For an incremental send, fix the process of determining whether the directory
inode we're currently processing needs to have its move/rename operation delayed.
We were ignoring the fact that if the inode's new immediate ancestor has a higher
inode number than ours but wasn't renamed/moved, we might still need to delay our
move/rename, because some other ancestor directory higher in the hierarchy might
have an inode number higher than ours *and* was renamed/moved too - in this case
we have to wait for rename/move of that ancestor to happen before our current
directory's rename/move operation.
Simple steps to reproduce this issue:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir -p /mnt/a/x1/x2
$ mkdir /mnt/a/Z
$ mkdir -p /mnt/a/x1/x2/x3/x4/x5
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mv /mnt/a/x1/x2/x3 /mnt/a/Z/X33
$ mv /mnt/a/x1/x2 /mnt/a/Z/X33/x4/x5/X22
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
The incremental send caused the kernel code to enter an infinite loop when
building the path string for directory Z after its references are processed.
A more complex scenario:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir -p /mnt/a/b/c/d
$ mkdir /mnt/a/b/c/d/e
$ mkdir /mnt/a/b/c/d/f
$ mv /mnt/a/b/c/d/e /mnt/a/b/c/d/f/E2
$ mkdir /mmt/a/b/c/g
$ mv /mnt/a/b/c/d /mnt/a/b/D2
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mkdir /mnt/a/o
$ mv /mnt/a/b/c/g /mnt/a/b/D2/f/G2
$ mv /mnt/a/b/D2 /mnt/a/b/dd
$ mv /mnt/a/b/c /mnt/a/C2
$ mv /mnt/a/b/dd/f /mnt/a/o/FF
$ mv /mnt/a/b /mnt/a/o/FF/E2/BB
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
It's possible to change the parent/child relationship between directories
in such a way that if a child directory has a higher inode number than
its parent, it doesn't necessarily means the child rename/move operation
can be performed immediately. The parent migth have its own rename/move
operation delayed, therefore in this case the child needs to have its
rename/move operation delayed too, and be performed after its new parent's
rename/move.
Steps to reproduce the issue:
$ umount /mnt
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt
$ mkdir /mnt/A
$ mkdir /mnt/B
$ mkdir /mnt/C
$ mv /mnt/C /mnt/A
$ mv /mnt/B /mnt/A/C
$ mkdir /mnt/A/C/D
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ btrfs send /mnt/snap1 -f /tmp/base.send
$ mv /mnt/A/C/D /mnt/A/D2
$ mv /mnt/A/C/B /mnt/A/D2/B2
$ mv /mnt/A/C /mnt/A/D2/B2/C2
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send
The incremental send caused the kernel code to enter an infinite loop when
building the path string for directory C after its references are processed.
The necessary conditions here are that C has an inode number higher than both
A and B, and B as an higher inode number higher than A, and D has the highest
inode number, that is:
inode_number(A) < inode_number(B) < inode_number(C) < inode_number(D)
The same issue could happen if after the first snapshot there's any number
of intermediary parent directories between A2 and B2, and between B2 and C2.
A test case for xfstests follows, covering this simple case and more advanced
ones, with files and hard links created inside the directories.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
No need to search in the send tree for the generation number of the inode,
we already have it in the recorded_ref structure passed to us.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
While we update an existing ref head's extent_op, we're not holding
its spinlock, so while we're updating its extent_op contents (key,
flags) we can have a task running __btrfs_run_delayed_refs() that
holds the ref head's lock and sets its extent_op to NULL right after
the task updating the ref head just checked its extent_op was not NULL.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since most of the btrfs_workqueue is printed as pointer address,
for easier analysis, add trace for btrfs_workqueue alloc/destroy.
So it is possible to determine the workqueue that a given work belongs
to(by comparing the wq pointer address with alloc trace event).
Signed-off-by: Qu Wenruo <quenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When finding new extents during an autodefrag, don't do so many fs tree
lookups to find an extent with a size smaller then the target treshold.
Instead, after each fs tree forward search immediately unlock upper
levels and process the entire leaf while holding a read lock on the leaf,
since our leaf processing is very fast.
This reduces lock contention, allowing for higher concurrency when other
tasks want to write/update items related to other inodes in the fs tree,
as we're not holding read locks on upper tree levels while processing the
leaf and we do less tree searches.
Test:
sysbench --test=fileio --file-num=512 --file-total-size=16G \
--file-test-mode=rndrw --num-threads=32 --file-block-size=32768 \
--file-rw-ratio=3 --file-io-mode=sync --max-time=1800 \
--max-requests=10000000000 [prepare|run]
(fileystem mounted with -o autodefrag, averages of 5 runs)
Before this change: 58.852Mb/sec throughtput, read 77.589Gb, written 25.863Gb
After this change: 63.034Mb/sec throughtput, read 83.102Gb, written 27.701Gb
Test machine: quad core intel i5-3570K, 32Gb of RAM, SSD.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
The error message is confusing:
# btrfs sub delete /mnt/mysub/
Delete subvolume '/mnt/mysub'
ERROR: cannot delete '/mnt/mysub' - Directory not empty
The error message does not make sense to me: It's not about deleting a
directory but it's a subvolume, and it doesn't matter if the subvolume is
empty or not.
Maybe EPERM or is more appropriate in this case, combined with an explanatory
kernel log message. (e.g. "subvolume with ID 123 cannot be deleted because
it is configured as default subvolume.")
Reported-by: Koen De Wit <koen.de.wit@oracle.com>
Signed-off-by: Guangyu Sun <guangyu.sun@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
When locking file ranges in the inode's io_tree, cache the first
extent state that belongs to the target range, so that when unlocking
the range we don't need to search in the io_tree again, reducing cpu
time and making and therefore holding the io_tree's lock for a shorter
period.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Zach found this deadlock that would happen like this
btrfs_end_transaction <- reduce trans->use_count to 0
btrfs_run_delayed_refs
btrfs_cow_block
find_free_extent
btrfs_start_transaction <- increase trans->use_count to 1
allocate chunk
btrfs_end_transaction <- decrease trans->use_count to 0
btrfs_run_delayed_refs
lock tree block we are cowing above ^^
We need to only decrease trans->use_count if it is above 1, otherwise leave it
alone. This will make nested trans be the only ones who decrease their added
ref, and will let us get rid of the trans->use_count++ hack if we have to commit
the transaction. Thanks,
cc: stable@vger.kernel.org
Reported-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Tested-by: Zach Brown <zab@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
We didn't have a lock to protect the access to the delalloc inodes list, that is
we might access a empty delalloc inodes list if someone start flushing delalloc
inodes because the delalloc inodes were moved into a other list temporarily.
Fix it by wrapping the access with a lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When we create a snapshot, we just need wait the ordered extents in
the source fs/file root, but because we use the global mutex to protect
this ordered extents list of the source fs/file root to avoid accessing
a empty list, if someone got the mutex to access the ordered extents list
of the other fs/file root, we had to wait.
This patch splits the above global mutex, now every fs/file root has
its own mutex to protect its own list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We needn't flush all delalloc inodes when we doesn't get s_umount lock,
or we would make the tasks wait for a long time.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
generic/074 in xfstests failed sometimes because of the enospc error,
the reason of this problem is that we just reclaimed the space we need
from the reserved space for delalloc, and then tried to reserve the space,
but if some task did no-flush reservation between the above reclamation
and reservation,
Task1 Task2
shrink_delalloc()
reclaim 1 block
(The space that can
be reserved now is 1
block)
do no-flush reservation
reserve 1 block
(The space that can
be reserved now is 0
block)
reserving 1 block failed
the reservation of Task1 failed, but in fact, there was enough space to
reserve if we could reclaim more space before.
Fix this problem by the aggressive reclamation of the reserved delalloc
metadata space.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The reason is:
- The per-cpu counter has its own lock to protect itself.
- Here we needn't get a exact value.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
As the comment in the btrfs_direct_IO says, only the compressed pages need be
flush again to make sure they are on the disk, but the common pages needn't,
so we add a if statement to check if the inode has compressed pages or not,
if no, skip the flush.
And in order to prevent the write ranges from intersecting, we need wait for
the running ordered extents. But the current code waits for them twice, one
is done before the direct IO starts (in btrfs_wait_ordered_range()), the other
is before we get the blocks, it is unnecessary. because we can do the direct
IO without holding i_mutex, it means that the intersected ordered extents may
happen during the direct IO, the first wait can not avoid this problem. So we
use filemap_fdatawrite_range() instead of btrfs_wait_ordered_range() to remove
the first wait.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The tasks that wait for the IO_DONE flag just care about the io of the dirty
pages, so it is better to wake up them immediately after all the pages are
written, not the whole process of the io completes.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
btrfs_wait_ordered_roots() moves all the list entries to a new list,
and then deals with them one by one. But if the other task invokes this
function at that time, it would get a empty list. It makes the enospc
error happens more early. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If the snapshot creation happened after the nocow write but before the dirty
data flush, we would fail to flush the dirty data because of no space.
So we must keep track of when those nocow write operations start and when they
end, if there are nocow writers, the snapshot creators must wait. In order
to implement this function, I introduce btrfs_{start, end}_nocow_write(),
which is similar to mnt_{want,drop}_write().
These two functions are only used for nocow file write operations.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Add ftrace for btrfs_workqueue for further workqueue tunning.
This patch needs to applied after the workqueue replace patchset.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The new btrfs_workqueue still use open-coded function defition,
this patch will change them into btrfs_func_t type which is much the
same as kernel workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Btrfs send reads data from disk and then writes to a stream via pipe or
a file via flush.
Currently we're going to read each page a time, so every page results
in a disk read, which is not friendly to disks, esp. HDD. Given that,
the performance can be gained by adding readahead for those pages.
Here is a quick test:
$ btrfs subvolume create send
$ xfs_io -f -c "pwrite 0 1G" send/foobar
$ btrfs subvolume snap -r send ro
$ time "btrfs send ro -f /dev/null"
w/o w
real 1m37.527s 0m9.097s
user 0m0.122s 0m0.086s
sys 0m53.191s 0m12.857s
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This has no functional change, only picks out the same part of two functions,
and makes it shared.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When we're finishing processing of an inode, if we're dealing with a
directory inode that has a pending move/rename operation, we don't
need to send a utimes update instruction to the send stream, as we'll
do it later after doing the move/rename operation. Therefore we save
some time here building paths and doing btree lookups.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When using prealloc extents, a file defragment operation may actually
fragment the file and increase the amount of data space used by the file.
This change fixes that behaviour.
Example:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt
$ cd /mnt
$ xfs_io -f -c 'falloc 0 1048576' foobar && sync
$ xfs_io -c 'pwrite -S 0xff -b 100000 5000 100000' foobar
$ xfs_io -c 'pwrite -S 0xac -b 100000 200000 100000' foobar
$ xfs_io -c 'pwrite -S 0xe1 -b 100000 900000 100000' foobar && sync
Before defragmenting the file:
$ btrfs filesystem df /mnt
Data, single: total=8.00MiB, used=1.25MiB
System, DUP: total=8.00MiB, used=16.00KiB
System, single: total=4.00MiB, used=0.00
Metadata, DUP: total=1.00GiB, used=112.00KiB
Metadata, single: total=8.00MiB, used=0.00
$ btrfs-debug-tree /dev/sdb3
(...)
item 6 key (257 EXTENT_DATA 0) itemoff 15810 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 0 nr 4096
item 7 key (257 EXTENT_DATA 4096) itemoff 15757 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 4096 nr 102400 ram 1048576
extent compression 0
item 8 key (257 EXTENT_DATA 106496) itemoff 15704 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 106496 nr 90112
item 9 key (257 EXTENT_DATA 196608) itemoff 15651 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 196608 nr 106496 ram 1048576
extent compression 0
item 10 key (257 EXTENT_DATA 303104) itemoff 15598 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 303104 nr 593920
item 11 key (257 EXTENT_DATA 897024) itemoff 15545 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 897024 nr 106496 ram 1048576
extent compression 0
item 12 key (257 EXTENT_DATA 1003520) itemoff 15492 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 1003520 nr 45056
(...)
Now defragmenting the file results in more data space used than before:
$ btrfs filesystem defragment -f foobar && sync
$ btrfs filesystem df /mnt
Data, single: total=8.00MiB, used=1.55MiB
System, DUP: total=8.00MiB, used=16.00KiB
System, single: total=4.00MiB, used=0.00
Metadata, DUP: total=1.00GiB, used=112.00KiB
Metadata, single: total=8.00MiB, used=0.00
And the corresponding file extent items are now no longer perfectly sequential
as before, and we're now needlessly using more space from data block groups:
$ btrfs-debug-tree /dev/sdb3
(...)
item 6 key (257 EXTENT_DATA 0) itemoff 15810 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 0 nr 4096 ram 1048576
extent compression 0
item 7 key (257 EXTENT_DATA 4096) itemoff 15757 itemsize 53
extent data disk byte 13893632 nr 102400
extent data offset 0 nr 102400 ram 102400
extent compression 0
item 8 key (257 EXTENT_DATA 106496) itemoff 15704 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 106496 nr 90112 ram 1048576
extent compression 0
item 9 key (257 EXTENT_DATA 196608) itemoff 15651 itemsize 53
extent data disk byte 13996032 nr 106496
extent data offset 0 nr 106496 ram 106496
extent compression 0
item 10 key (257 EXTENT_DATA 303104) itemoff 15598 itemsize 53
prealloc data disk byte 12845056 nr 1048576
prealloc data offset 303104 nr 593920
item 11 key (257 EXTENT_DATA 897024) itemoff 15545 itemsize 53
extent data disk byte 14102528 nr 106496
extent data offset 0 nr 106496 ram 106496
extent compression 0
item 12 key (257 EXTENT_DATA 1003520) itemoff 15492 itemsize 53
extent data disk byte 12845056 nr 1048576
extent data offset 1003520 nr 45056 ram 1048576
extent compression 0
(...)
With this change, the above example will no longer cause allocation of new data
space nor change the sequentiality of the file extents, that is, defragment will
be effectless, leaving all extent items pointing to the extent starting at disk
byte 12845056.
In a 20Gb filesystem I had, mounted with the autodefrag option and 20 files of
400Mb each, initially consisting of a single prealloc extent of 400Mb, having
random writes happening at a low rate, lead to a total of over ~17Gb of data
space used, not far from eventually reaching an ENOSPC state.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When the defrag flag BTRFS_DEFRAG_RANGE_START_IO is set and compression
enabled, we weren't flushing completely, as writing compressed extents
is a 2 steps process, one to compress the data and another one to write
the compressed data to disk.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since the "_struct" suffix is mainly used for distinguish the differnt
btrfs_work between the original and the newly created one,
there is no need using the suffix since all btrfs_workers are changed
into btrfs_workqueue.
Also this patch fixed some codes whose code style is changed due to the
too long "_struct" suffix.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since all the btrfs_worker is replaced with the newly created
btrfs_workqueue, the old codes can be easily remove.
Signed-off-by: Quwenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->scrub_* with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->qgroup_rescan_worker with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->delayed_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->fixup_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->readahead_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->cache_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->rmw_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->endio_* workqueues with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->submit_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Much like the fs_info->workers, replace the fs_info->submit_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Much like the fs_info->workers, replace the fs_info->delalloc_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Use the newly created btrfs_workqueue_struct to replace the original
fs_info->workers
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The original btrfs_workers has thresholding functions to dynamically
create or destroy kthreads.
Though there is no such function in kernel workqueue because the worker
is not created manually, we can still use the workqueue_set_max_active
to simulated the behavior, mainly to achieve a better HDD performance by
setting a high threshold on submit_workers.
(Sadly, no resource can be saved)
So in this patch, extra workqueue pending counters are introduced to
dynamically change the max active of each btrfs_workqueue_struct, hoping
to restore the behavior of the original thresholding function.
Also, workqueue_set_max_active use a mutex to protect workqueue_struct,
which is not meant to be called too frequently, so a new interval
mechanism is applied, that will only call workqueue_set_max_active after
a count of work is queued. Hoping to balance both the random and
sequence performance on HDD.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Add high priority function to btrfs_workqueue.
This is implemented by embedding a btrfs_workqueue into a
btrfs_workqueue and use some helper functions to differ the normal
priority wq and high priority wq.
So the high priority wq is completely independent from the normal
workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Use kernel workqueue to implement a new btrfs_workqueue_struct, which
has the ordering execution feature like the btrfs_worker.
The func is executed in a concurrency way, and the
ordred_func/ordered_free is executed in the sequence them are queued
after the corresponding func is done.
The new btrfs_workqueue works much like the original one, one workqueue
for normal work and a list for ordered work.
When a work is queued, ordered work will be added to the list and helper
function will be queued into the workqueue.
The helper function will execute a normal work and then check and execute as many
ordered work as possible in the sequence they were queued.
At this patch, high priority work queue or thresholding is not added yet.
The high priority feature and thresholding will be added in the following patches.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The struct async_sched is not used by any codes and can be removed.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fusionio.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
It is really unnecessary to search tree again for @gen, @mode and @rdev
in the case of REG inodes' creation, as we've got btrfs_inode_item in sctx,
and @gen, @mode and @rdev can easily be fetched.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We can not release the reserved metadata space for the first write if we
find the write position is pre-allocated. Because the kernel might write
the data on the disk before we do the second write but after the can-nocow
check, if we release the space for the first write, we might fail to update
the metadata because of no space.
