720     m68k-atari        mips-workpad         sparc-up
arm-kafa           m68k-bvme6000     mips-wrppmc          sparc64
arm-kb9202         m68k-hp300        mips-yosemite        sparc64-allnoconfig
arm-ks8695         m68k-mac          parisc               sparc64-defconfig
arm-lart           m68k-mvme147      parisc-allnoconfig   sparc64-up
arm-lpd270         m68k-mvme16x      parisc-defconfig     um-x86_64
arm-lpd7a400       m68k-q40          parisc-up            x86_64
arm-lpd7a404       m68k-sun3         powerpc              x86_64-allnoconfig
arm-lubbock        m68k-sun3x        powerpc-cell         x86_64-defconfig
arm-lusl7200       mips              powerpc-celleb       x86_64-up
arm-mainstone      mips-atlas        powerpc-chrp32

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-29 17:09:29 -07:00
Sam Ravnborg 045e72acf1 fix 'dynreloc miscount' link error on Powerpc
Nathan Lynch <ntl@pobox.com> reported:
2.6.23-rc1 breaks the build for 64-bit powerpc for me (using
maple_defconfig):

  LD      vmlinux.o
powerpc64-unknown-linux-gnu-ld: dynreloc miscount for
kernel/built-in.o, section .opd
powerpc64-unknown-linux-gnu-ld: can not edit opd Bad value
make: *** [vmlinux.o] Error 1

However, I see a possibly related binutils patch:
http://article.gmane.org/gmane.comp.gnu.binutils/33650

It was tracked down to be caused by the weak prototype
declaration in mm.h:
__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);

But there is no need to make the declaration weak - only the definition
needs to be marked weak.  So drop the weak declaration.  And in the process
drop the duplicate definition in page.h for powerpc.

Note: the arch_vma_name fix for x86_64 needs to be applied first to avoid
breaking x86_64

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Nathan Lynch <ntl@pobox.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-26 11:35:18 -07:00
Ollie Wild b6a2fea393 mm: variable length argument support
Remove the arg+env limit of MAX_ARG_PAGES by copying the strings directly from
the old mm into the new mm.

We create the new mm before the binfmt code runs, and place the new stack at
the very top of the address space.  Once the binfmt code runs and figures out
where the stack should be, we move it downwards.

It is a bit peculiar in that we have one task with two mm's, one of which is
inactive.

[a.p.zijlstra@chello.nl: limit stack size]
Signed-off-by: Ollie Wild <aaw@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <linux-arch@vger.kernel.org>
Cc: Hugh Dickins <hugh@veritas.com>
[bunk@stusta.de: unexport bprm_mm_init]
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:45 -07:00
Rusty Russell cf914a7d65 readahead: split ondemand readahead interface into two functions
Split ondemand readahead interface into two functions.  I think this makes it
a little clearer for non-readahead experts (like Rusty).

Internally they both call ondemand_readahead(), but the page argument is
changed to an obvious boolean flag.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Fengguang Wu c743d96b6d readahead: remove the old algorithm
Remove the old readahead algorithm.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Steven Pratt <slpratt@austin.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Fengguang Wu 122a21d11c readahead: on-demand readahead logic
This is a minimal readahead algorithm that aims to replace the current one.
It is more flexible and reliable, while maintaining almost the same behavior
and performance.  Also it is full integrated with adaptive readahead.

It is designed to be called on demand:
	- on a missing page, to do synchronous readahead
	- on a lookahead page, to do asynchronous readahead

In this way it eliminated the awkward workarounds for cache hit/miss,
readahead thrashing, retried read, and unaligned read.  It also adopts the
data structure introduced by adaptive readahead, parameterizes readahead
pipelining with `lookahead_index', and reduces the current/ahead windows to
one single window.

HEURISTICS

The logic deals with four cases:

	- sequential-next
		found a consistent readahead window, so push it forward

	- random
		standalone small read, so read as is

	- sequential-first
		create a new readahead window for a sequential/oversize request

	- lookahead-clueless
		hit a lookahead page not associated with the readahead window,
		so create a new readahead window and ramp it up

In each case, three parameters are determined:

	- readahead index: where the next readahead begins
	- readahead size:  how much to readahead
	- lookahead size:  when to do the next readahead (for pipelining)

BEHAVIORS

The old behaviors are maximally preserved for trivial sequential/random reads.
Notable changes are:

	- It no longer imposes strict sequential checks.
	  It might help some interleaved cases, and clustered random reads.
	  It does introduce risks of a random lookahead hit triggering an
	  unexpected readahead. But in general it is more likely to do good
	  than to do evil.

