In case prot_numa, we are under down_read(mmap_sem). It's critical to
not clear pmd intermittently to avoid race with MADV_DONTNEED which is
also under down_read(mmap_sem):
CPU0: CPU1:
change_huge_pmd(prot_numa=1)
pmdp_huge_get_and_clear_notify()
madvise_dontneed()
zap_pmd_range()
pmd_trans_huge(*pmd) == 0 (without ptl)
// skip the pmd
set_pmd_at();
// pmd is re-established
The race makes MADV_DONTNEED miss the huge pmd and don't clear it
which may break userspace.
Found by code analysis, never saw triggered.
Link: http://lkml.kernel.org/r/20170302151034.27829-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "thp: fix few MADV_DONTNEED races"
For MADV_DONTNEED to work properly with huge pages, it's critical to not
clear pmd intermittently unless you hold down_write(mmap_sem).
Otherwise MADV_DONTNEED can miss the THP which can lead to userspace
breakage.
See example of such race in commit message of patch 2/4.
All these races are found by code inspection. I haven't seen them
triggered. I don't think it's worth to apply them to stable@.
This patch (of 4):
Restructure code in preparation for a fix.
Link: http://lkml.kernel.org/r/20170302151034.27829-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Setting thp defrag mode of "defer+madvise" actually sets "defer" in the
kernel due to the name similarity and the out-of-order way the string is
checked in defrag_store().
Check the string in the correct order so that
TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG is set appropriately for
"defer+madvise".
Fixes: 21440d7eb9 ("mm, thp: add new defer+madvise defrag option")
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1704051814420.137626@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge 5-level page table prep from Kirill Shutemov:
"Here's relatively low-risk part of 5-level paging patchset. Merging it
now will make x86 5-level paging enabling in v4.12 easier.
The first patch is actually x86-specific: detect 5-level paging
support. It boils down to single define.
The rest of patchset converts Linux MMU abstraction from 4- to 5-level
paging.
Enabling of new abstraction in most cases requires adding single line
of code in arch-specific code. The rest is taken care by asm-generic/.
Changes to mm/ code are mostly mechanical: add support for new page
table level -- p4d_t -- where we deal with pud_t now.
v2:
- fix build on microblaze (Michal);
- comment for __ARCH_HAS_5LEVEL_HACK in kasan_populate_zero_shadow();
- acks from Michal"
* emailed patches from Kirill A Shutemov <kirill.shutemov@linux.intel.com>:
mm: introduce __p4d_alloc()
mm: convert generic code to 5-level paging
asm-generic: introduce <asm-generic/pgtable-nop4d.h>
arch, mm: convert all architectures to use 5level-fixup.h
asm-generic: introduce __ARCH_USE_5LEVEL_HACK
asm-generic: introduce 5level-fixup.h
x86/cpufeature: Add 5-level paging detection
We added support for PUD-sized transparent hugepages, however we count
the event "thp split pud" into thp_split_pmd event.
To separate the event count of thp split pud from pmd, add a new event
named thp_split_pud.
Link: http://lkml.kernel.org/r/1488282380-5076-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert all non-architecture-specific code to 5-level paging.
It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are going to split <linux/sched/numa_balancing.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/numa_balancing.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/coredump.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/coredump.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are using the wrong flag value in task_numa_falt function. This can
result in us doing wrong numa fault statistics update, because we update
num_pages_migrate and numa_fault_locality etc based on the flag argument
passed.
Fixes: bae473a423 ("mm: introduce fault_env")
Link: http://lkml.kernel.org/r/1487498395-9544-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Numabalancing preserve write fix", v2.
This patch series address an issue w.r.t THP migration and autonuma
preserve write feature. migrate_misplaced_transhuge_page() cannot deal
with concurrent modification of the page. It does a page copy without
following the migration pte sequence. IIUC, this was done to keep the
migration simpler and at the time of implemenation we didn't had THP
page cache which would have required a more elaborate migration scheme.