Fix this problem by end nocow write if there is dirty data in the range whose
space is pre-allocated.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The write range may not be sector-aligned, for example:
|--------|--------| <- write range, sector-unaligned, size: 2blocks
|--------|--------|--------| <- correct lock range, size: 3blocks
But according to the old code, we used the size of write range to calculate
the lock range directly, not considered the offset, we would get a wrong lock
range:
|--------|--------| <- write range, sector-unaligned, size: 2blocks
|--------|--------| <- wrong lock range, size: 2blocks
And besides that, the old code also had the same problem when calculating
the real write size. Correct them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
In "btrfs: send: lower memory requirements in common case" the code to
save the old_buf_len was incorrectly moved to a wrong place and broke
the original logic.
Reported-by: Filipe David Manana <fdmanana@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Filipe David Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
While droping extent map structures from the extent cache that cover our
target range, we would remove each extent map structure from the red black
tree and then add either 1 or 2 new extent map structures if the former
extent map covered sections outside our target range.
This change simply attempts to replace the existing extent map structure
with a new one that covers the subsection we're not interested in, instead
of doing a red black remove operation followed by an insertion operation.
The number of elements in an inode's extent map tree can get very high for large
files under random writes. For example, while running the following test:
sysbench --test=fileio --file-num=1 --file-total-size=10G \
--file-test-mode=rndrw --num-threads=32 --file-block-size=32768 \
--max-requests=500000 --file-rw-ratio=2 [prepare|run]
I captured the following histogram capturing the number of extent_map items
in the red black tree while that test was running:
Count: 122462
Range: 1.000 - 172231.000; Mean: 96415.831; Median: 101855.000; Stddev: 49700.981
Percentiles: 90th: 160120.000; 95th: 166335.000; 99th: 171070.000
1.000 - 5.231: 452 |
5.231 - 187.392: 87 |
187.392 - 585.911: 206 |
585.911 - 1827.438: 623 |
1827.438 - 5695.245: 1962 #
5695.245 - 17744.861: 6204 ####
17744.861 - 55283.764: 21115 ############
55283.764 - 172231.000: 91813 #####################################################
Benchmark:
sysbench --test=fileio --file-num=1 --file-total-size=10G --file-test-mode=rndwr \
--num-threads=64 --file-block-size=32768 --max-requests=0 --max-time=60 \
--file-io-mode=sync --file-fsync-freq=0 [prepare|run]
Before this change: 122.1Mb/sec
After this change: 125.07Mb/sec
(averages of 5 test runs)
Test machine: quad core intel i5-3570K, 32Gb of ram, SSD
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When we split an extent state there's no need to start the rbtree search
from the root node - we can start it from the original extent state node,
since we would end up in its subtree if we do the search starting at the
root node anyway.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We don't need to have an unsigned int field in the extent_map struct
to tell us whether the extent map is in the inode's extent_map tree or
not. We can use the rb_node struct field and the RB_CLEAR_NODE and
RB_EMPTY_NODE macros to achieve the same task.
This reduces sizeof(struct extent_map) from 152 bytes to 144 bytes (on a
64 bits system).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We won't change commit root, skip locking dance with commit root
when walking backrefs, this can speed up btrfs send operations.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
check if @scrubs_running=@scrubs_paused condition inside wait_event()
is not an atomic operation which means we may inc/dec @scrub_running/
paused at any time. Let's wake up @scrub_pause_wait as much as we can
to let commit transaction blocked less.
An example below:
Thread1 Thread2
|->scrub_blocked_if_needed() |->scrub_pending_trans_workers_inc
|->increase @scrub_paused
|->increase @scrub_running
|->wake up scrub_pause_wait list
|->scrub blocked
|->increase @scrub_paused
Thread3 is commiting transaction which is blocked at btrfs_scrub_pause().
So after Thread2 increase @scrub_paused, we meet the condition
@scrub_paused=@scrub_running, but transaction will be still blocked until
another calling to wake up @scrub_pause_wait.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we fail to commit transaction, we'd better
cancel scrub operations.
Suggested-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
commit cb7ab02156 cause a following deadlock found by
xfstests,btrfs/011:
Thread1 is commiting transaction which is blocked at
btrfs_scrub_pause().
Thread2 is calling btrfs_file_aio_write() which has held
inode's @i_mutex and commit transaction(blocked because
Thread1 is committing transaction).
Thread3 is copy_nocow_page worker which will also try to
hold inode @i_mutex, so thread3 will wait Thread1 finished.
Thread4 is waiting pending workers finished which will wait
Thread3 finished. So the problem is like this:
Thread1--->Thread4--->Thread3--->Thread2---->Thread1
Deadlock happens! we fix it by letting Thread1 go firstly,
which means we won't block transaction commit while we are
waiting pending workers finished.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
btrfs_scrub_continue() will be called when cleaning up transaction.However,
this can only be called if btrfs_scrub_pause() is called before.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
PTR_RET is deprecated. Use PTR_ERR_OR_ZERO instead. While at it
also include missing err.h header.
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When doing an incremental send, if we had a directory pending a move/rename
operation and none of its parents, except for the immediate parent, were
pending a move/rename, after processing the directory's references, we would
be issuing utimes, chown and chmod intructions against am outdated path - a
path which matched the one in the parent root.
This change also simplifies a bit the code that deals with building a path
for a directory which has a move/rename operation delayed.
Steps to reproduce:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ mkdir -p /mnt/btrfs/a/b/c/d/e
$ mkdir /mnt/btrfs/a/b/c/f
$ chmod 0777 /mnt/btrfs/a/b/c/d/e
$ btrfs subvolume snapshot -r /mnt/btrfs /mnt/btrfs/snap1
$ btrfs send /mnt/btrfs/snap1 -f /tmp/base.send
$ mv /mnt/btrfs/a/b/c/f /mnt/btrfs/a/b/f2
$ mv /mnt/btrfs/a/b/c/d/e /mnt/btrfs/a/b/f2/e2
$ mv /mnt/btrfs/a/b/c /mnt/btrfs/a/b/c2
$ mv /mnt/btrfs/a/b/c2/d /mnt/btrfs/a/b/c2/d2
$ chmod 0700 /mnt/btrfs/a/b/f2/e2
$ btrfs subvolume snapshot -r /mnt/btrfs /mnt/btrfs/snap2
$ btrfs send -p /mnt/btrfs/snap1 /mnt/btrfs/snap2 -f /tmp/incremental.send
$ umount /mnt/btrfs
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ btrfs receive /mnt/btrfs -f /tmp/base.send
$ btrfs receive /mnt/btrfs -f /tmp/incremental.send
The second btrfs receive command failed with:
ERROR: chmod a/b/c/d/e failed. No such file or directory
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Just comparing the pointers (logical disk addresses) of the btree nodes is
not completely bullet proof, we have to check if their generation numbers
match too.
It is guaranteed that a COW operation will result in a block with a different
logical disk address than the original block's address, but over time we can
reuse that former logical disk address.
For example, creating a 2Gb filesystem on a loop device, and having a script
running in a loop always updating the access timestamp of a file, resulted in
the same logical disk address being reused for the same fs btree block in about
only 4 minutes.
This could make us skip entire subtrees when doing an incremental send (which
is currently the only user of btrfs_compare_trees). However the odds of getting
2 blocks at the same tree level, with the same logical disk address, equal first
slot keys and different generations, should hopefully be very low.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The incremental send algorithm assumed that it was possible to issue
a directory remove (rmdir) if the the inode number it was currently
processing was greater than (or equal) to any inode that referenced
the directory's inode. This wasn't a valid assumption because any such
inode might be a child directory that is pending a move/rename operation,
because it was moved into a directory that has a higher inode number and
was moved/renamed too - in other words, the case the following commit
addressed:
9f03740a95
(Btrfs: fix infinite path build loops in incremental send)
This made an incremental send issue an rmdir operation before the
target directory was actually empty, which made btrfs receive fail.
Therefore it needs to wait for all pending child directory inodes to
be moved/renamed before sending an rmdir operation.
Simple steps to reproduce this issue:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ mkdir -p /mnt/btrfs/a/b/c/x
$ mkdir /mnt/btrfs/a/b/y
$ btrfs subvolume snapshot -r /mnt/btrfs /mnt/btrfs/snap1
$ btrfs send /mnt/btrfs/snap1 -f /tmp/base.send
$ mv /mnt/btrfs/a/b/y /mnt/btrfs/a/b/YY
$ mv /mnt/btrfs/a/b/c/x /mnt/btrfs/a/b/YY
$ rmdir /mnt/btrfs/a/b/c
$ btrfs subvolume snapshot -r /mnt/btrfs /mnt/btrfs/snap2
$ btrfs send -p /mnt/btrfs/snap1 /mnt/btrfs/snap2 -f /tmp/incremental.send
$ umount /mnt/btrfs
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ btrfs receive /mnt/btrfs -f /tmp/base.send
$ btrfs receive /mnt/btrfs -f /tmp/incremental.send
The second btrfs receive command failed with:
ERROR: rmdir o259-6-0 failed. Directory not empty
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When doing an incremental send, if we delete a directory that has N > 1
hardlinks for the same file and that file has the highest inode number
inside the directory contents, an incremental send would send N times an
rmdir operation against the directory. This made the btrfs receive command
fail on the second rmdir instruction, as the target directory didn't exist
anymore.
Steps to reproduce the issue:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ mkdir -p /mnt/btrfs/a/b/c
$ echo 'ola mundo' > /mnt/btrfs/a/b/c/foo.txt
$ ln /mnt/btrfs/a/b/c/foo.txt /mnt/btrfs/a/b/c/bar.txt
$ btrfs subvolume snapshot -r /mnt/btrfs /mnt/btrfs/snap1
$ btrfs send /mnt/btrfs/snap1 -f /tmp/base.send
$ rm -f /mnt/btrfs/a/b/c/foo.txt
$ rm -f /mnt/btrfs/a/b/c/bar.txt
$ rmdir /mnt/btrfs/a/b/c
$ btrfs subvolume snapshot -r /mnt/btrfs /mnt/btrfs/snap2
$ btrfs send -p /mnt/btrfs/snap1 /mnt/btrfs/snap2 -f /tmp/incremental.send
$ umount /mnt/btrfs
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ btrfs receive /mnt/btrfs -f /tmp/base.send
$ btrfs receive /mnt/btrfs -f /tmp/incremental.send
The second btrfs receive command failed with:
ERROR: rmdir o259-6-0 failed. No such file or directory
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This fixes yet one more case not caught by the commit titled:
Btrfs: fix infinite path build loops in incremental send
In this case, even before the initial full send, we have a directory
which is a child of a directory with a higher inode number. Then we
perform the initial send, and after we rename both the child and the
parent, without moving them around. After doing these 2 renames, an
incremental send sent a rename instruction for the child directory
which contained an invalid "from" path (referenced the parent's old
name, not the new one), which made the btrfs receive command fail.
Steps to reproduce:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ mkdir -p /mnt/btrfs/a/b
$ mkdir /mnt/btrfs/d
$ mkdir /mnt/btrfs/a/b/c
$ mv /mnt/btrfs/d /mnt/btrfs/a/b/c
$ btrfs subvolume snapshot -r /mnt/btrfs /mnt/btrfs/snap1
$ btrfs send /mnt/btrfs/snap1 -f /tmp/base.send
$ mv /mnt/btrfs/a/b/c /mnt/btrfs/a/b/x
$ mv /mnt/btrfs/a/b/x/d /mnt/btrfs/a/b/x/y
$ btrfs subvolume snapshot -r /mnt/btrfs /mnt/btrfs/snap2
$ btrfs send -p /mnt/btrfs/snap1 /mnt/btrfs/snap2 -f /tmp/incremental.send
$ umout /mnt/btrfs
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ btrfs receive /mnt/btrfs -f /tmp/base.send
$ btrfs receive /mnt/btrfs -f /tmp/incremental.send
The second btrfs receive command failed with:
"ERROR: rename a/b/c/d -> a/b/x/y failed. No such file or directory"
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we punch beyond the size of an inode, we'll correctly remove any prealloc extents,
but we'll also insert file extent items representing holes (disk bytenr == 0) that start
with a key offset that lies beyond the inode's size and are not contiguous with the last
file extent item.
Example:
$XFS_IO_PROG -f -c "truncate 118811" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "fpunch 582007 864596" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "pwrite -S 0x0d -b 39987 92267 39987" $SCRATCH_MNT/foo
btrfs-debug-tree output:
item 4 key (257 INODE_ITEM 0) itemoff 15885 itemsize 160
inode generation 6 transid 6 size 132254 block group 0 mode 100600 links 1
item 5 key (257 INODE_REF 256) itemoff 15872 itemsize 13
inode ref index 2 namelen 3 name: foo
item 6 key (257 EXTENT_DATA 0) itemoff 15819 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 90112 ram 122880
extent compression 0
item 7 key (257 EXTENT_DATA 90112) itemoff 15766 itemsize 53
extent data disk byte 12845056 nr 4096 gen 6
extent data offset 0 nr 45056 ram 45056
extent compression 2
item 8 key (257 EXTENT_DATA 585728) itemoff 15713 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 860160 ram 860160
extent compression 0
The last extent item, which represents a hole, is useless as it lies beyond the inode's
size.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The argument last wasn't used, all callers supplied a NULL value
for it. Also removed unnecessary intermediate storage of the result
of key comparisons.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When we didn't find the exact ref head we were looking for, if
return_bigger != 0 we set a new search key to match either the
next node after the last one we found or the first one in the
ref heads rb tree, and then did another full tree search. For both
cases this ended up being pointless as we would end up returning
an entry we already had before repeating the search.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Now that we can adjust the commit interval with a remount, we need
to wake up the transaction thread or else he will continue to sleep
until the previous transaction interval has elapsed before waking
up. So, if we go from a large commit interval to something smaller,
the transaction thread will not wake up until the large interval has
expired. This also causes the cleaner thread to stay sleeping, since
it gets woken up by the transaction thread.
Fix it by simply waking up the transaction thread during a remount.
Signed-off-by: Justin Maggard <jmaggard10@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If the log sync fails, there is something wrong in the log tree, we
should not continue to join the log transaction and log the metadata.
What we should do is to do a full commit.
This patch fixes this problem by setting ->last_trans_log_full_commit
to the current transaction id, it will tell the tasks not to join
the log transaction, and do a full commit.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We might commit the log sub-transaction which didn't contain the metadata we
logged. It was because we didn't record the log transid and just select
the current log sub-transaction to commit, but the right one might be
committed by the other task already. Actually, we needn't do anything
and it is safe that we go back directly in this case.
This patch improves the log sync by the above idea. We record the transid
of the log sub-transaction in which we log the metadata, and the transid
of the log sub-transaction we have committed. If the committed transid
is >= the transid we record when logging the metadata, we just go back.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
It is possible that many tasks sync the log tree at the same time, but
only one task can do the sync work, the others will wait for it. But those
wait tasks didn't get the result of the log sync, and returned 0 when they
ended the wait. It caused those tasks skipped the error handle, and the
serious problem was they told the users the file sync succeeded but in
fact they failed.
This patch fixes this problem by introducing a log context structure,
we insert it into the a global list. When the sync fails, we will set
the error number of every log context in the list, then the waiting tasks
get the error number of the log context and handle the error if need.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The log trans id is initialized to be 0 every time we create a log tree,
and the log tree need be re-created after a new transaction is started,
it means the log trans id is unlikely to be a huge number, so we can use
signed integer instead of unsigned long integer to save a bit space.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Mutex unlock implies certain memory barriers to make sure all the memory
operation completes before the unlock, and the next mutex lock implies memory
barriers to make sure the all the memory happens after the lock. So it is
a full memory barrier(smp_mb), we needn't add memory barriers. Remove them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The old code would start the log transaction even the log tree init
failed, it was unnecessary. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We may abort the wait earlier if ->last_trans_log_full_commit was set to
the current transaction id, at this case, we need commit the current
transaction instead of the log sub-transaction. But the current code
didn't tell the caller to do it (return 0, not -EAGAIN). Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
->last_trans_log_full_commit may be changed by the other tasks without lock,
so we need prevent the compiler from the optimize access just like
tmp = fs_info->last_trans_log_full_commit
if (tmp == ...)
...
<do something>
if (tmp == ...)
...
In fact, we need get the new value of ->last_trans_log_full_commit during
the second access. Fix it by ACCESS_ONCE().
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
So after transaction is aborted, we need to cleanup inode resources by
calling btrfs_invalidate_inodes(), and btrfs_invalidate_inodes() hopes
roots' refs to be zero in old times and sets a WARN_ON(), however, this
is not always true within cleaning up transaction, so we get to detect
transaction abortion and not warn at all.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This is an extension to my previous commit titled:
"Btrfs: faster file extent item replace operations"
(hash 1acae57b16)
Instead of inserting the new file extent item if we deleted existing
file extent items covering our target file range, also allow to insert
the new file extent item if we didn't find any existing items to delete
and replace_extent != 0, since in this case our caller would do another
tree search to insert the new file extent item anyway, therefore just
combine the two tree searches into a single one, saving cpu time, reducing
lock contention and reducing btree node/leaf COW operations.
This covers the case where applications keep doing tail append writes to
files, which for example is the case of Apache CouchDB (its database and
view index files are always open with O_APPEND).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
In case we do not refill, we can overwrite cur pointer from prio_head
by one from not prioritized head, what looks as something that was
not intended.
This change make we always take works from prio_head first until it's
not empty.
Signed-off-by: Stanislaw Gruszka <stf_xl@wp.pl>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This reverts commit 41ce9970a8.
Previously i was thinking we can use readonly root's commit root
safely while it is not true, readonly root may be cowed with the
following cases.
1.snapshot send root will cow source root.
2.balance,device operations will also cow readonly send root
to relocate.
So i have two ideas to make us safe to use commit root.