	- Interleaved reads are supported in a minimal way.
	  Their chances of being detected and proper handled are still low.

	- Readahead thrashings are better handled.
	  The current readahead leads to tiny average I/O sizes, because it
	  never turn back for the thrashed pages.  They have to be fault in
	  by do_generic_mapping_read() one by one.  Whereas the on-demand
	  readahead will redo readahead for them.

OVERHEADS

The new code reduced the overheads of

	- excessively calling the readahead routine on small sized reads
	  (the current readahead code insists on seeing all requests)

	- doing a lot of pointless page-cache lookups for small cached files
	  (the current readahead only turns itself off after 256 cache hits,
	  unfortunately most files are < 1MB, so never see that chance)

That accounts for speedup of
	- 0.3% on 1-page sequential reads on sparse file
	- 1.2% on 1-page cache hot sequential reads
	- 3.2% on 256-page cache hot sequential reads
	- 1.3% on cache hot `tar /lib`

However, it does introduce one extra page-cache lookup per cache miss, which
impacts random reads slightly. That's 1% overheads for 1-page random reads on
sparse file.

PERFORMANCE

The basic benchmark setup is
	- 2.6.20 kernel with on-demand readahead
	- 1MB max readahead size
	- 2.9GHz Intel Core 2 CPU
	- 2GB memory
	- 160G/8M Hitachi SATA II 7200 RPM disk

The benchmarks show that
	- it maintains the same performance for trivial sequential/random reads
	- sysbench/OLTP performance on MySQL gains up to 8%
	- performance on readahead thrashing gains up to 3 times

iozone throughput (KB/s): roughly the same
==========================================
iozone -c -t1 -s 4096m -r 64k

			       2.6.20          on-demand      gain
first run
	  "  Initial write "   61437.27        64521.53      +5.0%
	  "        Rewrite "   47893.02        48335.20      +0.9%
	  "           Read "   62111.84        62141.49      +0.0%
	  "        Re-read "   62242.66        62193.17      -0.1%
	  "   Reverse Read "   50031.46        49989.79      -0.1%
	  "    Stride read "    8657.61         8652.81      -0.1%
	  "    Random read "   13914.28        13898.23      -0.1%
	  " Mixed workload "   19069.27        19033.32      -0.2%
	  "   Random write "   14849.80        14104.38      -5.0%
	  "         Pwrite "   62955.30        65701.57      +4.4%
	  "          Pread "   62209.99        62256.26      +0.1%

second run
	  "  Initial write "   60810.31        66258.69      +9.0%
	  "        Rewrite "   49373.89        57833.66     +17.1%
	  "           Read "   62059.39        62251.28      +0.3%
	  "        Re-read "   62264.32        62256.82      -0.0%
	  "   Reverse Read "   49970.96        50565.72      +1.2%
	  "    Stride read "    8654.81         8638.45      -0.2%
	  "    Random read "   13901.44        13949.91      +0.3%
	  " Mixed workload "   19041.32        19092.04      +0.3%
	  "   Random write "   14019.99        14161.72      +1.0%
	  "         Pwrite "   64121.67        68224.17      +6.4%
	  "          Pread "   62225.08        62274.28      +0.1%

In summary, writes are unstable, reads are pretty close on average:

			  access pattern  2.6.20  on-demand   gain
				   Read  62085.61  62196.38  +0.2%
				Re-read  62253.49  62224.99  -0.0%
			   Reverse Read  50001.21  50277.75  +0.6%
			    Stride read   8656.21   8645.63  -0.1%
			    Random read  13907.86  13924.07  +0.1%
	 		 Mixed workload  19055.29  19062.68  +0.0%
				  Pread  62217.53  62265.27  +0.1%

aio-stress: roughly the same
============================
aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso
aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso

					2.6.20      on-demand  delta
			sequential	 92.57s      92.54s    -0.0%
			random		311.87s     312.15s    +0.1%

sysbench fileio: roughly the same
=================================
sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \
	 --file-total-size=4G --file-block-size=64K \
	 --num-threads=001 --max-requests=10000 --max-time=900 run

				threads    2.6.20   on-demand    delta
		first run
				      1   59.1974s    59.2262s  +0.0%
				      2   58.0575s    58.2269s  +0.3%
				      4   48.0545s    47.1164s  -2.0%
				      8   41.0684s    41.2229s  +0.4%
				     16   35.8817s    36.4448s  +1.6%
				     32   32.6614s    32.8240s  +0.5%
				     64   23.7601s    24.1481s  +1.6%
				    128   24.3719s    23.8225s  -2.3%
				    256   23.2366s    22.0488s  -5.1%

		second run
				      1   59.6720s    59.5671s  -0.2%
				      8   41.5158s    41.9541s  +1.1%
				     64   25.0200s    23.9634s  -4.2%
				    256   22.5491s    20.9486s  -7.1%

Note that the numbers are not very stable because of the writes.
The overall performance is close when we sum all seconds up:

                sum all up               495.046s    491.514s   -0.7%

sysbench oltp (trans/sec): up to 8% gain
========================================
sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \
	 --mysql-socket=/var/run/mysqld/mysqld.sock \
	 --mysql-user=root --mysql-password=readahead \
	 --num-threads=064 --max-requests=10000 --max-time=900 run

	10000-transactions run
				threads    2.6.20   on-demand    gain
				      1     62.81       64.56   +2.8%
				      2     67.97       70.93   +4.4%
				      4     81.81       85.87   +5.0%
				      8     94.60       97.89   +3.5%
				     16     99.07      104.68   +5.7%
				     32     95.93      104.28   +8.7%
				     64     96.48      103.68   +7.5%
	5000-transactions run
				      1     48.21       48.65   +0.9%
				      8     68.60       70.19   +2.3%
				     64     70.57       74.72   +5.9%
	2000-transactions run
				      1     37.57       38.04   +1.3%
				      2     38.43       38.99   +1.5%
				      4     45.39       46.45   +2.3%
				      8     51.64       52.36   +1.4%
				     16     54.39       55.18   +1.5%
				     32     52.13       54.49   +4.5%
				     64     54.13       54.61   +0.9%

That's interesting results. Some investigations show that
	- MySQL is accessing the db file non-uniformly: some parts are
	  more hot than others
	- It is mostly doing 4-page random reads, and sometimes doing two
	  reads in a row, the latter one triggers a 16-page readahead.
	- The on-demand readahead leaves many lookahead pages (flagged
	  PG_readahead) there. Many of them will be hit, and trigger
	  more readahead pages. Which might save more seeks.
	- Naturally, the readahead windows tend to lie in hot areas,
	  and the lookahead pages in hot areas is more likely to be hit.
	- The more overall read density, the more possible gain.

That also explains the adaptive readahead tricks for clustered random reads.

readahead thrashing: 3 times better
===================================
We boot kernel with "mem=128m single", and start a 100KB/s stream on every
second, until reaching 200 streams.

			      max throughput     min avg I/O size
		2.6.20:            5MB/s               16KB
		on-demand:        15MB/s              140KB

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Steven Pratt <slpratt@austin.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Nick Piggin 83c54070ee mm: fault feedback #2
This patch completes Linus's wish that the fault return codes be made into
bit flags, which I agree makes everything nicer.  This requires requires
all handle_mm_fault callers to be modified (possibly the modifications
should go further and do things like fault accounting in handle_mm_fault --
however that would be for another patch).

[akpm@linux-foundation.org: fix alpha build]
[akpm@linux-foundation.org: fix s390 build]
[akpm@linux-foundation.org: fix sparc build]
[akpm@linux-foundation.org: fix sparc64 build]
[akpm@linux-foundation.org: fix ia64 build]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Bryan Wu <bryan.wu@analog.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Matthew Wilcox <willy@debian.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Still apparently needs some ARM and PPC loving - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:41 -07:00
Nick Piggin d0217ac04c mm: fault feedback #1
Change ->fault prototype.  We now return an int, which contains
VM_FAULT_xxx code in the low byte, and FAULT_RET_xxx code in the next byte.
 FAULT_RET_ code tells the VM whether a page was found, whether it has been
locked, and potentially other things.  This is not quite the way he wanted
it yet, but that's changed in the next patch (which requires changes to
arch code).

This means we no longer set VM_CAN_INVALIDATE in the vma in order to say
that a page is locked which requires filemap_nopage to go away (because we
can no longer remain backward compatible without that flag), but we were
going to do that anyway.

struct fault_data is renamed to struct vm_fault as Linus asked. address
is now a void __user * that we should firmly encourage drivers not to use
without really good reason.