That means thp autonuma migration expect the protnone with saved write
to be done such that both kernel and user cannot update the page
content. This patch series enables archs like ppc64 to do that. We are
good with the hash translation mode with the current code, because we
never create a hardware page table entry for a protnone pte.
This patch (of 2):
Autonuma preserves the write permission across numa fault to avoid
taking a writefault after a numa fault (Commit: b191f9b106 " mm: numa:
preserve PTE write permissions across a NUMA hinting fault").
Architecture can implement protnone in different ways and some may
choose to implement that by clearing Read/ Write/Exec bit of pte.
Setting the write bit on such pte can result in wrong behaviour. Fix
this up by allowing arch to override how to save the write bit on a
protnone pte.
[aneesh.kumar@linux.vnet.ibm.com: don't mark pte saved write in case of dirty_accountable]
Link: http://lkml.kernel.org/r/1487942884-16517-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
[aneesh.kumar@linux.vnet.ibm.com: v3]
Link: http://lkml.kernel.org/r/1487498625-10891-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1487050314-3892-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Michael Neuling <mikey@neuling.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <michaele@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For consistency, it worth converting all page_check_address() to
page_vma_mapped_walk(), so we could drop the former.
It also makes freeze_page() as we walk though rmap only once.
Link: http://lkml.kernel.org/r/20170129173858.45174-8-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a new interface to check if a page is mapped into a vma. It
aims to address shortcomings of page_check_address{,_transhuge}.
Existing interface is not able to handle PTE-mapped THPs: it only finds
the first PTE. The rest lefted unnoticed.
page_vma_mapped_walk() iterates over all possible mapping of the page in
the vma.
Link: http://lkml.kernel.org/r/20170129173858.45174-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current transparent hugepage code only supports PMDs. This patch
adds support for transparent use of PUDs with DAX. It does not include
support for anonymous pages. x86 support code also added.
Most of this patch simply parallels the work that was done for huge
PMDs. The only major difference is how the new ->pud_entry method in
mm_walk works. The ->pmd_entry method replaces the ->pte_entry method,
whereas the ->pud_entry method works along with either ->pmd_entry or
->pte_entry. The pagewalk code takes care of locking the PUD before
calling ->pud_walk, so handlers do not need to worry whether the PUD is
stable.
[dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()]
Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com
[dave.jiang@intel.com: native_pud_clear missing on i386 build]
Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no thp defrag option that currently allows MADV_HUGEPAGE
regions to do direct compaction and reclaim while all other thp
allocations simply trigger kswapd and kcompactd in the background and
fail immediately.
The "defer" setting simply triggers background reclaim and compaction
for all regions, regardless of MADV_HUGEPAGE, which makes it unusable
for our userspace where MADV_HUGEPAGE is being used to indicate the
application is willing to wait for work for thp memory to be available.
The "madvise" setting will do direct compaction and reclaim for these
MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the
background for anybody else.
For reasonable usage, there needs to be a mesh between the two options.
This patch introduces a fifth mode, "defer+madvise", that will do direct
reclaim and compaction for MADV_HUGEPAGE regions and trigger background
reclaim and compaction for everybody else so that hugepages may be
available in the near future.
A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE
regions as part of the "defer" mode, making it a very powerful setting
and avoids breaking userspace, was offered:
http://marc.info/?t=148236612700003
This additional mode is a compromise.
A second proposal to allow both "defer" and "madvise" to be selected at
the same time was also offered:
http://marc.info/?t=148357345300001.
This is possible, but there was a concern that it might break existing
userspaces the parse the output of the defrag mode, so the fifth option
was introduced instead.
This patch also cleans up the helper function for storing to "enabled"
and "defrag" since the former supports three modes while the latter
supports five and triple_flag_store() was getting unnecessarily messy.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 19be0eaffa ("mm: remove gup_flags FOLL_WRITE games from
__get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE
after a COW was resolved to setting the (newly introduced) FOLL_COW
instead. Simultaneously, the check in gup.c was updated to still allow
writes with FOLL_FORCE set if FOLL_COW had also been set.