-->approach 1:
make it protected by transaction and end transaction properly and we research
next item from root node(see btrfs_search_slot_for_read()).
-->approach 2:
add another counter to local root structure to sync snapshot with send.
and add a global counter to sync send with exclusive device operations.
So with approach 2, send can use commit root safely, because we make sure
send root can not be cowed during send. Unfortunately, it make codes *ugly*
and more complex to maintain.
To make snapshot and send exclusively, device operations and send operation
exclusively with each other is a little confusing for common users.
So why not drop into previous way.
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since we have introduced btrfs_previous_extent_item() to search previous
extent item, just switch into it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
I got an error on v3.13:
BTRFS error (device sdf1) in write_all_supers:3378: errno=-5 IO failure (errors while submitting device barriers.)
how to reproduce:
> mkfs.btrfs -f -d raid1 /dev/sdf1 /dev/sdf2
> wipefs -a /dev/sdf2
> mount -o degraded /dev/sdf1 /mnt
> btrfs balance start -f -sconvert=single -mconvert=single -dconvert=single /mnt
The reason of the error is that barrier_all_devices() failed to submit
barrier to the missing device. However it is clear that we cannot do
anything on missing device, and also it is not necessary to care chunks
on the missing device.
This patch stops sending/waiting barrier if device is missing.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When I converted the BUG_ON() for the free_space_cache_inode in cow_file_range I
made it so we just return an error instead of unlocking all of our various
stuff. This is a mistake and causes us to hang when we run into this. This
patch fixes this problem. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
While trying to reproduce a delayed ref problem I noticed the box kept falling
over using all 80gb of my ram with btrfs_inode's and btrfs_delayed_node's.
Turns out this is because we only throttle delayed inode updates in
btrfs_dirty_inode, which doesn't actually get called that often, especially when
all you are doing is creating a bunch of files. So balance delayed inode
updates everytime we create a new inode. With this patch we no longer use up
all of our ram with delayed inode updates. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Help during debugging to export various interesting infromation and
tunables without the need of extra mount options or ioctls.
Usage:
* declare your variable in sysfs.h, and include where you need it
* define the variable in sysfs.c and make it visible via
debugfs_create_TYPE
Depends on CONFIG_DEBUG_FS.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The fs_path structure uses an inline buffer and falls back to a chain of
allocations, but vmalloc is not necessary because PATH_MAX fits into
PAGE_SIZE.
The size of fs_path has been reduced to 256 bytes from PAGE_SIZE,
usually 4k. Experimental measurements show that most paths on a single
filesystem do not exceed 200 bytes, and these get stored into the inline
buffer directly, which is now 230 bytes. Longer paths are kmalloced when
needed.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We have this pattern where we do search for a contiguous group of
items in a tree and everytime we find an item, we process it, then
we release our path, increment the offset of the search key, do
another full tree search and repeat these steps until a tree search
can't find more items we're interested in.
Instead of doing these full tree searches after processing each item,
just process the next item/slot in our leaf and don't release the path.
Since all these trees are read only and we always use the commit root
for a search and skip node/leaf locks, we're not affecting concurrency
on the trees.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This was a leftover from the commit:
74dd17fbe3
(Btrfs: fix btrfs send for inline items and compression)
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If cleaning the name cache fails, we could try to proceed at the cost of
some memory leak. This is not expected to happen often.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
There are only 2 static callers, the BUG would normally be never
reached, but let's be nice.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We know that buf_len is at most PATH_MAX, 4k, and can merge it with the
reversed member. This saves 3 bytes in favor of inline_buf.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We don't need to keep track of that, it's available via is_vmalloc_addr.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The member is used only to return value back from
fs_path_prepare_for_add, we can do it locally and save 8 bytes for the
inline_buf path.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The buffer passed to snprintf can hold the fully expanded format string,
64 = 3x largest ULL + 3x char + trailing null. I don't think that removing the
check entirely is a good idea, hence the ASSERT.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The commit titled "Btrfs: fix infinite path build loops in incremental send"
didn't cover a particular case where the parent-child relationship inversion
of directories doesn't imply a rename of the new parent directory. This was
due to a simple logic mistake, a logical and instead of a logical or.
Steps to reproduce:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ mkdir -p /mnt/btrfs/a/b/bar1/bar2/bar3/bar4
$ btrfs subvol snapshot -r /mnt/btrfs /mnt/btrfs/snap1
$ mv /mnt/btrfs/a/b/bar1/bar2/bar3/bar4 /mnt/btrfs/a/b/k44
$ mv /mnt/btrfs/a/b/bar1/bar2/bar3 /mnt/btrfs/a/b/k44
$ mv /mnt/btrfs/a/b/bar1/bar2 /mnt/btrfs/a/b/k44/bar3
$ mv /mnt/btrfs/a/b/bar1 /mnt/btrfs/a/b/k44/bar3/bar2/k11
$ btrfs subvol snapshot -r /mnt/btrfs /mnt/btrfs/snap2
$ btrfs send -p /mnt/btrfs/snap1 /mnt/btrfs/snap2 > /tmp/incremental.send
A patch to update the test btrfs/030 from xfstests, so that it covers
this case, will be submitted soon.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This fixes a case that the commit titled:
Btrfs: fix infinite path build loops in incremental send
didn't cover. If the parent-child relationship between 2 directories
is inverted, both get renamed, and the former parent has a file that
got renamed too (but remains a child of that directory), the incremental
send operation would use the file's old path after sending an unlink
operation for that old path, causing receive to fail on future operations
like changing owner, permissions or utimes of the corresponding inode.
This is not a regression from the commit mentioned before, as without
that commit we would fall into the issues that commit fixed, so it's
just one case that wasn't covered before.
Simple steps to reproduce this issue are:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ mkdir -p /mnt/btrfs/a/b/c/d
$ touch /mnt/btrfs/a/b/c/d/file
$ mkdir -p /mnt/btrfs/a/b/x
$ btrfs subvol snapshot -r /mnt/btrfs /mnt/btrfs/snap1
$ mv /mnt/btrfs/a/b/x /mnt/btrfs/a/b/c/x2
$ mv /mnt/btrfs/a/b/c/d /mnt/btrfs/a/b/c/x2/d2
$ mv /mnt/btrfs/a/b/c/x2/d2/file /mnt/btrfs/a/b/c/x2/d2/file2
$ btrfs subvol snapshot -r /mnt/btrfs /mnt/btrfs/snap2
$ btrfs send -p /mnt/btrfs/snap1 /mnt/btrfs/snap2 > /tmp/incremental.send
A patch to update the test btrfs/030 from xfstests, so that it covers
this case, will be submitted soon.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
find_all_leafs() dosen't need add all roots actually, add roots only
if we need, this can avoid unnecessary ulist dance.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The structure for BTRFS_SET_RECEIVED_IOCTL packs differently on 32-bit
and 64-bit systems. This means that it is impossible to use btrfs
receive on a system with a 64-bit kernel and 32-bit userspace, because
the structure size (and hence the ioctl number) is different.
This patch adds a compatibility structure and ioctl to deal with the
above case.
Signed-off-by: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Function wait_for_parent_move() returns negative value if an error
happened, 0 if we don't need to wait for the parent's move, and
1 if the wait is needed.
Before this change an error return value was being treated like the
return value 1, which was not correct.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
During device replace test, we hit a null pointer deference (It was very easy
to reproduce it by running xfstests' btrfs/011 on the devices with the virtio
scsi driver). There were two bugs that caused this problem:
- We might allocate new chunks on the replaced device after we updated
the mapping tree. And we forgot to replace the source device in those
mapping of the new chunks.
- We might get the mapping information which including the source device
before the mapping information update. And then submit the bio which was
based on that mapping information after we freed the source device.
For the first bug, we can fix it by doing mapping tree update and source
device remove in the same context of the chunk mutex. The chunk mutex is
used to protect the allocable device list, the above method can avoid
the new chunk allocation, and after we remove the source device, all
the new chunks will be allocated on the new device. So it can fix
the first bug.
For the second bug, we need make sure all flighting bios are finished and
no new bios are produced during we are removing the source device. To fix
this problem, we introduced a global @bio_counter, we not only inc/dec
@bio_counter outsize of map_blocks, but also inc it before submitting bio
and dec @bio_counter when ending bios.
Since Raid56 is a little different and device replace dosen't support raid56
yet, it is not addressed in the patch and I add comments to make sure we will
fix it in the future.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
the alloc list of the filesystem is protected by ->chunk_mutex, we need
get that mutex when we insert the new device into the list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
EXDEV seems an appropriate error if an operation fails bacause it
crosses file system boundaries.
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Kusanagi Kouichi <slash@ac.auone-net.jp>
Signed-off-by: Josef Bacik <jbacik@fb.com>
There was a problem in the old code:
If we failed to log the csum, we would free all the ordered extents in the log list
including those ordered extents that were logged successfully, it would make the
log committer not to wait for the completion of the ordered extents.
This patch doesn't insert the ordered extents that is about to be logged into
a global list, instead, we insert them into a local list. If we log the ordered
extents successfully, we splice them with the global list, or we will throw them
away, then do full sync. It can also reduce the lock contention and the traverse
time of list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Pull btrfs fixes from Chris Mason:
"We have a small collection of fixes in my for-linus branch.
The big thing that stands out is a revert of a new ioctl. Users
haven't shipped yet in btrfs-progs, and Dave Sterba found a better way
to export the information"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: use right clone root offset for compressed extents
btrfs: fix null pointer deference at btrfs_sysfs_add_one+0x105
Btrfs: unset DCACHE_DISCONNECTED when mounting default subvol
Btrfs: fix max_inline mount option
Btrfs: fix a lockdep warning when cleaning up aborted transaction
Revert "btrfs: add ioctl to export size of global metadata reservation"
For non compressed extents, iterate_extent_inodes() gives us offsets
that take into account the data offset from the file extent items, while
for compressed extents it doesn't. Therefore we have to adjust them before
placing them in a send clone instruction. Not doing this adjustment leads to
the receiving end requesting for a wrong a file range to the clone ioctl,
which results in different file content from the one in the original send
root.
Issue reproducible with the following excerpt from the test I made for
xfstests:
_scratch_mkfs
_scratch_mount "-o compress-force=lzo"
$XFS_IO_PROG -f -c "truncate 118811" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "pwrite -S 0x0d -b 39987 92267 39987" $SCRATCH_MNT/foo
$BTRFS_UTIL_PROG subvolume snapshot -r $SCRATCH_MNT $SCRATCH_MNT/mysnap1
$XFS_IO_PROG -c "pwrite -S 0x3e -b 80000 200000 80000" $SCRATCH_MNT/foo
$BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT
$XFS_IO_PROG -c "pwrite -S 0xdc -b 10000 250000 10000" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "pwrite -S 0xff -b 10000 300000 10000" $SCRATCH_MNT/foo
# will be used for incremental send to be able to issue clone operations
$BTRFS_UTIL_PROG subvolume snapshot -r $SCRATCH_MNT $SCRATCH_MNT/clones_snap
$BTRFS_UTIL_PROG subvolume snapshot -r $SCRATCH_MNT $SCRATCH_MNT/mysnap2
$FSSUM_PROG -A -f -w $tmp/1.fssum $SCRATCH_MNT/mysnap1
$FSSUM_PROG -A -f -w $tmp/2.fssum -x $SCRATCH_MNT/mysnap2/mysnap1 \
-x $SCRATCH_MNT/mysnap2/clones_snap $SCRATCH_MNT/mysnap2
$FSSUM_PROG -A -f -w $tmp/clones.fssum $SCRATCH_MNT/clones_snap \
-x $SCRATCH_MNT/clones_snap/mysnap1 -x $SCRATCH_MNT/clones_snap/mysnap2
$BTRFS_UTIL_PROG send $SCRATCH_MNT/mysnap1 -f $tmp/1.snap
$BTRFS_UTIL_PROG send $SCRATCH_MNT/clones_snap -f $tmp/clones.snap
$BTRFS_UTIL_PROG send -p $SCRATCH_MNT/mysnap1 \
-c $SCRATCH_MNT/clones_snap $SCRATCH_MNT/mysnap2 -f $tmp/2.snap
_scratch_unmount
_scratch_mkfs
_scratch_mount
$BTRFS_UTIL_PROG receive $SCRATCH_MNT -f $tmp/1.snap
$FSSUM_PROG -r $tmp/1.fssum $SCRATCH_MNT/mysnap1 2>> $seqres.full
$BTRFS_UTIL_PROG receive $SCRATCH_MNT -f $tmp/clones.snap
$FSSUM_PROG -r $tmp/clones.fssum $SCRATCH_MNT/clones_snap 2>> $seqres.full
$BTRFS_UTIL_PROG receive $SCRATCH_MNT -f $tmp/2.snap
$FSSUM_PROG -r $tmp/2.fssum $SCRATCH_MNT/mysnap2 2>> $seqres.full
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
A user was running into errors from an NFS export of a subvolume that had a
default subvol set. When we mount a default subvol we will use d_obtain_alias()
to find an existing dentry for the subvolume in the case that the root subvol
has already been mounted, or a dummy one is allocated in the case that the root
subvol has not already been mounted. This allows us to connect the dentry later
on if we wander into the path. However if we don't ever wander into the path we
will keep DCACHE_DISCONNECTED set for a long time, which angers NFS. It doesn't
appear to cause any problems but it is annoying nonetheless, so simply unset
DCACHE_DISCONNECTED in the get_default_root case and switch btrfs_lookup() to
use d_materialise_unique() instead which will make everything play nicely
together and reconnect stuff if we wander into the defaul subvol path from a
different way. With this patch I'm no longer getting the NFS errors when
exporting a volume that has been mounted with a default subvol set. Thanks,
cc: bfields@fieldses.org
cc: ebiederm@xmission.com
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently, the only mount option for max_inline that has any effect is
max_inline=0. Any other value that is supplied to max_inline will be
adjusted to a minimum of 4k. Since max_inline has an effective maximum
of ~3900 bytes due to page size limitations, the current behaviour
only has meaning for max_inline=0.
This patch will allow the the max_inline mount option to accept non-zero
values as indicated in the documentation.
Signed-off-by: Mitch Harder <mitch.harder@sabayonlinux.org>
Signed-off-by: Chris Mason <clm@fb.com>
Given now we have 2 spinlock for management of delayed refs,
CONFIG_DEBUG_SPINLOCK=y helped me find this,
[ 4723.413809] BUG: spinlock wrong CPU on CPU#1, btrfs-transacti/2258
[ 4723.414882] lock: 0xffff880048377670, .magic: dead4ead, .owner: btrfs-transacti/2258, .owner_cpu: 2
[ 4723.417146] CPU: 1 PID: 2258 Comm: btrfs-transacti Tainted: G W O 3.12.0+ #4
[ 4723.421321] Call Trace:
[ 4723.421872] [<ffffffff81680fe7>] dump_stack+0x54/0x74
[ 4723.422753] [<ffffffff81681093>] spin_dump+0x8c/0x91
[ 4723.424979] [<ffffffff816810b9>] spin_bug+0x21/0x26
[ 4723.425846] [<ffffffff81323956>] do_raw_spin_unlock+0x66/0x90
[ 4723.434424] [<ffffffff81689bf7>] _raw_spin_unlock+0x27/0x40
[ 4723.438747] [<ffffffffa015da9e>] btrfs_cleanup_one_transaction+0x35e/0x710 [btrfs]
[ 4723.443321] [<ffffffffa015df54>] btrfs_cleanup_transaction+0x104/0x570 [btrfs]
[ 4723.444692] [<ffffffff810c1b5d>] ? trace_hardirqs_on_caller+0xfd/0x1c0
[ 4723.450336] [<ffffffff810c1c2d>] ? trace_hardirqs_on+0xd/0x10
[ 4723.451332] [<ffffffffa015e5ee>] transaction_kthread+0x22e/0x270 [btrfs]
[ 4723.452543] [<ffffffffa015e3c0>] ? btrfs_cleanup_transaction+0x570/0x570 [btrfs]
[ 4723.457833] [<ffffffff81079efa>] kthread+0xea/0xf0
[ 4723.458990] [<ffffffff81079e10>] ? kthread_create_on_node+0x140/0x140
[ 4723.460133] [<ffffffff81692aac>] ret_from_fork+0x7c/0xb0
[ 4723.460865] [<ffffffff81079e10>] ? kthread_create_on_node+0x140/0x140
[ 4723.496521] ------------[ cut here ]------------
----------------------------------------------------------------------
The reason is that we get to call cond_resched_lock(&head_ref->lock) while
still holding @delayed_refs->lock.
So it's different with __btrfs_run_delayed_refs(), where we do drop-acquire
dance before and after actually processing delayed refs.
Here we don't drop the lock, others are not able to add new delayed refs to
head_ref, so cond_resched_lock(&head_ref->lock) is not necessary here.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
This reverts commit 01e219e806.
David Sterba found a different way to provide these features without adding a new
ioctl. We haven't released any progs with this ioctl yet, so I'm taking this out
for now until we finalize things.
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
CC: Jeff Mahoney <jeffm@suse.com>
Pull btrfs fixes from Chris Mason:
"This is a small collection of fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix data corruption when reading/updating compressed extents
Btrfs: don't loop forever if we can't run because of the tree mod log
btrfs: reserve no transaction units in btrfs_ioctl_set_features
btrfs: commit transaction after setting label and features
Btrfs: fix assert screwup for the pending move stuff
When using a mix of compressed file extents and prealloc extents, it
is possible to fill a page of a file with random, garbage data from
some unrelated previous use of the page, instead of a sequence of zeroes.