The page is now returned via a page pointer in the vm_fault struct.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:41 -07:00
Nick Piggin 54cb8821de mm: merge populate and nopage into fault (fixes nonlinear)
Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes
the virtual address -> file offset differently from linear mappings.

->populate is a layering violation because the filesystem/pagecache code
should need to know anything about the virtual memory mapping.  The hitch here
is that the ->nopage handler didn't pass down enough information (ie.  pgoff).
 But it is more logical to pass pgoff rather than have the ->nopage function
calculate it itself anyway (because that's a similar layering violation).

Having the populate handler install the pte itself is likewise a nasty thing
to be doing.

This patch introduces a new fault handler that replaces ->nopage and
->populate and (later) ->nopfn.  Most of the old mechanism is still in place
so there is a lot of duplication and nice cleanups that can be removed if
everyone switches over.

The rationale for doing this in the first place is that nonlinear mappings are
subject to the pagefault vs invalidate/truncate race too, and it seemed stupid
to duplicate the synchronisation logic rather than just consolidate the two.

After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in
pagecache.  Seems like a fringe functionality anyway.

NOPAGE_REFAULT is removed.  This should be implemented with ->fault, and no
users have hit mainline yet.

[akpm@linux-foundation.org: cleanup]
[randy.dunlap@oracle.com: doc. fixes for readahead]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:41 -07:00
Nick Piggin d00806b183 mm: fix fault vs invalidate race for linear mappings
Fix the race between invalidate_inode_pages and do_no_page.

Andrea Arcangeli identified a subtle race between invalidation of pages from
pagecache with userspace mappings, and do_no_page.

The issue is that invalidation has to shoot down all mappings to the page,
before it can be discarded from the pagecache.  Between shooting down ptes to
a particular page, and actually dropping the struct page from the pagecache,
do_no_page from any process might fault on that page and establish a new
mapping to the page just before it gets discarded from the pagecache.

The most common case where such invalidation is used is in file truncation.
This case was catered for by doing a sort of open-coded seqlock between the
file's i_size, and its truncate_count.

Truncation will decrease i_size, then increment truncate_count before
unmapping userspace pages; do_no_page will read truncate_count, then find the
page if it is within i_size, and then check truncate_count under the page
table lock and back out and retry if it had subsequently been changed (ptl
will serialise against unmapping, and ensure a potentially updated
truncate_count is actually visible).

Complexity and documentation issues aside, the locking protocol fails in the
case where we would like to invalidate pagecache inside i_size.  do_no_page
can come in anytime and filemap_nopage is not aware of the invalidation in
progress (as it is when it is outside i_size).  The end result is that
dangling (->mapping == NULL) pages that appear to be from a particular file
may be mapped into userspace with nonsense data.  Valid mappings to the same
place will see a different page.

Andrea implemented two working fixes, one using a real seqlock, another using
a page->flags bit.  He also proposed using the page lock in do_no_page, but
that was initially considered too heavyweight.  However, it is not a global or
per-file lock, and the page cacheline is modified in do_no_page to increment
_count and _mapcount anyway, so a further modification should not be a large
performance hit.  Scalability is not an issue.

This patch implements this latter approach.  ->nopage implementations return
with the page locked if it is possible for their underlying file to be
invalidated (in that case, they must set a special vm_flags bit to indicate
so).  do_no_page only unlocks the page after setting up the mapping
completely.  invalidation is excluded because it holds the page lock during
invalidation of each page (and ensures that the page is not mapped while
holding the lock).

This also allows significant simplifications in do_no_page, because we have
the page locked in the right place in the pagecache from the start.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:41 -07:00
Christoph Lameter b5fab14e5d Add VM_BUG_ON in case someone uses page_mapping on a slab page
Detect slab objects being passed to the page oriented functions of the VM.

It is not sufficient to simply return NULL because the functions calling
page_mapping may depend on other items of the page_struct also to be setup
properly.  Moreover slab object may not be properly aligned.  The page
oriented functions of the VM expect to operate on page aligned, page sized
objects.  Operations on object straddling page boundaries may only affect the
objects partially which may lead to surprising results.

It is better to detect eventually remaining uses and eliminate them.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:02 -07:00
Rusty Russell 8e1f936b73 mm: clean up and kernelify shrinker registration
I can never remember what the function to register to receive VM pressure
is called.  I have to trace down from __alloc_pages() to find it.