However, a similar check in huge_memory.c was forgotten. As a result,
remote memory writes to ro regions of memory backed by transparent huge
pages cause an infinite loop in the kernel (handle_mm_fault sets
FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails
out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is
true.
While in this state the process is stil SIGKILLable, but little else
works (e.g. no ptrace attach, no other signals). This is easily
reproduced with the following code (assuming thp are set to always):
#include <assert.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#define TEST_SIZE 5 * 1024 * 1024
int main(void) {
int status;
pid_t child;
int fd = open("/proc/self/mem", O_RDWR);
void *addr = mmap(NULL, TEST_SIZE, PROT_READ,
MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);
assert(addr != MAP_FAILED);
pid_t parent_pid = getpid();
if ((child = fork()) == 0) {
void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);
assert(addr2 != MAP_FAILED);
memset(addr2, 'a', TEST_SIZE);
pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr);
return 0;
}
assert(child == waitpid(child, &status, 0));
assert(WIFEXITED(status) && WEXITSTATUS(status) == 0);
return 0;
}
Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously
to the update in gup.c in the original commit. The same pattern exists
in follow_devmap_pmd. However, we should not be able to reach that
check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we
ever do.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com
Signed-off-by: Keno Fischer <keno@juliacomputing.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andreas reported [1] made a test in jemalloc hang in THP mode in arm64:
http://lkml.kernel.org/r/mvmmvfy37g1.fsf@hawking.suse.de
The problem is currently page fault handler doesn't supports dirty bit
emulation of pmd for non-HW dirty-bit architecture so that application
stucks until VM marked the pmd dirty.
How the emulation work depends on the architecture. In case of arm64,
when it set up pte firstly, it sets pte PTE_RDONLY to get a chance to
mark the pte dirty via triggering page fault when store access happens.
Once the page fault occurs, VM marks the pmd dirty and arch code for
setting pmd will clear PTE_RDONLY for application to proceed.
IOW, if VM doesn't mark the pmd dirty, application hangs forever by
repeated fault(i.e., store op but the pmd is PTE_RDONLY).
This patch enables pmd dirty-bit emulation for those architectures.
[1] b8d3c4c300, mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called
Fixes: b8d3c4c300 ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called")
Link: http://lkml.kernel.org/r/1482506098-6149-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Andreas Schwab <schwab@suse.de>
Tested-by: Andreas Schwab <schwab@suse.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jason Evans <je@fb.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The flag was introduced by commit 78afd5612d ("mm: add
__GFP_OTHER_NODE flag") to allow proper accounting of remote node
allocations done by kernel daemons on behalf of a process - e.g.
khugepaged.
After "mm: fix remote numa hits statistics" we do not need and actually
use the flag so we can safely remove it because all allocations which
are satisfied from their "home" node are accounted properly.
[mhocko@suse.com: fix build]
Link: http://lkml.kernel.org/r/20170106122225.GK5556@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170102153057.9451-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have two different structures for passing fault information
around - struct vm_fault and struct fault_env. DAX will need more
information in struct vm_fault to handle its faults so the content of
that structure would become event closer to fault_env. Furthermore it
would need to generate struct fault_env to be able to call some of the
generic functions. So at this point I don't think there's much use in
keeping these two structures separate. Just embed into struct vm_fault
all that is needed to use it for both purposes.
Link: http://lkml.kernel.org/r/1479460644-25076-2-git-send-email-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Test programs want to know the size of a transparent hugepage. While it
is commonly the same as the size of a hugetlbfs page (shown as
Hugepagesize in /proc/meminfo), that is not always so: powerpc
implements transparent hugepages in a different way from hugetlbfs
pages, so it's coincidence when their sizes are the same; and x86 and
others can support more than one hugetlbfs page size.