A simple sequence of steps to get into such case, taken from the test
case I made for xfstests, is:
_scratch_mkfs
_scratch_mount "-o compress-force=lzo"
$XFS_IO_PROG -f -c "pwrite -S 0x06 -b 18670 266978 18670" $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "falloc 26450 665194" $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "truncate 542872" $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar
This results in the following file items in the fs tree:
item 4 key (257 INODE_ITEM 0) itemoff 15879 itemsize 160
inode generation 6 transid 6 size 542872 block group 0 mode 100600
item 5 key (257 INODE_REF 256) itemoff 15863 itemsize 16
inode ref index 2 namelen 6 name: foobar
item 6 key (257 EXTENT_DATA 0) itemoff 15810 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 24576 ram 266240
extent compression 0
item 7 key (257 EXTENT_DATA 24576) itemoff 15757 itemsize 53
prealloc data disk byte 12849152 nr 241664 gen 6
prealloc data offset 0 nr 241664
item 8 key (257 EXTENT_DATA 266240) itemoff 15704 itemsize 53
extent data disk byte 12845056 nr 4096 gen 6
extent data offset 0 nr 20480 ram 20480
extent compression 2
item 9 key (257 EXTENT_DATA 286720) itemoff 15651 itemsize 53
prealloc data disk byte 13090816 nr 405504 gen 6
prealloc data offset 0 nr 258048
The on disk extent at offset 266240 (which corresponds to 1 single disk block),
contains 5 compressed chunks of file data. Each of the first 4 compress 4096
bytes of file data, while the last one only compresses 3024 bytes of file data.
Therefore a read into the file region [285648 ; 286720[ (length = 4096 - 3024 =
1072 bytes) should always return zeroes (our next extent is a prealloc one).
The solution here is the compression code path to zero the remaining (untouched)
bytes of the last page it uncompressed data into, as the information about how
much space the file data consumes in the last page is not known in the upper layer
fs/btrfs/extent_io.c:__do_readpage(). In __do_readpage we were correctly zeroing
the remainder of the page but only if it corresponds to the last page of the inode
and if the inode's size is not a multiple of the page size.
This would cause not only returning random data on reads, but also permanently
storing random data when updating parts of the region that should be zeroed.
For the example above, it means updating a single byte in the region [285648 ; 286720[
would store that byte correctly but also store random data on disk.
A test case for xfstests follows soon.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
A user reported a 100% cpu hang with my new delayed ref code. Turns out I
forgot to increase the count check when we can't run a delayed ref because of
the tree mod log. If we can't run any delayed refs during this there is no
point in continuing to look, and we need to break out. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Added in patch "btrfs: add ioctls to query/change feature bits online"
modifications to superblock don't need to reserve metadata blocks when
starting a transaction.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The set_fslabel ioctl uses btrfs_end_transaction, which means it's
possible that the change will be lost if the system crashes, same for
the newly set features. Let's use btrfs_commit_transaction instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Wang noticed that he was failing btrfs/030 even though me and Filipe couldn't
reproduce. Turns out this is because Wang didn't have CONFIG_BTRFS_ASSERT set,
which meant that a key part of Filipe's original patch was not being built in.
This appears to be a mess up with merging Filipe's patch as it does not exist in
his original patch. Fix this by changing how we make sure del_waiting_dir_move
asserts that it did not error and take the function out of the ifdef check.
This makes btrfs/030 pass with the assert on or off. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"Filipe is fixing compile and boot problems with our crc32c rework, and
Josef has disabled snapshot aware defrag for now.
As the number of snapshots increases, we're hitting OOM. For the
short term we're disabling things until a bigger fix is ready"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: use late_initcall instead of module_init
Btrfs: use btrfs_crc32c everywhere instead of libcrc32c
Btrfs: disable snapshot aware defrag for now
It seems that when init_btrfs_fs() is called, crc32c/crc32c-intel might
not always be already initialized, which results in the call to crypto_alloc_shash()
returning -ENOENT, as experienced by Ahmet who reported this.
Therefore make sure init_btrfs_fs() is called after crc32c is initialized (which
is at initialization level 6, module_init), by using late_initcall (which is at
initialization level 7) instead of module_init for btrfs.
Reported-and-Tested-by: Ahmet Inan <ainan@mathematik.uni-freiburg.de>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
After the commit titled "Btrfs: fix btrfs boot when compiled as built-in",
LIBCRC32C requirement was removed from btrfs' Kconfig. This made it not
possible to build a kernel with btrfs enabled (either as module or built-in)
if libcrc32c is not enabled as well. So just replace all uses of libcrc32c
with the equivalent function in btrfs hash.h - btrfs_crc32c.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
It's just broken and it's taking a lot of effort to fix it, so for now just
disable it so people can defrag in peace. Thanks,
Cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"This is a pretty big pull, and most of these changes have been
floating in btrfs-next for a long time. Filipe's properties work is a
cool building block for inheriting attributes like compression down on
a per inode basis.
Jeff Mahoney kicked in code to export filesystem info into sysfs.
Otherwise, lots of performance improvements, cleanups and bug fixes.
Looks like there are still a few other small pending incrementals, but
I wanted to get the bulk of this in first"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (149 commits)
Btrfs: fix spin_unlock in check_ref_cleanup
Btrfs: setup inode location during btrfs_init_inode_locked
Btrfs: don't use ram_bytes for uncompressed inline items
Btrfs: fix btrfs_search_slot_for_read backwards iteration
Btrfs: do not export ulist functions
Btrfs: rework ulist with list+rb_tree
Btrfs: fix memory leaks on walking backrefs failure
Btrfs: fix send file hole detection leading to data corruption
Btrfs: add a reschedule point in btrfs_find_all_roots()
Btrfs: make send's file extent item search more efficient
Btrfs: fix to catch all errors when resolving indirect ref
Btrfs: fix protection between walking backrefs and root deletion
btrfs: fix warning while merging two adjacent extents
Btrfs: fix infinite path build loops in incremental send
btrfs: undo sysfs when open_ctree() fails
Btrfs: fix snprintf usage by send's gen_unique_name
btrfs: fix defrag 32-bit integer overflow
btrfs: sysfs: list the NO_HOLES feature
btrfs: sysfs: don't show reserved incompat feature
btrfs: call permission checks earlier in ioctls and return EPERM
...
Pull core block IO changes from Jens Axboe:
"The major piece in here is the immutable bio_ve series from Kent, the
rest is fairly minor. It was supposed to go in last round, but
various issues pushed it to this release instead. The pull request
contains:
- Various smaller blk-mq fixes from different folks. Nothing major
here, just minor fixes and cleanups.
- Fix for a memory leak in the error path in the block ioctl code
from Christian Engelmayer.
- Header export fix from CaiZhiyong.
- Finally the immutable biovec changes from Kent Overstreet. This
enables some nice future work on making arbitrarily sized bios
possible, and splitting more efficient. Related fixes to immutable
bio_vecs:
- dm-cache immutable fixup from Mike Snitzer.
- btrfs immutable fixup from Muthu Kumar.
- bio-integrity fix from Nic Bellinger, which is also going to stable"
* 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits)
xtensa: fixup simdisk driver to work with immutable bio_vecs
block/blk-mq-cpu.c: use hotcpu_notifier()
blk-mq: for_each_* macro correctness
block: Fix memory leak in rw_copy_check_uvector() handling
bio-integrity: Fix bio_integrity_verify segment start bug
block: remove unrelated header files and export symbol
blk-mq: uses page->list incorrectly
blk-mq: use __smp_call_function_single directly
btrfs: fix missing increment of bi_remaining
Revert "block: Warn and free bio if bi_end_io is not set"
block: Warn and free bio if bi_end_io is not set
blk-mq: fix initializing request's start time
block: blk-mq: don't export blk_mq_free_queue()
block: blk-mq: make blk_sync_queue support mq
block: blk-mq: support draining mq queue
dm cache: increment bi_remaining when bi_end_io is restored
block: fixup for generic bio chaining
block: Really silence spurious compiler warnings
block: Silence spurious compiler warnings
block: Kill bio_pair_split()
...
We have a race during inode init because the BTRFS_I(inode)->location is setup
after the inode hash table lock is dropped. btrfs_find_actor uses the location
field, so our search might not find an existing inode in the hash table if we
race with the inode init code.
This commit changes things to setup the location field sooner. Also the find actor now
uses only the location objectid to match inodes. For inode hashing, we just
need a unique and stable test, it doesn't have to reflect the inode numbers we
show to userland.
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect
the new size. The fixe uses the size directly from the item header when
reading uncompressed inlines, and also fixes truncate to update the
size as it goes.
Reported-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
If the current path's leaf slot is 0, we do search for the previous
leaf (via btrfs_prev_leaf) and set the new path's leaf slot to a
value corresponding to the number of items - 1 of the former leaf.
Fix this by using the slot set by btrfs_prev_leaf, decrementing it
by 1 if it's equal to the leaf's number of items.
Use of btrfs_search_slot_for_read() for backward iteration is used in
particular by the send feature, which could miss items when the input
leaf has less items than its previous leaf.
This could be reproduced by running btrfs/007 from xfstests in a loop.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
There are not any users that use ulist except Btrfs,don't
export them.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We are really suffering from now ulist's implementation, some developers
gave their try, and i just gave some of my ideas for things:
1. use list+rb_tree instead of arrary+rb_tree
2. add cur_list to iterator rather than ulist structure.
3. add seqnum into every node when they are added, this is
used to do selfcheck when iterating node.
I noticed Zach Brown's comments before, long term is to kick off
ulist implementation, however, for now, we need at least avoid
arrary from ulist.
Cc: Liu Bo <bo.li.liu@oracle.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Zach Brown <zab@redhat.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When walking backrefs, we may iterate every inode's extent
and add/merge them into ulist, and the caller will free memory
from ulist.
However, if we fail to allocate inode's extents element
memory or ulist_add() fail to allocate memory, we won't
add allocated memory into ulist, and the caller won't
free some allocated memory thus memory leaks happen.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
There was a case where file hole detection was incorrect and it would
cause an incremental send to override a section of a file with zeroes.
This happened in the case where between the last leaf we processed which
contained a file extent item for our current inode and the leaf we're
currently are at (and has a file extent item for our current inode) there
are only leafs containing exclusively file extent items for our current
inode, and none of them was updated since the previous send operation.
The file hole detection code would incorrectly consider the file range
covered by these leafs as a hole.
A test case for xfstests follows soon.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Instead of looking for a file extent item, process it, release the path
and do a btree search for the next file extent item, just process all
file extent items in a leaf without intermediate btree searches. This way
we save cpu and we're not blocking other tasks or affecting concurrency on
the btree, because send's paths use the commit root and skip btree node/leaf
locking.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can only tolerate ENOENT here, for other errors, we should
return directly.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
There is a race condition between resolving indirect ref and root deletion,
and we should gurantee that root can not be destroyed to avoid accessing
broken tree here.
Here we fix it by holding @subvol_srcu, and we will release it as soon
as we have held root node lock.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we have two adjacent extents in relink_extent_backref,
we try to merge them. When we use btrfs_search_slot to locate the
slot for the current extent, we shouldn't set "ins_len = 1",
because we will merge it into the previous extent rather than
insert a new item. Otherwise, we may happen to create a new leaf
in btrfs_search_slot and path->slot[0] will be 0. Then we try to
fetch the previous item using "path->slots[0]--", and it will cause
a warning as follows:
[ 145.713385] WARNING: CPU: 3 PID: 1796 at fs/btrfs/extent_io.c:5043 map_private_extent_buffer+0xd4/0xe0
[ 145.713387] btrfs bad mapping eb start 5337088 len 4096, wanted 167772306 8
...
[ 145.713462] [<ffffffffa034b1f4>] map_private_extent_buffer+0xd4/0xe0
[ 145.713476] [<ffffffffa030097a>] ? btrfs_free_path+0x2a/0x40
[ 145.713485] [<ffffffffa0340864>] btrfs_get_token_64+0x64/0xf0
[ 145.713498] [<ffffffffa033472c>] relink_extent_backref+0x41c/0x820
[ 145.713508] [<ffffffffa0334d69>] btrfs_finish_ordered_io+0x239/0xa80
I encounter this warning when running defrag having mkfs.btrfs
with option -M. At the same time there are read/writes & snapshots
running at background.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The send operation processes inodes by their ascending number, and assumes
that any rename/move operation can be successfully performed (sent to the
caller) once all previous inodes (those with a smaller inode number than the
one we're currently processing) were processed.
This is not true when an incremental send had to process an hierarchical change
between 2 snapshots where the parent-children relationship between directory
inodes was reversed - that is, parents became children and children became
parents. This situation made the path building code go into an infinite loop,
which kept allocating more and more memory that eventually lead to a krealloc
warning being displayed in dmesg:
WARNING: CPU: 1 PID: 5705 at mm/page_alloc.c:2477 __alloc_pages_nodemask+0x365/0xad0()
Modules linked in: btrfs raid6_pq xor pci_stub vboxpci(O) vboxnetadp(O) vboxnetflt(O) vboxdrv(O) snd_hda_codec_hdmi snd_hda_codec_realtek joydev radeon snd_hda_intel snd_hda_codec snd_hwdep snd_seq_midi snd_pcm psmouse i915 snd_rawmidi serio_raw snd_seq_midi_event lpc_ich snd_seq snd_timer ttm snd_seq_device rfcomm drm_kms_helper parport_pc bnep bluetooth drm ppdev snd soundcore i2c_algo_bit snd_page_alloc binfmt_misc video lp parport r8169 mii hid_generic usbhid hid
CPU: 1 PID: 5705 Comm: btrfs Tainted: G O 3.13.0-rc7-fdm-btrfs-next-18+ #3
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./Z77 Pro4, BIOS P1.50 09/04/2012
[ 5381.660441] 00000000000009ad ffff8806f6f2f4e8 ffffffff81777434 0000000000000007
[ 5381.660447] 0000000000000000 ffff8806f6f2f528 ffffffff8104a9ec ffff8807038f36f0
[ 5381.660452] 0000000000000000 0000000000000206 ffff8807038f2490 ffff8807038f36f0
[ 5381.660457] Call Trace:
[ 5381.660464] [<ffffffff81777434>] dump_stack+0x4e/0x68
[ 5381.660471] [<ffffffff8104a9ec>] warn_slowpath_common+0x8c/0xc0
[ 5381.660476] [<ffffffff8104aa3a>] warn_slowpath_null+0x1a/0x20
[ 5381.660480] [<ffffffff81144995>] __alloc_pages_nodemask+0x365/0xad0
[ 5381.660487] [<ffffffff8108313f>] ? local_clock+0x4f/0x60
[ 5381.660491] [<ffffffff811430e8>] ? free_one_page+0x98/0x440
[ 5381.660495] [<ffffffff8108313f>] ? local_clock+0x4f/0x60
[ 5381.660502] [<ffffffff8113fae4>] ? __get_free_pages+0x14/0x50
[ 5381.660508] [<ffffffff81095fb8>] ? trace_hardirqs_off_caller+0x28/0xd0
[ 5381.660515] [<ffffffff81183caf>] alloc_pages_current+0x10f/0x1f0
[ 5381.660520] [<ffffffff8113fae4>] ? __get_free_pages+0x14/0x50
[ 5381.660524] [<ffffffff8113fae4>] __get_free_pages+0x14/0x50
[ 5381.660530] [<ffffffff8115dace>] kmalloc_order_trace+0x3e/0x100
[ 5381.660536] [<ffffffff81191ea0>] __kmalloc_track_caller+0x220/0x230
[ 5381.660560] [<ffffffffa0729fdb>] ? fs_path_ensure_buf.part.12+0x6b/0x200 [btrfs]
[ 5381.660564] [<ffffffff8178085c>] ? retint_restore_args+0xe/0xe
[ 5381.660569] [<ffffffff811580ef>] krealloc+0x6f/0xb0
[ 5381.660586] [<ffffffffa0729fdb>] fs_path_ensure_buf.part.12+0x6b/0x200 [btrfs]
[ 5381.660601] [<ffffffffa072a208>] fs_path_prepare_for_add+0x98/0xb0 [btrfs]
[ 5381.660615] [<ffffffffa072a2bc>] fs_path_add_path+0x2c/0x60 [btrfs]
[ 5381.660628] [<ffffffffa072c55c>] get_cur_path+0x7c/0x1c0 [btrfs]
Even without this loop, the incremental send couldn't succeed, because it would attempt
to send a rename/move operation for the lower inode before the highest inode number was
renamed/move. This issue is easy to trigger with the following steps:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ mkdir -p /mnt/btrfs/a/b/c/d
$ mkdir /mnt/btrfs/a/b/c2
$ btrfs subvol snapshot -r /mnt/btrfs /mnt/btrfs/snap1
$ mv /mnt/btrfs/a/b/c/d /mnt/btrfs/a/b/c2/d2
$ mv /mnt/btrfs/a/b/c /mnt/btrfs/a/b/c2/d2/cc
$ btrfs subvol snapshot -r /mnt/btrfs /mnt/btrfs/snap2
$ btrfs send -p /mnt/btrfs/snap1 /mnt/btrfs/snap2 > /tmp/incremental.send
The structure of the filesystem when the first snapshot is taken is:
. (ino 256)
|-- a (ino 257)
|-- b (ino 258)
|-- c (ino 259)
| |-- d (ino 260)
|
|-- c2 (ino 261)
And its structure when the second snapshot is taken is:
. (ino 256)
|-- a (ino 257)
|-- b (ino 258)
|-- c2 (ino 261)
|-- d2 (ino 260)
|-- cc (ino 259)
Before the move/rename operation is performed for the inode 259, the
move/rename for inode 260 must be performed, since 259 is now a child
of 260.