It's called "set_shrinker()", and it needs Your Help.

1) Don't hide struct shrinker.  It contains no magic.
2) Don't allocate "struct shrinker".  It's not helpful.
3) Call them "register_shrinker" and "unregister_shrinker".
4) Call the function "shrink" not "shrinker".
5) Reduce the 17 lines of waffly comments to 13, but document it properly.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: David Chinner <dgc@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:00 -07:00
Mel Gorman ed7ed36517 handle kernelcore=: generic
This patch adds the kernelcore= parameter for x86.

Once all patches are applied, a new command-line parameter exist and a new
sysctl.  This patch adds the necessary documentation.

From: Yasunori Goto <y-goto@jp.fujitsu.com>

  When "kernelcore" boot option is specified, kernel can't boot up on ia64
  because of an infinite loop.  In addition, the parsing code can be handled
  in an architecture-independent manner.

  This patch uses common code to handle the kernelcore= parameter.  It is
  only available to architectures that support arch-independent zone-sizing
  (i.e.  define CONFIG_ARCH_POPULATES_NODE_MAP).  Other architectures will
  ignore the boot parameter.

[bunk@stusta.de: make cmdline_parse_kernelcore() static]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:22:59 -07:00
Mel Gorman 2a1e274acf Create the ZONE_MOVABLE zone
The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE
that is only usable by allocations that specify both __GFP_HIGHMEM and
__GFP_MOVABLE.  This has the effect of keeping all non-movable pages within a
single memory partition while allowing movable allocations to be satisfied
from either partition.  The patches may be applied with the list-based
anti-fragmentation patches that groups pages together based on mobility.

The size of the zone is determined by a kernelcore= parameter specified at
boot-time.  This specifies how much memory is usable by non-movable
allocations and the remainder is used for ZONE_MOVABLE.  Any range of pages
within ZONE_MOVABLE can be released by migrating the pages or by reclaiming.

When selecting a zone to take pages from for ZONE_MOVABLE, there are two
things to consider.  First, only memory from the highest populated zone is
used for ZONE_MOVABLE.  On the x86, this is probably going to be ZONE_HIGHMEM
but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64.  Second,
the amount of memory usable by the kernel will be spread evenly throughout
NUMA nodes where possible.  If the nodes are not of equal size, the amount of
memory usable by the kernel on some nodes may be greater than others.

By default, the zone is not as useful for hugetlb allocations because they are
pinned and non-migratable (currently at least).  A sysctl is provided that
allows huge pages to be allocated from that zone.  This means that the huge
page pool can be resized to the size of ZONE_MOVABLE during the lifetime of
the system assuming that pages are not mlocked.  Despite huge pages being
non-movable, we do not introduce additional external fragmentation of note as
huge pages are always the largest contiguous block we care about.

Credit goes to Andy Whitcroft for catching a large variety of problems during
review of the patches.

This patch creates an additional zone, ZONE_MOVABLE.  This zone is only usable
by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE.  Hot-added
memory continues to be placed in their existing destination as there is no
mechanism to redirect them to a specific zone.

[y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code]
[akpm@linux-foundation.org: various fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:22:59 -07:00
Alexey Dobriyan aa0ac36518 Remove capability.h from mm.h
I forgot to remove capability.h from mm.h while removing sched.h!  This
patch remedies that, because the only inline function which was using
CAP_something was made out of line.

Cross-compile tested without regressions on:

	all powerpc defconfigs
	all mips defconfigs
	all m68k defconfigs
	all arm defconfigs
	all ia64 defconfigs

	alpha alpha-allnoconfig alpha-defconfig alpha-up
	arm
	i386 i386-allnoconfig i386-defconfig i386-up
	ia64 ia64-allnoconfig ia64-defconfig ia64-up
	m68k
	mips
	parisc parisc-allnoconfig parisc-defconfig parisc-up
	powerpc powerpc-up
	s390 s390-allnoconfig s390-defconfig s390-up
	sparc sparc-allnoconfig sparc-defconfig sparc-up
	sparc64 sparc64-allnoconfig sparc64-defconfig sparc64-up
	um-x86_64
	x86_64 x86_64-allnoconfig x86_64-defconfig x86_64-up

as well as my two usual configs.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 09:05:45 -07:00