Add /sys/kernel/mm/transparent_hugepage/hpage_pmd_size to show the THP
size in bytes - it's the same for Anonymous and Shmem hugepages. Call
it hpage_pmd_size (after HPAGE_PMD_SIZE) rather than hpage_size, in case
some transparent support for pud and pgd pages is added later.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052200290.13021@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add arch specific callback in the generic THP page cache code that will
deposit and withdarw preallocated page table. Archs like ppc64 use this
preallocated table to store the hash pte slot information.
Testing:
kernel build of the patch series on tmpfs mounted with option huge=always
The related thp stat:
thp_fault_alloc 72939
thp_fault_fallback 60547
thp_collapse_alloc 603
thp_collapse_alloc_failed 0
thp_file_alloc 253763
thp_file_mapped 4251
thp_split_page 51518
thp_split_page_failed 1
thp_deferred_split_page 73566
thp_split_pmd 665
thp_zero_page_alloc 3
thp_zero_page_alloc_failed 0
[akpm@linux-foundation.org: remove unneeded parentheses, per Kirill]
Link: http://lkml.kernel.org/r/20161113150025.17942-2-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Independent of whether the vma is for anonymous memory, some arches like
ppc64 would like to override pmd_move_must_withdraw().
One option is to encapsulate the vma_is_anonymous() check for general
architectures inside pmd_move_must_withdraw() so that is always called
and architectures that need unconditional overriding can override this
function. ppc64 needs to override the function when the MMU is
configured to use hash PTE's.
[bsingharora@gmail.com: reworked changelog]
Link: http://lkml.kernel.org/r/20161113150025.17942-1-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With commit e77b0852b5 ("mm/mmu_gather: track page size with mmu
gather and force flush if page size change") we added the ability to
force a tlb flush when the page size change in a mmu_gather loop. We
did that by checking for a page size change every time we added a page
to mmu_gather for lazy flush/remove. We can improve that by moving the
page size change check early and not doing it every time we add a page.
This also helps us to do tlb flush when invalidating a range covering
dax mapping. Wrt dax mapping we don't have a backing struct page and
hence we don't call tlb_remove_page, which earlier forced the tlb flush
on page size change. Moving the page size change check earlier means we
will do the same even for dax mapping.
We also avoid doing this check on architecture other than powerpc.
In a later patch we will remove page size check from tlb_remove_page().
Link: http://lkml.kernel.org/r/20161026084839.27299-5-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are removing a pmd hugepage here. Use the correct page size.
Link: http://lkml.kernel.org/r/20161026084839.27299-2-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull mm/PAT cleanup from Ingo Molnar:
"A single cleanup for a generic interface that was originally
introduced for PAT"
* 'mm-pat-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pat, mm: Make track_pfn_insert() return void
Linus found there still is a race in mremap after commit 5d1904204c
("mremap: fix race between mremap() and page cleanning").
As described by Linus:
"the issue is that another thread might make the pte be dirty (in the
hardware walker, so no locking of ours will make any difference)
*after* we checked whether it was dirty, but *before* we removed it
from the page tables"
Fix it by moving the check after we removed it from the page table.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Prior to 3.15, there was a race between zap_pte_range() and
page_mkclean() where writes to a page could be lost. Dave Hansen
discovered by inspection that there is a similar race between
move_ptes() and page_mkclean().
We've been able to reproduce the issue by enlarging the race window with
a msleep(), but have not been able to hit it without modifying the code.
So, we think it's a real issue, but is difficult or impossible to hit in
practice.
The zap_pte_range() issue is fixed by commit 1cf35d47712d("mm: split
'tlb_flush_mmu()' into tlb flushing and memory freeing parts"). And
this patch is to fix the race between page_mkclean() and mremap().
Here is one possible way to hit the race: suppose a process mmapped a
file with READ | WRITE and SHARED, it has two threads and they are bound
to 2 different CPUs, e.g. CPU1 and CPU2. mmap returned X, then thread
1 did a write to addr X so that CPU1 now has a writable TLB for addr X
on it. Thread 2 starts mremaping from addr X to Y while thread 1
cleaned the page and then did another write to the old addr X again.