A test case for xfstests, with a more complex scenario, will follow soon.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The buffer size argument passed to snprintf must account for the
trailing null byte added by snprintf, and it returns a value >= then
sizeof(buffer) when the string can't fit in the buffer.
Since our buffer has a size of 64 characters, and the maximum orphan
name we can generate is 63 characters wide, we must pass 64 as the
buffer size to snprintf, and not 63.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When defragging a very large file, the cluster variable can wrap its 32-bit
signed int type and become negative, which eventually gets passed to
btrfs_force_ra() as a very large unsigned long value. On 32-bit platforms,
this eventually results in an Oops from the SLAB allocator.
Change the cluster and max_cluster signed int variables to unsigned long to
match the readahead functions. This also allows the min() comparison in
btrfs_defrag_file() to work as intended.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The COMPRESS_LZOv2 incompat featue is currently not implemented, the bit
is only reserved, no point to list it in sysfs.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The owner and capability checks in IOC_SUBVOL_SETFLAGS and
SET_RECEIVED_SUBVOL should be called before any other checks are done.
Also unify the error code to EPERM.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently, any user can snapshot any subvolume if the path is accessible and
thus indirectly create and keep files he does not own under his direcotries.
This is not possible with traditional directories.
In security context, a user can snapshot root filesystem and pin any
potentially buggy binaries, even if the updates are applied.
All the snapshots are visible to the administrator, so it's possible to
verify if there are suspicious snapshots.
Another more practical problem is that any user can pin the space used
by eg. root and cause ENOSPC.
Original report:
https://bugs.launchpad.net/ubuntu/+source/apparmor/+bug/484786
CC: stable@vger.kernel.org
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We allocate the free space from the former block group, not the current
one, so should use the former one to output the trace information.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
used_block_group is just used for the space cluster which doesn't
belong to the current block group, the other place needn't use it.
Or the logic of code seems unclear.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
It is better that the position of the lock is close to the data which is
protected by it, because they may be in the same cache line, we will load
less cache lines when we access them. So we rearrange the members' position
of btrfs_space_info structure to make the lock be closer to the its data.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
To search tree root without transaction protection, we should neither search commit
root nor skip locking here, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The performance of fsync dropped down suddenly sometimes, the main reason
of this problem was that we might only flush part dirty pages in a ordered
extent, then got that ordered extent, wait for the csum calcucation. But if
no task flushed the left part, we would wait until the flusher flushed them,
sometimes we need wait for several seconds, it made the performance drop
down suddenly. (On my box, it drop down from 56MB/s to 4-10MB/s)
This patch improves the above problem by flushing left dirty pages aggressively.
Test Environment:
CPU: 2CPU * 2Cores
Memory: 4GB
Partition: 20GB(HDD)
Test Command:
# sysbench --num-threads=8 --test=fileio --file-num=1 \
> --file-total-size=8G --file-block-size=32768 \
> --file-io-mode=sync --file-fsync-freq=100 \
> --file-fsync-end=no --max-requests=10000 \
> --file-test-mode=rndwr run
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
# mkfs.btrfs -f /dev/sda8
# mount /dev/sda8 /mnt -o flushoncommit
# dd if=/dev/zero of=/mnt/data bs=4k count=102400 &
# mount /dev/sda8 /mnt -o remount, ro
When remounting RW to RO, the logic is to firstly set flag
to RO and then commit transaction, however with option
flushoncommit enabled,we will do RO check within committing
transaction, so we get a transaction abortion here.
Actually,here check is wrong, we should check if FS_STATE_ERROR
is set, fix it.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Suggested-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we are looking for file extent items that intersect the cloning
range, for each one that falls completely outside the range, don't
release the path and do another full tree search - just move on
to the next slot and copy the file extent item into our buffer only
if the item intersects the cloning range.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When transaction is aborted, we fail to commit transaction, instead we do
cleanup work. After that when we umount btrfs, we get to free fs roots' log
trees respectively, but that happens after we unpin extents, so those extents
pinned by freeing log trees will remain in memory and lead to the leak.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since remount will pending the new mount options to the original mount
options, which will make btrfs_parse_options check the old options then
new options, causing some stupid output like "enabling XXX" following by
"disable XXX".
This patch will add extra check before every btrfs_info to skip the
output from old options checking.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add noinode_cache mount option for btrfs.
Since inode map cache involves all the btrfs_find_free_ino/return_ino
things and if just trigger the mount_opt,
an inode number get from inode map cache will not returned to inode map
cache.
To keep the find and return inode both in the same behavior,
a new bit in mount_opt, CHANGE_INODE_CACHE, is introduced for this idea.
CHANGE_INODE_CACHE is set/cleared in remounting, and the original
INODE_MAP_CACHE is set/cleared according to CHANGE_INODE_CACHE after a
success transaction.
Since find/return inode is all done between btrfs_start_transaction and
btrfs_commit_transaction, this will keep consistent behavior.
Also noinode_cache mount option will not stop the caching_kthread.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
There is a bug that using btrfs_previous_item() to search metadata extent item.
This is because in btrfs_previous_item(), we need type match, however, since
skinny metada was introduced by josef, we may mix this two types. So just
use btrfs_previous_item() is not working right.
To keep btrfs_previous_item() like normal tree search, i introduce another
function btrfs_previous_extent_item().
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Check if we support skinny metadata firstly and fix to use
right type to search.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
It is possible for the send feature to send clone operations that
request a cloning range (offset + length) that is not aligned with
the block size. This makes the btrfs receive command send issue a
clone ioctl call that will fail, as the ioctl will return an -EINVAL
error because of the unaligned range.
Fix this by not sending clone operations for non block aligned ranges,
and instead send regular write operation for these (less common) cases.
The following xfstest reproduces this issue, which fails on the second
btrfs receive command without this change:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=`mktemp -d`
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -fr $tmp
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_supported_fs btrfs
_supported_os Linux
_require_scratch
_need_to_be_root
rm -f $seqres.full
_scratch_mkfs >/dev/null 2>&1
_scratch_mount
$XFS_IO_PROG -f -c "truncate 819200" $SCRATCH_MNT/foo | _filter_xfs_io
$BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch
$XFS_IO_PROG -c "falloc -k 819200 667648" $SCRATCH_MNT/foo | _filter_xfs_io
$BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch
$XFS_IO_PROG -f -c "pwrite 1482752 2978" $SCRATCH_MNT/foo | _filter_xfs_io
$BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch
$BTRFS_UTIL_PROG subvol snapshot -r $SCRATCH_MNT $SCRATCH_MNT/mysnap1 | \
_filter_scratch
$XFS_IO_PROG -f -c "truncate 883305" $SCRATCH_MNT/foo | _filter_xfs_io
$BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch
$BTRFS_UTIL_PROG subvol snapshot -r $SCRATCH_MNT $SCRATCH_MNT/mysnap2 | \
_filter_scratch
$BTRFS_UTIL_PROG send $SCRATCH_MNT/mysnap1 -f $tmp/1.snap 2>&1 | _filter_scratch
$BTRFS_UTIL_PROG send -p $SCRATCH_MNT/mysnap1 $SCRATCH_MNT/mysnap2 \
-f $tmp/2.snap 2>&1 | _filter_scratch
md5sum $SCRATCH_MNT/foo | _filter_scratch
md5sum $SCRATCH_MNT/mysnap1/foo | _filter_scratch
md5sum $SCRATCH_MNT/mysnap2/foo | _filter_scratch
_scratch_unmount
_check_btrfs_filesystem $SCRATCH_DEV
_scratch_mkfs >/dev/null 2>&1
_scratch_mount
$BTRFS_UTIL_PROG receive $SCRATCH_MNT -f $tmp/1.snap
md5sum $SCRATCH_MNT/mysnap1/foo | _filter_scratch
$BTRFS_UTIL_PROG receive $SCRATCH_MNT -f $tmp/2.snap
md5sum $SCRATCH_MNT/mysnap2/foo | _filter_scratch
_scratch_unmount
_check_btrfs_filesystem $SCRATCH_DEV
status=0
exit
The tests expected output is:
QA output created by 025
FSSync 'SCRATCH_MNT'
FSSync 'SCRATCH_MNT'
wrote 2978/2978 bytes at offset 1482752
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
FSSync 'SCRATCH_MNT'
Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/mysnap1'
FSSync 'SCRATCH_MNT'
Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/mysnap2'
At subvol SCRATCH_MNT/mysnap1
At subvol SCRATCH_MNT/mysnap2
129b8eaee8d3c2bcad49bec596591cb3 SCRATCH_MNT/foo
42b6369eae2a8725c1aacc0440e597aa SCRATCH_MNT/mysnap1/foo
129b8eaee8d3c2bcad49bec596591cb3 SCRATCH_MNT/mysnap2/foo
At subvol mysnap1
42b6369eae2a8725c1aacc0440e597aa SCRATCH_MNT/mysnap1/foo
At snapshot mysnap2
129b8eaee8d3c2bcad49bec596591cb3 SCRATCH_MNT/mysnap2/foo
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
After the change titled "Btrfs: add support for inode properties", if
btrfs was built-in the kernel (i.e. not as a module), it would cause a
kernel panic, as reported recently by Fengguang:
[ 2.024722] BUG: unable to handle kernel NULL pointer dereference at (null)
[ 2.027814] IP: [<ffffffff81501594>] crc32c+0xc/0x6b
[ 2.028684] PGD 0
[ 2.028684] Oops: 0000 [#1] SMP
[ 2.028684] Modules linked in:
[ 2.028684] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.13.0-rc7-04795-ga7b57c2 #1
[ 2.028684] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 2.028684] task: ffff88000edba100 ti: ffff88000edd6000 task.ti: ffff88000edd6000
[ 2.028684] RIP: 0010:[<ffffffff81501594>] [<ffffffff81501594>] crc32c+0xc/0x6b
[ 2.028684] RSP: 0000:ffff88000edd7e58 EFLAGS: 00010246
[ 2.028684] RAX: 0000000000000000 RBX: ffffffff82295550 RCX: 0000000000000000
[ 2.028684] RDX: 0000000000000011 RSI: ffffffff81efe393 RDI: 00000000fffffffe
[ 2.028684] RBP: ffff88000edd7e60 R08: 0000000000000003 R09: 0000000000015d20
[ 2.028684] R10: ffffffff81ef225e R11: ffffffff811b0222 R12: ffffffffffffffff
[ 2.028684] R13: 0000000000000239 R14: 0000000000000000 R15: 0000000000000000
[ 2.028684] FS: 0000000000000000(0000) GS:ffff88000fa00000(0000) knlGS:0000000000000000
[ 2.028684] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 2.028684] CR2: 0000000000000000 CR3: 000000000220c000 CR4: 00000000000006f0
[ 2.028684] Stack:
[ 2.028684] ffffffff82295550 ffff88000edd7e80 ffffffff8238af62 ffffffff8238ac05
[ 2.028684] 0000000000000000 ffff88000edd7e98 ffffffff8238ac0f ffffffff8238ac05
[ 2.028684] ffff88000edd7f08 ffffffff810002ba ffff88000edd7f00 ffffffff810e2404
[ 2.028684] Call Trace:
[ 2.028684] [<ffffffff8238af62>] btrfs_props_init+0x4f/0x96
[ 2.028684] [<ffffffff8238ac05>] ? ftrace_define_fields_btrfs_space_reservation+0x145/0x145
[ 2.028684] [<ffffffff8238ac0f>] init_btrfs_fs+0xa/0xf0
[ 2.028684] [<ffffffff8238ac05>] ? ftrace_define_fields_btrfs_space_reservation+0x145/0x145
[ 2.028684] [<ffffffff810002ba>] do_one_initcall+0xa4/0x13a
[ 2.028684] [<ffffffff810e2404>] ? parse_args+0x25f/0x33d
[ 2.028684] [<ffffffff8234cf75>] kernel_init_freeable+0x1aa/0x230
[ 2.028684] [<ffffffff8234c785>] ? do_early_param+0x88/0x88
[ 2.028684] [<ffffffff819f61b5>] ? rest_init+0x89/0x89
[ 2.028684] [<ffffffff819f61c3>] kernel_init+0xe/0x109
The issue here is that the initialization function of btrfs (super.c:init_btrfs_fs)
started using crc32c (from lib/libcrc32c.c). But when it needs to call crc32c (as
part of the properties initialization routine), the libcrc32c is not yet initialized,
so crc32c derreferenced a NULL pointer (lib/libcrc32c.c:tfm), causing the kernel
panic on boot.
The approach to fix this is to use crypto component directly to use its crc32c (which
is basically what lib/libcrc32c.c is, a wrapper around crypto). This is what ext4 is
doing as well, it uses crypto directly to get crc32c functionality.
Verified this works both when btrfs is built-in and when it's loadable kernel module.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
In the clone ioctl, when the source and target inodes are different,
we can acquire their mutexes in 2 possible different orders. After
we're done cloning, we were releasing the mutexes always in the same
order - the most correct way of doing it is to release them by the
reverse order they were acquired.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Here we are not going to free memory, no need to remove every node
one by one, just init root node here is ok.
Cc: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We don't have to keep subvolume's block_rsv during transaction commit,
and within transaction commit, we may also need the free space reclaimed
from this block_rsv to process delayed refs.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we ran the 274th case of xfstests with nodatacow mount option,
We met the following warning message:
WARNING: CPU: 1 PID: 14185 at fs/btrfs/extent-tree.c:3734 btrfs_free_reserved_data_space+0xa6/0xd0
It is caused by the race between the write back and nocow buffered
write:
Task1 Task2
__btrfs_buffered_write()
skip data reservation
reserve the metadata space
copy the data
dirty the pages
unlock the pages
write back the pages
release the data space
becasue there is no
noreserve flag
set the noreserve flag
This patch fixes this problem by unlocking the pages after
the noreserve flag is set.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The backref walking code will search down to the key it is looking for and then
proceed to walk _all_ of the extents on the file until it hits the end. This is
suboptimal with large files, we only need to look for as many extents as we have
references for that inode. I have a testcase that creates a randomly written 4
gig file and before this patch it took 6min 30sec to do the initial send, with
this patch it takes 2min 30sec to do the intial send. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Could have sworn I fixed this before but apparently not. This makes us pass
btrfs/022 with skinny metadata enabled. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
I don't think this is an issue and I've not seen it in practice but
extent_from_logical will fail to find a skinny extent because it uses
btrfs_previous_item and gives it the normal extent item type. This is just not
a place to use btrfs_previous_item since we care about either normal extents or
skinny extents, so open code btrfs_previous_item to properly check. This would
only affect metadata and the only place this is used for metadata is scrub and
I'm pretty sure it's just for printing stuff out, not actually doing any work so
hopefully it was never a problem other than a cosmetic one. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
On one of our gluster clusters we noticed some pretty big lag spikes. This
turned out to be because our transaction commit was taking like 3 minutes to
complete. This is because we have like 30 gigs of metadata, so our global
reserve would end up being the max which is like 512 mb. So our throttling code
would allow a ridiculous amount of delayed refs to build up and then they'd all
get run at transaction commit time, and for a cold mounted file system that
could take up to 3 minutes to run. So fix the throttling to be based on both
the size of the global reserve and how long it takes us to run delayed refs.
This patch tracks the time it takes to run delayed refs and then only allows 1
seconds worth of outstanding delayed refs at a time. This way it will auto-tune
itself from cold cache up to when everything is in memory and it no longer has
to go to disk. This makes our transaction commits take much less time to run.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently we have two rb-trees, one for delayed ref heads and one for all of the
delayed refs, including the delayed ref heads. When we process the delayed refs
we have to hold onto the delayed ref lock for all of the selecting and merging
and such, which results in quite a bit of lock contention. This was solved by
having a waitqueue and only one flusher at a time, however this hurts if we get
a lot of delayed refs queued up.
So instead just have an rb tree for the delayed ref heads, and then attach the
delayed ref updates to an rb tree that is per delayed ref head. Then we only
need to take the delayed ref lock when adding new delayed refs and when
selecting a delayed ref head to process, all the rest of the time we deal with a
per delayed ref head lock which will be much less contentious.
The locking rules for this get a little more complicated since we have to lock
up to 3 things to properly process delayed refs, but I will address that problem
later. For now this passes all of xfstests and my overnight stress tests.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Looking into some performance related issues with large amounts of metadata
revealed that we can have some pretty huge swings in fsync() performance. If we
have a lot of delayed refs backed up (as you will tend to do with lots of
metadata) fsync() will wander off and try to run some of those delayed refs
which can result in reading from disk and such. Since the actual act of fsync()
doesn't create any delayed refs there is no need to make it throttle on delayed
ref stuff, that will be handled by other people. With this patch we get much
smoother fsync performance with large amounts of metadata. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This change adds infrastructure to allow for generic properties for
inodes. Properties are name/value pairs that can be associated with
inodes for different purposes. They are stored as xattrs with the
prefix "btrfs."
Properties can be inherited - this means when a directory inode has
inheritable properties set, these are added to new inodes created
under that directory. Further, subvolumes can also have properties
associated with them, and they can be inherited from their parent
subvolume. Naturally, directory properties have priority over subvolume
properties (in practice a subvolume property is just a regular
property associated with the root inode, objectid 256, of the
subvolume's fs tree).
This change also adds one specific property implementation, named
"compression", whose values can be "lzo" or "zlib" and it's an
inheritable property.
The corresponding changes to btrfs-progs were also implemented.
A patch with xfstests for this feature will follow once there's
agreement on this change/feature.
Further, the script at the bottom of this commit message was used to
do some benchmarks to measure any performance penalties of this feature.
Basically the tests correspond to:
Test 1 - create a filesystem and mount it with compress-force=lzo,
then sequentially create N files of 64Kb each, measure how long it took
to create the files, unmount the filesystem, mount the filesystem and
perform an 'ls -lha' against the test directory holding the N files, and
report the time the command took.
Test 2 - create a filesystem and don't use any compression option when
mounting it - instead set the compression property of the subvolume's
root to 'lzo'. Then create N files of 64Kb, and report the time it took.
The unmount the filesystem, mount it again and perform an 'ls -lha' like
in the former test. This means every single file ends up with a property
(xattr) associated to it.
Test 3 - same as test 2, but uses 4 properties - 3 are duplicates of the
compression property, have no real effect other than adding more work
when inheriting properties and taking more btree leaf space.
Test 4 - same as test 3 but with 10 properties per file.
Results (in seconds, and averages of 5 runs each), for different N
numbers of files follow.
* Without properties (test 1)
file creation time ls -lha time
10 000 files 3.49 0.76
100 000 files 47.19 8.37
1 000 000 files 518.51 107.06
* With 1 property (compression property set to lzo - test 2)
file creation time ls -lha time
10 000 files 3.63 0.93
100 000 files 48.56 9.74
1 000 000 files 537.72 125.11
* With 4 properties (test 3)
file creation time ls -lha time
10 000 files 3.94 1.20
100 000 files 52.14 11.48
1 000 000 files 572.70 142.13
* With 10 properties (test 4)
file creation time ls -lha time
10 000 files 4.61 1.35
100 000 files 58.86 13.83
1 000 000 files 656.01 177.61
The increased latencies with properties are essencialy because of:
*) When creating an inode, we now synchronously write 1 more item
(an xattr item) for each property inherited from the parent dir
(or subvolume). This could be done in an asynchronous way such
as we do for dir intex items (delayed-inode.c), which could help
reduce the file creation latency;
*) With properties, we now have larger fs trees. For this particular
test each xattr item uses 75 bytes of leaf space in the fs tree.
This could be less by using a new item for xattr items, instead of
the current btrfs_dir_item, since we could cut the 'location' and
'type' fields (saving 18 bytes) and maybe 'transid' too (saving a
total of 26 bytes per xattr item) from the btrfs_dir_item type.
Also tried batching the xattr insertions (ignoring proper hash
collision handling, since it didn't exist) when creating files that
inherit properties from their parent inode/subvolume, but the end
results were (surprisingly) essentially the same.
Test script:
$ cat test.pl
#!/usr/bin/perl -w
use strict;
use Time::HiRes qw(time);
use constant NUM_FILES => 10_000;
use constant FILE_SIZES => (64 * 1024);
use constant DEV => '/dev/sdb4';
use constant MNT_POINT => '/home/fdmanana/btrfs-tests/dev';
use constant TEST_DIR => (MNT_POINT . '/testdir');
system("mkfs.btrfs", "-l", "16384", "-f", DEV) == 0 or die "mkfs.btrfs failed!";
# following line for testing without properties
#system("mount", "-o", "compress-force=lzo", DEV, MNT_POINT) == 0 or die "mount failed!";
# following 2 lines for testing with properties
system("mount", DEV, MNT_POINT) == 0 or die "mount failed!";
system("btrfs", "prop", "set", MNT_POINT, "compression", "lzo") == 0 or die "set prop failed!";
system("mkdir", TEST_DIR) == 0 or die "mkdir failed!";
my ($t1, $t2);
$t1 = time();
for (my $i = 1; $i <= NUM_FILES; $i++) {
my $p = TEST_DIR . '/file_' . $i;
open(my $f, '>', $p) or die "Error opening file!";
$f->autoflush(1);
for (my $j = 0; $j < FILE_SIZES; $j += 4096) {
print $f ('A' x 4096) or die "Error writing to file!";
}
close($f);
}
$t2 = time();
print "Time to create " . NUM_FILES . ": " . ($t2 - $t1) . " seconds.\n";
system("umount", DEV) == 0 or die "umount failed!";
system("mount", DEV, MNT_POINT) == 0 or die "mount failed!";
$t1 = time();
system("bash -c 'ls -lha " . TEST_DIR . " > /dev/null'") == 0 or die "ls failed!";
$t2 = time();
print "Time to ls -lha all files: " . ($t2 - $t1) . " seconds.\n";
system("umount", DEV) == 0 or die "umount failed!";
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When writing to a file we drop existing file extent items that cover the
write range and then add a new file extent item that represents that write
range.
Before this change we were doing a tree lookup to remove the file extent
items, and then after we did another tree lookup to insert the new file
extent item.
Most of the time all the file extent items we need to drop are located
within a single leaf - this is the leaf where our new file extent item ends
up at. Therefore, in this common case just combine these 2 operations into
a single one.
By avoiding the second btree navigation for insertion of the new file extent
item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf
COW operations, CPU time on btree node/leaf key binary searches, etc.
Besides for file writes, this is an operation that happens for file fsync's
as well. However log btrees are much less likely to big as big as regular
fs btrees, therefore the impact of this change is smaller.
The following benchmark was performed against an SSD drive and a
HDD drive, both for random and sequential writes:
sysbench --test=fileio --file-num=4096 --file-total-size=8G \
--file-test-mode=[rndwr|seqwr] --num-threads=512 \
--file-block-size=8192 \ --max-requests=1000000 \
--file-fsync-freq=0 --file-io-mode=sync [prepare|run]
All results below are averages of 10 runs of the respective test.
** SSD sequential writes
Before this change: 225.88 Mb/sec
After this change: 277.26 Mb/sec
** SSD random writes
Before this change: 49.91 Mb/sec
After this change: 56.39 Mb/sec
** HDD sequential writes
Before this change: 68.53 Mb/sec
After this change: 69.87 Mb/sec
** HDD random writes
Before this change: 13.04 Mb/sec
After this change: 14.39 Mb/sec
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We may return early in btrfs_drop_snapshot(), we shouldn't
call btrfs_std_err() for this case, fix it.
Cc: stable@vger.kernel.org
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We will finish orphan cleanups during snapshot, so we don't
have to commit transaction here.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We should gurantee that parent and clone roots can not be destroyed
during send, for this we have two ideas.
1.by holding @subvol_sem, this might be a nightmare, because it will
block all subvolumes deletion for a long time.
2.Miao pointed out we can reuse @send_in_progress, that mean we will
skip snapshot deletion if root sending is in progress.
Here we adopt the second approach since it won't block other subvolumes
deletion for a long time.
Besides in btrfs_clean_one_deleted_snapshot(), we only check first root
, if this root is involved in send, we return directly rather than
continue to check.There are several reasons about it:
1.this case happen seldomly.
2.after sending,cleaner thread can continue to drop that root.
3.make code simple
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
# mkfs.btrfs -f /dev/sda8
# mount /dev/sda8 /mnt
# btrfs sub snapshot -r /mnt /mnt/snap1
# btrfs sub snapshot -r /mnt /mnt/snap2
# btrfs send /mnt/snap1 -p /mnt/snap2 -f /mnt/1
# dmesg
The problem is that we will sort clone roots(include @send_root), it
might push @send_root before thus @send_root's @send_in_progress will
be decreased twice.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add treelog mount option to enable tree log with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add datasum mount option to enable checksum with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add datacow mount option to enable copy-on-write with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add acl mount option to enable acl with remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add noflushoncommit mount option to disable flush on commit with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add noenospc_debug mount option to disable ENOSPC debug with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add nodiscard mount option to disable discard with remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs has autodefrag mount option but no pairing noautodefrag option,
which makes it impossible to disable autodefrag without umount.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs can be remounted without barrier, but there is no "barrier" option
so nobody can remount btrfs back with barrier on. Only umount and
mount again can re-enable barrier.(Quite awkward)
Also the mount options in the document is also changed slightly for the
further pairing options changes.
Reported-by: Daniel Blueman <daniel@quora.org>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Mike Fleetwood <mike.fleetwood@googlemail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We only intent to fua the first superblock in every device from
comments, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
@full is not protected within global_rsv.lock, so we may think global_rsv
is already full but in fact it's not, so we miss the opportunity to return
free space to global_rsv directly when we release other block_rsvs.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
During balance test, we hit an oops:
[ 2013.841551] kernel BUG at fs/btrfs/relocation.c:1174!
The problem is that if we fail to relocate tree blocks, we should
update backref cache, otherwise, some pending nodes are not updated
while snapshot check @cache->last_trans is within one transaction
and won't update it and then oops happen.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The following warning message was outputed when running the 274th case
of xfstests with nodatacow option:
BUG: Bad page state in process kswapd0 pfn:1c66f
page:ffffea0000636848 count:0 mapcount:0 mapping:(null) index:0x78000
page flags: 0x1000000000100a(error|uptodate|private_2)
It is because the check of nocow range was wrong, we should compare the
start and end position of the extent with the write position to verify
if the write position was in the extent, but the current code just used
the start postion to do the check, so we got the wrong extent and told
the caller that it was a nocow write. And then when we write back the
dirty pages, we found we should cow the extent, but at that time, there
was no space in the fs, we had to the error flag for the page. When
someone reclaimed that page, the above warning outputed. Fix it.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Previously, we will free reloc root memory and then force filesystem
to be readonly. The problem is that there may be another thread commiting
transaction which will try to access freed reloc root during merging reloc
roots process.
To keep consistency snapshots shared space, we should allow snapshot
finished if possible, so here we don't free reloc root memory.
signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
@nr is no longer used, remove it from select_reloc_root()
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we do a btree search with the goal of updating an existing item
without changing its size (ins_len == 0 and cow == 1), then we never
need to hold locks on upper level nodes (even when slot == 0) after we
COW their child nodes/leaves, as we won't have node splits or merges
in this scenario (that is, no key additions, removals or shifts on any
nodes or leaves).
Therefore release the locks immediately after COWing the child nodes/leaves
while navigating the btree, even if their parent slot is 0, instead of
returning a path to the caller with those nodes locked, which would get
released only when the caller releases or frees the path (or if it calls
btrfs_unlock_up_safe).
This is a common scenario, for example when updating inode items in fs
trees and block group items in the extent tree.
The following benchmarks were performed on a quad core machine with 32Gb
of ram, using a leaf/node size of 4Kb (to generate deeper fs trees more
quickly).
sysbench --test=fileio --file-num=131072 --file-total-size=8G \
--file-test-mode=seqwr --num-threads=512 --file-block-size=8192 \
--max-requests=100000 --file-io-mode=sync [prepare|run]
Before this change: 49.85Mb/s (average of 5 runs)
After this change: 50.38Mb/s (average of 5 runs)
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The local variable 'new_size' comes from userspace. If a large number
was passed, there would be an integer overflow in the following line:
new_size = old_size + new_size;
Signed-off-by: Wenliang Fan <fanwlexca@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can starve out the transaction commit with a bunch of caching threads all
running at the same time. This is because we will only drop the
extent_commit_sem if we need_resched(), which isn't likely to happen since we
will be reading a lot from the disk so have already schedule()'ed plenty. Alex
observed that he could starve out a transaction commit for up to a minute with
32 caching threads all running at once. This will allow us to drop the
extent_commit_sem to allow the transaction commit to swap the commit_root out
and then all the cachers will start back up. Here is an explanation provided by
Igno
So, just to fill in what happens in this loop:
mutex_unlock(&caching_ctl->mutex);
cond_resched();
goto again;
where 'again:' takes caching_ctl->mutex and fs_info->extent_commit_sem
again:
again:
mutex_lock(&caching_ctl->mutex);
/* need to make sure the commit_root doesn't disappear */
down_read(&fs_info->extent_commit_sem);
So, if I'm reading the code correct, there can be a fair amount of
concurrency here: there may be multiple 'caching kthreads' per filesystem
active, while there's one fs_info->extent_commit_sem per filesystem
AFAICS.
So, what happens if there are a lot of CPUs all busy holding the
->extent_commit_sem rwsem read-locked and a writer arrives? They'd all
rush to try to release the fs_info->extent_commit_sem, and they'd block in
the down_read() because there's a writer waiting.
So there's a guarantee of forward progress. This should answer akpm's
concern I think.
Thanks,
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
The inode reference item is close to inode item, so we insert it simultaneously
with the inode item insertion when we create a file/directory.. In fact, we also
can handle the inode reference deletion by the same way. So we made this patch to
introduce the delayed inode reference deletion for the single link inode(At most
case, the file doesn't has hard link, so we don't take the hard link into account).
This function is based on the delayed inode mechanism. After applying this patch,
we can reduce the time of the file/directory deletion by ~10%.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Two reasons:
- btrfs_end_transaction_dmeta() is the same as btrfs_end_transaction_throttle()
so it is unnecessary.
- All the delayed items should be dealt in the current transaction, so the
workers should not commit the transaction, instead, deal with the delayed
items as many as possible.
So we can remove btrfs_end_transaction_dmeta()
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
- move the condition check for wait into a function
- use wait_event_interruptible instead of prepare-schedule-finish process
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the number of the delayed items is greater than the upper limit, we will
try to flush all the delayed items. After that, it is unnecessary to run
them again because they are being dealt with by the wokers or the number of
them is less than the lower limit.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Before applying the patch
commit de3cb945db
title: Btrfs: improve the delayed inode throttling
We need requeue the async work after the current work was done, it
introduced a deadlock problem. So we wrote the code that this patch
removes to avoid the above problem. But after applying the above
patch, the deadlock problem didn't exist. So we should remove that
fix code.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Convert all applicable cases of printk and pr_* to the btrfs_* macros.
Fix all uses of the BTRFS prefix.
Signed-off-by: Frank Holton <fholton@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
While running the test btrfs/004 from xfstests in a loop, it failed
about 1 time out of 20 runs in my desktop. The failure happened in
the backref walking part of the test, and the test's error message was
like this:
btrfs/004 93s ... [failed, exit status 1] - output mismatch (see /home/fdmanana/git/hub/xfstests_2/results//btrfs/004.out.bad)
--- tests/btrfs/004.out 2013-11-26 18:25:29.263333714 +0000
+++ /home/fdmanana/git/hub/xfstests_2/results//btrfs/004.out.bad 2013-12-10 15:25:10.327518516 +0000
@@ -1,3 +1,8 @@
QA output created by 004
*** test backref walking
-*** done
+unexpected output from
+ /home/fdmanana/git/hub/btrfs-progs/btrfs inspect-internal logical-resolve -P 141512704 /home/fdmanana/btrfs-tests/scratch_1
+expected inum: 405, expected address: 454656, file: /home/fdmanana/btrfs-tests/scratch_1/snap1/p0/d6/d3d/d156/fce, got:
+
...
(Run 'diff -u tests/btrfs/004.out /home/fdmanana/git/hub/xfstests_2/results//btrfs/004.out.bad' to see the entire diff)
Ran: btrfs/004
Failures: btrfs/004
Failed 1 of 1 tests
But immediately after the test finished, the btrfs inspect-internal command
returned the expected output:
$ btrfs inspect-internal logical-resolve -P 141512704 /home/fdmanana/btrfs-tests/scratch_1
inode 405 offset 454656 root 258
inode 405 offset 454656 root 5
It turned out this was because the btrfs_search_old_slot() calls performed
during backref walking (backref.c:__resolve_indirect_ref) were not finding
anything. The reason for this turned out to be that the tree mod logging
code was not logging some node multi-step operations atomically, therefore
btrfs_search_old_slot() callers iterated often over an incomplete tree that
wasn't fully consistent with any tree state from the past. Besides missing
items, this often (but not always) resulted in -EIO errors during old slot
searches, reported in dmesg like this:
[ 4299.933936] ------------[ cut here ]------------
[ 4299.933949] WARNING: CPU: 0 PID: 23190 at fs/btrfs/ctree.c:1343 btrfs_search_old_slot+0x57b/0xab0 [btrfs]()
[ 4299.933950] Modules linked in: btrfs raid6_pq xor pci_stub vboxpci(O) vboxnetadp(O) vboxnetflt(O) vboxdrv(O) bnep rfcomm bluetooth parport_pc ppdev binfmt_misc joydev snd_hda_codec_h
[ 4299.933977] CPU: 0 PID: 23190 Comm: btrfs Tainted: G W O 3.12.0-fdm-btrfs-next-16+ #70
[ 4299.933978] Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./Z77 Pro4, BIOS P1.50 09/04/2012
[ 4299.933979] 000000000000053f ffff8806f3fd98f8 ffffffff8176d284 0000000000000007
[ 4299.933982] 0000000000000000 ffff8806f3fd9938 ffffffff8104a81c ffff880659c64b70
[ 4299.933984] ffff880659c643d0 ffff8806599233d8 ffff880701e2e938 0000160000000000
[ 4299.933987] Call Trace:
[ 4299.933991] [<ffffffff8176d284>] dump_stack+0x55/0x76
[ 4299.933994] [<ffffffff8104a81c>] warn_slowpath_common+0x8c/0xc0
[ 4299.933997] [<ffffffff8104a86a>] warn_slowpath_null+0x1a/0x20
[ 4299.934003] [<ffffffffa065d3bb>] btrfs_search_old_slot+0x57b/0xab0 [btrfs]
[ 4299.934005] [<ffffffff81775f3b>] ? _raw_read_unlock+0x2b/0x50
[ 4299.934010] [<ffffffffa0655001>] ? __tree_mod_log_search+0x81/0xc0 [btrfs]
[ 4299.934019] [<ffffffffa06dd9b0>] __resolve_indirect_refs+0x130/0x5f0 [btrfs]
[ 4299.934027] [<ffffffffa06a21f1>] ? free_extent_buffer+0x61/0xc0 [btrfs]
[ 4299.934034] [<ffffffffa06de39c>] find_parent_nodes+0x1fc/0xe40 [btrfs]
[ 4299.934042] [<ffffffffa06b13e0>] ? defrag_lookup_extent+0xe0/0xe0 [btrfs]
[ 4299.934048] [<ffffffffa06b13e0>] ? defrag_lookup_extent+0xe0/0xe0 [btrfs]
[ 4299.934056] [<ffffffffa06df980>] iterate_extent_inodes+0xe0/0x250 [btrfs]
[ 4299.934058] [<ffffffff817762db>] ? _raw_spin_unlock+0x2b/0x50
[ 4299.934065] [<ffffffffa06dfb82>] iterate_inodes_from_logical+0x92/0xb0 [btrfs]
[ 4299.934071] [<ffffffffa06b13e0>] ? defrag_lookup_extent+0xe0/0xe0 [btrfs]
[ 4299.934078] [<ffffffffa06b7015>] btrfs_ioctl+0xf65/0x1f60 [btrfs]
[ 4299.934080] [<ffffffff811658b8>] ? handle_mm_fault+0x278/0xb00
[ 4299.934083] [<ffffffff81075563>] ? up_read+0x23/0x40
[ 4299.934085] [<ffffffff8177a41c>] ? __do_page_fault+0x20c/0x5a0
[ 4299.934088] [<ffffffff811b2946>] do_vfs_ioctl+0x96/0x570
[ 4299.934090] [<ffffffff81776e23>] ? error_sti+0x5/0x6
[ 4299.934093] [<ffffffff810b71e8>] ? trace_hardirqs_off_caller+0x28/0xd0
[ 4299.934096] [<ffffffff81776a09>] ? retint_swapgs+0xe/0x13
[ 4299.934098] [<ffffffff811b2eb1>] SyS_ioctl+0x91/0xb0
[ 4299.934100] [<ffffffff813eecde>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 4299.934102] [<ffffffff8177ef12>] system_call_fastpath+0x16/0x1b
[ 4299.934102] [<ffffffff8177ef12>] system_call_fastpath+0x16/0x1b
[ 4299.934104] ---[ end trace 48f0cfc902491414 ]---
[ 4299.934378] btrfs bad fsid on block 0
These tree mod log operations that must be performed atomically, tree_mod_log_free_eb,
tree_mod_log_eb_copy, tree_mod_log_insert_root and tree_mod_log_insert_move, used to
be performed atomically before the following commit:
c8cc634165
(Btrfs: stop using GFP_ATOMIC for the tree mod log allocations)
That change removed the atomicity of such operations. This patch restores the
atomicity while still not doing the GFP_ATOMIC allocations of tree_mod_elem
structures, so it has to do the allocations using GFP_NOFS before acquiring
the mod log lock.