The 2nd write from thread 1 could succeed but the value will get lost.
thread 1 thread 2
(bound to CPU1) (bound to CPU2)
1: write 1 to addr X to get a
writeable TLB on this CPU
2: mremap starts
3: move_ptes emptied PTE for addr X
and setup new PTE for addr Y and
then dropped PTL for X and Y
4: page laundering for N by doing
fadvise FADV_DONTNEED. When done,
pageframe N is deemed clean.
5: *write 2 to addr X
6: tlb flush for addr X
7: munmap (Y, pagesize) to make the
page unmapped
8: fadvise with FADV_DONTNEED again
to kick the page off the pagecache
9: pread the page from file to verify
the value. If 1 is there, it means
we have lost the written 2.
*the write may or may not cause segmentation fault, it depends on
if the TLB is still on the CPU.
Please note that this is only one specific way of how the race could
occur, it didn't mean that the race could only occur in exact the above
config, e.g. more than 2 threads could be involved and fadvise() could
be done in another thread, etc.
For anonymous pages, they could race between mremap() and page reclaim:
THP: a huge PMD is moved by mremap to a new huge PMD, then the new huge
PMD gets unmapped/splitted/pagedout before the flush tlb happened for
the old huge PMD in move_page_tables() and we could still write data to
it. The normal anonymous page has similar situation.
To fix this, check for any dirty PTE in move_ptes()/move_huge_pmd() and
if any, did the flush before dropping the PTL. If we did the flush for
every move_ptes()/move_huge_pmd() call then we do not need to do the
flush in move_pages_tables() for the whole range. But if we didn't, we
still need to do the whole range flush.
Alternatively, we can track which part of the range is flushed in
move_ptes()/move_huge_pmd() and which didn't to avoid flushing the whole
range in move_page_tables(). But that would require multiple tlb
flushes for the different sub-ranges and should be less efficient than
the single whole range flush.
KBuild test on my Sandybridge desktop doesn't show any noticeable change.
v4.9-rc4:
real 5m14.048s
user 32m19.800s
sys 4m50.320s
With this commit:
real 5m13.888s
user 32m19.330s
sys 4m51.200s
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma->vm_page_prot is read lockless from the rmap_walk, it may be updated
concurrently and this prevents the risk of reading intermediate values.
Link: http://lkml.kernel.org/r/1474660305-19222-1-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Vorlicek <janvorli@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The global zero page is used to satisfy an anonymous read fault. If
THP(Transparent HugePage) is enabled then the global huge zero page is
used. The global huge zero page uses an atomic counter for reference
counting and is allocated/freed dynamically according to its counter
value.
CPU time spent on that counter will greatly increase if there are a lot
of processes doing anonymous read faults. This patch proposes a way to
reduce the access to the global counter so that the CPU load can be
reduced accordingly.
To do this, a new flag of the mm_struct is introduced:
MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch
the global counter in two cases:
1 The first time it uses the global huge zero page;
2 The time when mm_user of its mm_struct reaches zero.
Note that right now, the huge zero page is eligible to be freed as soon
as its last use goes away. With this patch, the page will not be
eligible to be freed until the exit of the last process from which it
was ever used.
And with the use of mm_user, the kthread is not eligible to use huge
zero page either. Since no kthread is using huge zero page today, there
is no difference after applying this patch. But if that is not desired,
I can change it to when mm_count reaches zero.
Case used for test on Haswell EP:
usemem -n 72 --readonly -j 0x200000 100G
Which spawns 72 processes and each will mmap 100G anonymous space and
then do read only access to that space sequentially with a step of 2MB.
CPU cycles from perf report for base commit:
54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page
CPU cycles from perf report for this commit:
0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page
Performance(throughput) of the workload for base commit: 1784430792
Performance(throughput) of the workload for this commit: 4726928591
164% increase.
Runtime of the workload for base commit: 707592 us
Runtime of the workload for this commit: 303970 us
50% drop.
Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size.
This feature relies on both mmap virtual address and FS block (i.e.
physical address) to be aligned by the pmd page size. Users can use
mkfs options to specify FS to align block allocations. However,
aligning mmap address requires code changes to existing applications for
providing a pmd-aligned address to mmap().