This issue has been experienced by several users recently, such as for example:
http://www.spinics.net/lists/linux-btrfs/msg28574.html
After running the btrfs/004 test for 679 consecutive iterations with this
patch applied, I didn't ran into the issue anymore.
Cc: stable@vger.kernel.org
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Warn if the balance goes below zero, which appears to be unlikely
though. Otherwise cleans up the code a bit.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since daivd did the work that force us to use readonly snapshot,
we can safely remove transaction protection from btrfs send.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We met the following oops when doing space balance:
kobject (ffff88081b590278): tried to init an initialized object, something is seriously wrong.
...
Call Trace:
[<ffffffff81937262>] dump_stack+0x49/0x5f
[<ffffffff8137d259>] kobject_init+0x89/0xa0
[<ffffffff8137d36a>] kobject_init_and_add+0x2a/0x70
[<ffffffffa009bd79>] ? clear_extent_bit+0x199/0x470 [btrfs]
[<ffffffffa005e82c>] __link_block_group+0xfc/0x120 [btrfs]
[<ffffffffa006b9db>] btrfs_make_block_group+0x24b/0x370 [btrfs]
[<ffffffffa00a899b>] __btrfs_alloc_chunk+0x54b/0x7e0 [btrfs]
[<ffffffffa00a8c6f>] btrfs_alloc_chunk+0x3f/0x50 [btrfs]
[<ffffffffa0060123>] do_chunk_alloc+0x363/0x440 [btrfs]
[<ffffffffa00633d4>] btrfs_check_data_free_space+0x104/0x310 [btrfs]
[<ffffffffa0069f4d>] btrfs_write_dirty_block_groups+0x48d/0x600 [btrfs]
[<ffffffffa007aad4>] commit_cowonly_roots+0x184/0x250 [btrfs]
...
Steps to reproduce:
# mkfs.btrfs -f <dev>
# mount -o nospace_cache <dev> <mnt>
# btrfs balance start <mnt>
# dd if=/dev/zero of=<mnt>/tmpfile bs=1M count=1
The reason of this problem is that we initialized the raid kobject when we added
a block group into a empty raid list. As we know, when we mounted a btrfs filesystem,
the raid list was empty, we would initialize the raid kobject when we added the first
block group. But if there was not data stored in the block group, the block group
would be freed when doing balance, and the raid list would be empty. And then if we
allocated a new block group and added it into the raid list, we would initialize
the raid kobject again, the oops happened.
Fix this problem by initializing the raid kobject just when mounting the fs.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reported-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
All the subvolues that are involved in send must be read-only during the
whole operation. The ioctl SUBVOL_SETFLAGS could be used to change the
status to read-write and the result of send stream is undefined if the
data change unexpectedly.
Fix that by adding a refcount for all involved roots and verify that
there's no send in progress during SUBVOL_SETFLAGS ioctl call that does
read-only -> read-write transition.
We need refcounts because there are no restrictions on number of send
parallel operations currently run on a single subvolume, be it source,
parent or one of the multiple clone sources.
Kernel is silent when the RO checks fail and returns EPERM. The same set
of checks is done already in userspace before send starts.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Unused since ed2590953b
"Btrfs: stop using vfs_read in send".
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Remove ifdefed code:
- tlv_put for 8, 16 and 32, add a generic tempalte if needed in future
- tlv_put_timespec - the btrfs_timespec fields are used
- fs_path_remove obsoleted long ago
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
While running btrfs/004 from xfstests, after 503 iterations, dmesg reported
a deadlock between tasks iterating inode refs and tasks running delayed inodes
(during a transaction commit).
It turns out that iterating inode refs implies doing one tree search and
release all nodes in the path except the leaf node, and then passing that
leaf node to btrfs_ref_to_path(), which in turn does another tree search
without releasing the lock on the leaf node it received as parameter.
This is a problem when other task wants to write to the btree as well and
ends up updating the leaf that is read locked - the writer task locks the
parent of the leaf and then blocks waiting for the leaf's lock to be
released - at the same time, the task executing btrfs_ref_to_path()
does a second tree search, without releasing the lock on the first leaf,
and wants to access a leaf (the same or another one) that is a child of
the same parent, resulting in a deadlock.
The trace reported by lockdep follows.
[84314.936373] INFO: task fsstress:11930 blocked for more than 120 seconds.
[84314.936381] Tainted: G W O 3.12.0-fdm-btrfs-next-16+ #70
[84314.936383] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[84314.936386] fsstress D ffff8806e1bf8000 0 11930 11926 0x00000000
[84314.936393] ffff8804d6d89b78 0000000000000046 ffff8804d6d89b18 ffffffff810bd8bd
[84314.936399] ffff8806e1bf8000 ffff8804d6d89fd8 ffff8804d6d89fd8 ffff8804d6d89fd8
[84314.936405] ffff880806308000 ffff8806e1bf8000 ffff8804d6d89c08 ffff8804deb8f190
[84314.936410] Call Trace:
[84314.936421] [<ffffffff810bd8bd>] ? trace_hardirqs_on+0xd/0x10
[84314.936428] [<ffffffff81774269>] schedule+0x29/0x70
[84314.936451] [<ffffffffa0715bf5>] btrfs_tree_lock+0x75/0x270 [btrfs]
[84314.936457] [<ffffffff810715c0>] ? __init_waitqueue_head+0x60/0x60
[84314.936470] [<ffffffffa06ba231>] btrfs_search_slot+0x7f1/0x930 [btrfs]
[84314.936489] [<ffffffffa0731c2a>] ? __btrfs_run_delayed_items+0x13a/0x1e0 [btrfs]
[84314.936504] [<ffffffffa06d2e1f>] btrfs_lookup_inode+0x2f/0xa0 [btrfs]
[84314.936510] [<ffffffff810bd6ef>] ? trace_hardirqs_on_caller+0x1f/0x1e0
[84314.936528] [<ffffffffa073173c>] __btrfs_update_delayed_inode+0x4c/0x1d0 [btrfs]
[84314.936543] [<ffffffffa0731c2a>] ? __btrfs_run_delayed_items+0x13a/0x1e0 [btrfs]
[84314.936558] [<ffffffffa0731c2a>] ? __btrfs_run_delayed_items+0x13a/0x1e0 [btrfs]
[84314.936573] [<ffffffffa0731c82>] __btrfs_run_delayed_items+0x192/0x1e0 [btrfs]
[84314.936589] [<ffffffffa0731d03>] btrfs_run_delayed_items+0x13/0x20 [btrfs]
[84314.936604] [<ffffffffa06dbcd4>] btrfs_flush_all_pending_stuffs+0x24/0x80 [btrfs]
[84314.936620] [<ffffffffa06ddc13>] btrfs_commit_transaction+0x223/0xa20 [btrfs]
[84314.936630] [<ffffffffa06ae5ae>] btrfs_sync_fs+0x6e/0x110 [btrfs]
[84314.936635] [<ffffffff811d0b50>] ? __sync_filesystem+0x60/0x60
[84314.936639] [<ffffffff811d0b50>] ? __sync_filesystem+0x60/0x60
[84314.936643] [<ffffffff811d0b70>] sync_fs_one_sb+0x20/0x30
[84314.936648] [<ffffffff811a3541>] iterate_supers+0xf1/0x100
[84314.936652] [<ffffffff811d0c45>] sys_sync+0x55/0x90
[84314.936658] [<ffffffff8177ef12>] system_call_fastpath+0x16/0x1b
[84314.936660] INFO: lockdep is turned off.
[84314.936663] INFO: task btrfs:11955 blocked for more than 120 seconds.
[84314.936666] Tainted: G W O 3.12.0-fdm-btrfs-next-16+ #70
[84314.936668] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[84314.936670] btrfs D ffff880541729a88 0 11955 11608 0x00000000
[84314.936674] ffff880541729a38 0000000000000046 ffff8805417299d8 ffffffff810bd8bd
[84314.936680] ffff88075430c8a0 ffff880541729fd8 ffff880541729fd8 ffff880541729fd8
[84314.936685] ffffffff81c104e0 ffff88075430c8a0 ffff8804de8b00b8 ffff8804de8b0000
[84314.936690] Call Trace:
[84314.936695] [<ffffffff810bd8bd>] ? trace_hardirqs_on+0xd/0x10
[84314.936700] [<ffffffff81774269>] schedule+0x29/0x70
[84314.936717] [<ffffffffa0715815>] btrfs_tree_read_lock+0xd5/0x140 [btrfs]
[84314.936721] [<ffffffff810715c0>] ? __init_waitqueue_head+0x60/0x60
[84314.936733] [<ffffffffa06ba201>] btrfs_search_slot+0x7c1/0x930 [btrfs]
[84314.936746] [<ffffffffa06bd505>] btrfs_find_item+0x55/0x160 [btrfs]
[84314.936763] [<ffffffffa06ff689>] ? free_extent_buffer+0x49/0xc0 [btrfs]
[84314.936780] [<ffffffffa073c9ca>] btrfs_ref_to_path+0xba/0x1e0 [btrfs]
[84314.936797] [<ffffffffa06f9719>] ? release_extent_buffer+0xb9/0xe0 [btrfs]
[84314.936813] [<ffffffffa06ff689>] ? free_extent_buffer+0x49/0xc0 [btrfs]
[84314.936830] [<ffffffffa073cb50>] inode_to_path+0x60/0xd0 [btrfs]
[84314.936846] [<ffffffffa073d365>] paths_from_inode+0x115/0x3c0 [btrfs]
[84314.936851] [<ffffffff8118dd44>] ? kmem_cache_alloc_trace+0x114/0x200
[84314.936868] [<ffffffffa0714494>] btrfs_ioctl+0xf14/0x2030 [btrfs]
[84314.936873] [<ffffffff817762db>] ? _raw_spin_unlock+0x2b/0x50
[84314.936877] [<ffffffff8116598f>] ? handle_mm_fault+0x34f/0xb00
[84314.936882] [<ffffffff81075563>] ? up_read+0x23/0x40
[84314.936886] [<ffffffff8177a41c>] ? __do_page_fault+0x20c/0x5a0
[84314.936892] [<ffffffff811b2946>] do_vfs_ioctl+0x96/0x570
[84314.936896] [<ffffffff81776e23>] ? error_sti+0x5/0x6
[84314.936901] [<ffffffff810b71e8>] ? trace_hardirqs_off_caller+0x28/0xd0
[84314.936906] [<ffffffff81776a09>] ? retint_swapgs+0xe/0x13
[84314.936910] [<ffffffff811b2eb1>] SyS_ioctl+0x91/0xb0
[84314.936915] [<ffffffff813eecde>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[84314.936920] [<ffffffff8177ef12>] system_call_fastpath+0x16/0x1b
[84314.936922] INFO: lockdep is turned off.
[84434.866873] INFO: task btrfs-transacti:11921 blocked for more than 120 seconds.
[84434.866881] Tainted: G W O 3.12.0-fdm-btrfs-next-16+ #70
[84434.866883] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[84434.866886] btrfs-transacti D ffff880755b6a478 0 11921 2 0x00000000
[84434.866893] ffff8800735b9ce8 0000000000000046 ffff8800735b9c88 ffffffff810bd8bd
[84434.866899] ffff8805a1b848a0 ffff8800735b9fd8 ffff8800735b9fd8 ffff8800735b9fd8
[84434.866904] ffffffff81c104e0 ffff8805a1b848a0 ffff880755b6a478 ffff8804cece78f0
[84434.866910] Call Trace:
[84434.866920] [<ffffffff810bd8bd>] ? trace_hardirqs_on+0xd/0x10
[84434.866927] [<ffffffff81774269>] schedule+0x29/0x70
[84434.866948] [<ffffffffa06dd2ef>] wait_current_trans.isra.33+0xbf/0x120 [btrfs]
[84434.866954] [<ffffffff810715c0>] ? __init_waitqueue_head+0x60/0x60
[84434.866970] [<ffffffffa06dec18>] start_transaction+0x388/0x5a0 [btrfs]
[84434.866985] [<ffffffffa06db9b5>] ? transaction_kthread+0xb5/0x280 [btrfs]
[84434.866999] [<ffffffffa06dee97>] btrfs_attach_transaction+0x17/0x20 [btrfs]
[84434.867012] [<ffffffffa06dba9e>] transaction_kthread+0x19e/0x280 [btrfs]
[84434.867026] [<ffffffffa06db900>] ? open_ctree+0x2260/0x2260 [btrfs]
[84434.867030] [<ffffffff81070dad>] kthread+0xed/0x100
[84434.867035] [<ffffffff81070cc0>] ? flush_kthread_worker+0x190/0x190
[84434.867040] [<ffffffff8177ee6c>] ret_from_fork+0x7c/0xb0
[84434.867044] [<ffffffff81070cc0>] ? flush_kthread_worker+0x190/0x190
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Chris introduced hleper function read_csums() and this function
has been removed, but we forgot to remove its corresponding comments.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
It's not used anywhere, so just drop it.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
fs/btrfs/file.c: In function ‘prepare_pages.isra.18’:
fs/btrfs/file.c:1265:6: warning: ‘err’ may be used uninitialized in this function [-Wuninitialized]
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have commited transaction before, remove redundant filemap writting and
waiting here, it can speed up balance relocation process.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Clean up btrfs_lookup_dentry() to never return NULL, but PTR_ERR(-ENOENT)
instead. This keeps the return value convention consistent.
Callers who use btrfs_lookup_dentry() require a trivial update.
create_snapshot() in particular looks like it can also lose a BUG_ON(!inode)
which is not really needed - there seems less harm in returning ENOENT to
userspace at that point in the stack than there is to crash the machine.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
In ctree.c:tree_mod_log_set_node_key() we were calling
__tree_mod_log_insert_key() even when the modification doesn't need
to be logged. This would allocate a tree_mod_elem structure, fill it
and pass it to __tree_mod_log_insert(), which would just acquire
the tree mod log write lock and then free the tree_mod_elem structure
and return (that is, a no-op).
Therefore call tree_mod_log_insert() instead of __tree_mod_log_insert()
which just returns immediately if the modification doesn't need to be
logged (without allocating the structure, fill it, acquire write lock,
free structure).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
I need to create a fake tree to test qgroups and I don't want to have to setup a
fake btree_inode. The fact is we only use the radix tree for the fs_info, so
everybody else who allocates an extent_io_tree is just wasting the space anyway.
This patch moves the radix tree and its lock into btrfs_fs_info so there is less
stuff I have to fake to do qgroup sanity tests. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
For creating a dummy in-memory btree I need to be able to use the radix tree to
keep track of the buffers like normal extent buffers. With dummy buffers we
skip the radix tree step, and we still want to do that for the tree mod log
dummy buffers but for my test buffers we need to be able to remove them from the
radix tree like normal. This will give me a way to do that. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
I need to add infrastructure to allocate dummy extent buffers for running sanity
tests, and to do this I need to not have to worry about having an
address_mapping for an io_tree, so just fix up the places where we assume that
all io_tree's have a non-NULL ->mapping. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently when finding the leaf to insert a key into a btree, if the
leaf doesn't have enough space to store the item we attempt to move
off some items from our leaf to its right neighbor leaf, and if this
fails to create enough free space in our leaf, we try to move off more
items to the left neighbor leaf as well.
When trying to move off items to the right neighbor leaf, if it has
enough room to store the new key but not not enough room to move off
at least one item from our target leaf, __push_leaf_right returns 1 and
we have to attempt to move items to the left neighbor (push_leaf_left
function) without touching the right neighbor leaf.
For the case where the right leaf has enough room to store at least 1
item from our leaf, we end up modifying (and dirtying) both our leaf
and the right leaf. This is non-optimal for the case where the new key
is greater than any key in our target leaf because it can be inserted at
slot 0 of the right neighbor leaf and we don't need to touch our leaf
at all nor to attempt to move off items to the left neighbor leaf.
Therefore this change just selects the right neighbor leaf as our new
target leaf if it has enough room for the new key without modifying our
initial target leaf - we do this only if the new key is higher than any
key in the initial target leaf.
While running the following test, push_leaf_right was called by split_leaf
4802 times. Out of those 4802 calls, for 2571 calls (53.5%) we hit this
special case (right leaf has enough room and new key is higher than any key
in the initial target leaf).
Test:
sysbench --test=fileio --file-num=512 --file-total-size=5G \
--file-test-mode=[seqwr|rndwr] --num-threads=512 --file-block-size=8192 \
--max-requests=100000 --file-io-mode=sync [prepare|run]
Results:
sequential writes
Throughput before this change: 65.71Mb/sec (average of 10 runs)
Throughput after this change: 66.58Mb/sec (average of 10 runs)
random writes
Throughput before this change: 10.75Mb/sec (average of 10 runs)
Throughput after this change: 11.56Mb/sec (average of 10 runs)
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Just wrap same code into one function scrub_blocked_if_needed().
This make a change that we will move waiting (@workers_pending = 0)
before we can wake up commiting transaction(atomic_inc(@scrub_paused)),
we must take carefully to not deadlock here.
Thread 1 Thread 2
|->btrfs_commit_transaction()
|->set trans type(COMMIT_DOING)
|->btrfs_scrub_paused()(blocked)
|->join_transaction(blocked)
Move btrfs_scrub_paused() before setting trans type which means we can
still join a transaction when commiting_transaction is blocked.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Suggested-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We came a race condition when scrubbing superblocks, the story is:
In commiting transaction, we will update @last_trans_commited after
writting superblocks, if scrubber start after writting superblocks
and before updating @last_trans_commited, generation mismatch happens!
We fix this by checking @scrub_pause_req, and we won't start a srubber
until commiting transaction is finished.(after btrfs_scrub_continue()
finished.)
Reported-by: Sebastian Ochmann <ochmann@informatik.uni-bonn.de>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
fs/btrfs/send.c:2190:9: warning: incorrect type in argument 3 (different base types)
fs/btrfs/send.c:2190:9: expected unsigned long long [unsigned] [usertype] value
fs/btrfs/send.c:2190:9: got restricted __le64 [usertype] ctransid
fs/btrfs/send.c:2195:17: warning: incorrect type in argument 3 (different base types)
fs/btrfs/send.c:2195:17: expected unsigned long long [unsigned] [usertype] value
fs/btrfs/send.c:2195:17: got restricted __le64 [usertype] ctransid
fs/btrfs/send.c:3716:9: warning: incorrect type in argument 3 (different base types)
fs/btrfs/send.c:3716:9: expected unsigned long long [unsigned] [usertype] value
fs/btrfs/send.c:3716:9: got restricted __le64 [usertype] ctransid
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When merging an extent_map with its right neighbor, increment
its block_len with the neighbor's block_len.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
[commit 8185554d: fix incorrect inode acl reset] introduced a dead
code by adding a condition which can never be true to an else
branch. The condition can never be true because it is already
checked by a previous if statement which causes function to return.
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Reviewed-By: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We were accounting for sizeof(struct btrfs_item) twice, once
in the data_size variable and another time in the if statement
below.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently we do 2 traversals of an inode's extent_io_tree
before inserting an extent state structure: 1 to see if a
matching extent state already exists and 1 to do the insertion
if the fist traversal didn't found such extent state.
This change just combines those tree traversals into a single one.
While running sysbench tests (random writes) I captured the number
of elements in extent_io_tree trees for a while (into a procfs file
backed by a seq_list from seq_file module) and got this histogram:
Count: 9310
Range: 51.000 - 21386.000; Mean: 11785.243; Median: 18743.500; Stddev: 8923.688
Percentiles: 90th: 20985.000; 95th: 21155.000; 99th: 21369.000
51.000 - 93.933: 693 ########
93.933 - 172.314: 938 ##########
172.314 - 315.408: 856 #########
315.408 - 576.646: 95 #
576.646 - 6415.830: 888 ##########
6415.830 - 11713.809: 1024 ###########
11713.809 - 21386.000: 4816 #####################################################
So traversing such trees can take some significant time that can
easily be avoided.
Ran the following sysbench tests, 5 times each, for sequential and
random writes, and got the following results:
sysbench --test=fileio --file-num=1 --file-total-size=2G \
--file-test-mode=seqwr --num-threads=16 --file-block-size=65536 \
--max-requests=0 --max-time=60 --file-io-mode=sync
sysbench --test=fileio --file-num=1 --file-total-size=2G \
--file-test-mode=rndwr --num-threads=16 --file-block-size=65536 \
--max-requests=0 --max-time=60 --file-io-mode=sync
Before this change:
sequential writes: 69.28Mb/sec (average of 5 runs)
random writes: 4.14Mb/sec (average of 5 runs)
After this change:
sequential writes: 69.91Mb/sec (average of 5 runs)
random writes: 5.69Mb/sec (average of 5 runs)
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we didn't find a matching extent state, we inserted a new one
but didn't cache it in the **cached_state parameter, which makes a
subsequent call do a tree lookup to get it.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Before this change, adding an extent map to the extent map tree of an
inode required 2 tree nevigations:
1) doing a tree navigation to search for an existing extent map starting
at the same offset or an extent map that overlaps the extent map we
want to insert;
2) Another tree navigation to add the extent map to the tree (if the
former tree search didn't found anything).
This change just merges these 2 steps into a single one.
While running first few btrfs xfstests I had noticed these trees easily
had a few hundred elements, and then with the following sysbench test it
reached over 1100 elements very often.
Test:
sysbench --test=fileio --file-num=32 --file-total-size=10G \
--file-test-mode=seqwr --num-threads=512 --file-block-size=8192 \
--max-requests=1000000 --file-io-mode=sync [prepare|run]
(fs created with mkfs.btrfs -l 4096 -f /dev/sdb3 before each sysbench
prepare phase)
Before this patch:
run 1 - 41.894Mb/sec
run 2 - 40.527Mb/sec
run 3 - 40.922Mb/sec
run 4 - 49.433Mb/sec
run 5 - 40.959Mb/sec
average - 42.75Mb/sec
After this patch:
run 1 - 48.036Mb/sec
run 2 - 50.21Mb/sec
run 3 - 50.929Mb/sec
run 4 - 46.881Mb/sec
run 5 - 53.192Mb/sec
average - 49.85Mb/sec
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When attempting to move items from our target leaf to its neighbor
leaves (right and left), we only need to free data_size - free_space
bytes from our leaf in order to add the new item (which has size of
data_size bytes). Therefore attempt to move items to the right and
left leaves if they have at least data_size - free_space bytes free,
instead of data_size bytes free.
After 5 runs of the following test, I got a smaller number of btree
node splits overall:
sysbench --test=fileio --file-num=512 --file-total-size=5G \
--file-test-mode=seqwr --num-threads=512 \
--file-block-size=8192 --max-requests=100000 --file-io-mode=sync
Before this change:
* 6171 splits (average of 5 test runs)
* 61.508Mb/sec of throughput (average of 5 test runs)
After this change:
* 6036 splits (average of 5 test runs)
* 63.533Mb/sec of throughput (average of 5 test runs)
An ideal test would not just have multiple threads/processes writing
to a file (insertion of file extent items) but also do other operations
that result in insertion of items with varied sizes, like file/directory
creations, creation of links, symlinks, xattrs, etc.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
After an ordered extent completes, don't blindly reset the
inode's ordered tree last accessed ordered extent pointer.
While running the xfstests I noticed that about 29% of the
time the ordered extent to which tree->last pointed was not
the same as our just completed ordered extent. After that I
ran the following sysbench test (after a prepare phase) and
noticed that about 68% of the time tree->last pointed to
a different ordered extent too.
sysbench --test=fileio --file-num=32 --file-total-size=4G \
--file-test-mode=rndwr --num-threads=512 \
--file-block-size=32768 --max-time=60 --max-requests=0 run
Therefore reset tree->last on ordered extent removal only if
it pointed to the ordered extent we're removing from the tree.
Results from 4 runs of the following test before and after
applying this patch:
$ sysbench --test=fileio --file-num=32 --file-total-size=4G \
--file-test-mode=seqwr --num-threads=512 \
--file-block-size=32768 --max-time=60 --file-io-mode=sync prepare
$ sysbench --test=fileio --file-num=32 --file-total-size=4G \
--file-test-mode=seqwr --num-threads=512 \
--file-block-size=32768 --max-time=60 --file-io-mode=sync run
Before this path:
run 1 - 64.049Mb/sec
run 2 - 63.455Mb/sec
run 3 - 64.656Mb/sec
run 4 - 63.833Mb/sec
After this patch:
run 1 - 66.149Mb/sec
run 2 - 68.459Mb/sec
run 3 - 66.338Mb/sec
run 4 - 66.176Mb/sec
With random writes (--file-test-mode=rndwr) I had huge fluctuations
on the results (+- 35% easily).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Filipe noticed that we were leaking the features attribute group
after umount. His fix of just calling sysfs_remove_group() wasn't enough
since that removes just the supported features and not the unsupported
features.
This patch changes the unknown feature handling to add them individually
so we can skip the kmalloc and uses the same iteration to tear them down
later.
We also fix the error handling during mount so that we catch the
failing creation of the per-super kobject, and handle proper teardown
of a half-setup sysfs context.
Tested properly with kmemleak enabled this time.
Reported-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Tested-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch fixes the following warnings:
fs/btrfs/extent-tree.c:6201:12: sparse: symbol 'get_raid_name' was not declared. Should it be static?
fs/btrfs/extent-tree.c:8430:9: error: format not a string literal and no format arguments [-Werror=format-security] get_raid_name(index));
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The inode eviction can be very slow, because during eviction we
tell the VFS to truncate all of the inode's pages. This results
in calls to btrfs_invalidatepage() which in turn does calls to
lock_extent_bits() and clear_extent_bit(). These calls result in
too many merges and splits of extent_state structures, which
consume a lot of time and cpu when the inode has many pages. In
some scenarios I have experienced umount times higher than 15
minutes, even when there's no pending IO (after a btrfs fs sync).
A quick way to reproduce this issue:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ cd /mnt/btrfs
$ sysbench --test=fileio --file-num=128 --file-total-size=16G \
--file-test-mode=seqwr --num-threads=128 \
--file-block-size=16384 --max-time=60 --max-requests=0 run
$ time btrfs fi sync .
FSSync '.'
real 0m25.457s
user 0m0.000s
sys 0m0.092s
$ cd ..
$ time umount /mnt/btrfs
real 1m38.234s
user 0m0.000s
sys 1m25.760s
The same test on ext4 runs much faster:
$ mkfs.ext4 /dev/sdb3
$ mount /dev/sdb3 /mnt/ext4
$ cd /mnt/ext4
$ sysbench --test=fileio --file-num=128 --file-total-size=16G \
--file-test-mode=seqwr --num-threads=128 \
--file-block-size=16384 --max-time=60 --max-requests=0 run
$ sync
$ cd ..
$ time umount /mnt/ext4
real 0m3.626s
user 0m0.004s
sys 0m3.012s
After this patch, the unmount (inode evictions) is much faster:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ cd /mnt/btrfs
$ sysbench --test=fileio --file-num=128 --file-total-size=16G \
--file-test-mode=seqwr --num-threads=128 \
--file-block-size=16384 --max-time=60 --max-requests=0 run
$ time btrfs fi sync .
FSSync '.'
real 0m26.774s
user 0m0.000s
sys 0m0.084s
$ cd ..
$ time umount /mnt/btrfs
real 0m1.811s
user 0m0.000s
sys 0m1.564s
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We hit a forever loop when doing balance relocation,the reason
is that we firstly reserve 4M(node size is 16k).and within transaction
we will try to add extra reservation for snapshot roots,this will
return -EAGAIN if there has been a thread flushing space to reserve
space.We will do this again and again with filesystem becoming nearly
full.
If the above '-EAGAIN' case happens, we try to refill reservation more
outsize of transaction, and this will return eariler in enospc case,however,
this dosen't really hurt because it makes no sense doing balance relocation
with the filesystem nearly full.
Miao Xie helped a lot to track this issue, thanks.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the ordered extent's last byte was 1 less than our region's
start byte, we would unnecessarily wait for the completion of
that ordered extent, because it doesn't intersect our target
range.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we ran sysbench on the fs with compression, the following WARN_ONs were
triggered:
fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents);
fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents);
fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes);
Steps to reproduce:
# mkfs.btrfs -f <dev>
# mount -o compress <dev> <mnt>
# cd <mnt>
# sysbench --test=fileio --num-threads=8 --file-total-size=8G \
> --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \
> --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \
> --file-test-mode=sync prepare
# cd -
# umount <mnt>
# mount -o compress <dev> <mnt>
# cd <mnt>
# sysbench --test=fileio --num-threads=8 --file-total-size=8G \
> --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \
> --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \
> --file-test-mode=sync run
# cd -
# umount <mnt>
The reason of this problem is:
Task0 Task1
btrfs_direct_IO
unlock(&inode->i_mutex)
lock(&inode->i_mutex)
reserve_space()
prepare_pages()
lock_extent()
clear_extent()
unlock_extent()
lock_extent()
test_extent(uptodate)
return false
copy_data()
set_delalloc_extent()
extent need compress
go back to buffered write
clear_extent(DELALLOC | DIRTY)
unlock_extent()
Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which
was set by task1, it made the dirty pages in that extents couldn't be flushed
into the disk, so the reserved space for that extent was not released at
the end.
This patch fixes the above bug by unlocking the extent after the delalloc.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
- the caller has gotten the inode object, needn't pass the file object.
And if so, we needn't define a inode pointer variant.
- the position should be aligned by the page size not sector size, so
we also needn't pass the root object into prepare_pages().
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We don't need to crash hard here, it's just reading a sysfs file. The
values considered in switch are from a fixed set, the default case
should not happen at all.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Added in patch "btrfs: add ability to change features via sysfs",
modifications to superblock don't need to reserve metadata blocks when
starting a transaction.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The kernel macro pr_debug is defined as a empty statement when DEBUG is
not defined. Make btrfs_debug match pr_debug to avoid spamming
the kernel log with debug messages
Signed-off-by: Frank Holton <fholton@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Found by uselex.rb:
> btrfs_get_inode_ref_index: [R]: exported from:
fs/btrfs/inode-item.o fs/btrfs/btrfs.o fs/btrfs/built-in.o
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Reviewed-by: David Stebra <dsterba@suse.cz>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
This is the third step in bootstrapping the btrfs_find_item interface.
The function find_orphan_item(), in orphan.c, is similar to the two
functions already replaced by the new interface. It uses two parameters,
which are already present in the interface, and is nearly identical to
the function brought in in the previous patch.
Replace the two calls to find_orphan_item() with calls to
btrfs_find_item(), with the defined objectid and type that was used
internally by find_orphan_item(), a null path, and a null key. Add a
test for a null path to btrfs_find_item, and if it passes, allocate and
free the path. Finally, remove find_orphan_item().
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch is the second step in bootstrapping the btrfs_find_item
interface. The btrfs_find_root_ref() is similar to the former
__inode_info(); it accepts four of its parameters, and duplicates the
first half of its functionality.
Replace the one former call to btrfs_find_root_ref() with a call to
btrfs_find_item(), along with the defined key type that was used
internally by btrfs_find_root ref, and a null found key. In
btrfs_find_item(), add a test for the null key at the place where
the functionality of btrfs_find_root_ref() ends; btrfs_find_item()
then returns if the test passes. Finally, remove btrfs_find_root_ref().
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Suggested-by: Zach Brown <zab@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
There are many btrfs functions that manually search the tree for an
item. They all reimplement the same mechanism and differ in the
conditions that they use to find the item. __inode_info() is one such
example. Zach Brown proposed creating a new interface to take the place
of these functions.
This patch is the first step to creating the interface. A new function,
btrfs_find_item, has been added to ctree.c and prototyped in ctree.h.
It is identical to __inode_info, except that the order of the parameters
has been rearranged to more closely those of similar functions elsewhere
in the code (now, root and path come first, then the objectid, offset
and type, and the key to be filled in last). __inode_info's callers have
been set to call this new function instead, and __inode_info itself has
been removed.
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Suggested-by: Zach Brown <zab@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Use otherwise unused local variables slot in update_qgroup_limit_item and
in update_qgroup_info_item, and remove unused variable ins from
btrfs_qgroup_account_ref.
Signed-off-by: Valentina Giusti <valentina.giusti@microon.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>