For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1].
It calls mmap() with a NULL address, which needs to be changed to
provide a pmd-aligned address for testing with DAX pmd mappings.
Changing all applications that call mmap() with NULL is undesirable.
Add thp_get_unmapped_area(), which can be called by filesystem's
get_unmapped_area to align an mmap address by the pmd size for a DAX
file. It calls the default handler, mm->get_unmapped_area(), to find a
range and then aligns it for a DAX file.
The patch is based on Matthew Wilcox's change that allows adding support
of the pud page size easily.
[1]: https://github.com/axboe/fio/blob/master/engines/mmap.c
Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The NUMA balancing logic uses an arch-specific PROT_NONE page table flag
defined by pte_protnone() or pmd_protnone() to mark PTEs or huge page
PMDs respectively as requiring balancing upon a subsequent page fault.
User-defined PROT_NONE memory regions which also have this flag set will
not normally invoke the NUMA balancing code as do_page_fault() will send
a segfault to the process before handle_mm_fault() is even called.
However if access_remote_vm() is invoked to access a PROT_NONE region of
memory, handle_mm_fault() is called via faultin_page() and
__get_user_pages() without any access checks being performed, meaning
the NUMA balancing logic is incorrectly invoked on a non-NUMA memory
region.
A simple means of triggering this problem is to access PROT_NONE mmap'd
memory using /proc/self/mem which reliably results in the NUMA handling
functions being invoked when CONFIG_NUMA_BALANCING is set.
This issue was reported in bugzilla (issue 99101) which includes some
simple repro code.
There are BUG_ON() checks in do_numa_page() and do_huge_pmd_numa_page()
added at commit c0e7cad to avoid accidentally provoking strange
behaviour by attempting to apply NUMA balancing to pages that are in
fact PROT_NONE. The BUG_ON()'s are consistently triggered by the repro.
This patch moves the PROT_NONE check into mm/memory.c rather than
invoking BUG_ON() as faulting in these pages via faultin_page() is a
valid reason for reaching the NUMA check with the PROT_NONE page table
flag set and is therefore not always a bug.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=99101
Reported-by: Trevor Saunders <tbsaunde@tbsaunde.org>
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit:
4d94246699 ("mm: convert p[te|md]_mknonnuma and remaining page table manipulations")
changed NUMA balancing from _PAGE_NUMA to using PROT_NONE, and was quickly
found to introduce a regression with NUMA grouping.
It was followed up by these commits:
53da3bc2ba ("mm: fix up numa read-only thread grouping logic")
bea66fbd11 ("mm: numa: group related processes based on VMA flags instead of page table flags")
b191f9b106 ("mm: numa: preserve PTE write permissions across a NUMA hinting fault")
The first of those two commits try alternate approaches to NUMA
grouping, which apparently do not work as well as looking at the PTE
write permissions.
The latter patch preserves the PTE write permissions across a NUMA
protection fault. However, it forgets to revert the condition for
whether or not to group tasks together back to what it was before
v3.19, even though the information is now preserved in the page tables
once again.
This patch brings the NUMA grouping heuristic back to what it was
before commit 4d94246699, which the changelogs of subsequent
commits suggest worked best.
We have all the information again. We should probably use it.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aarcange@redhat.com
Cc: linux-mm@kvack.org
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/20160908213053.07c992a9@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Attempting to dump /proc/<pid>/smaps for a process with pmd dax mappings
currently results in the following VM_BUG_ONs:
kernel BUG at mm/huge_memory.c:1105!
task: ffff88045f16b140 task.stack: ffff88045be14000
RIP: 0010:[<ffffffff81268f9b>] [<ffffffff81268f9b>] follow_trans_huge_pmd+0x2cb/0x340
[..]
Call Trace:
[<ffffffff81306030>] smaps_pte_range+0xa0/0x4b0
[<ffffffff814c2755>] ? vsnprintf+0x255/0x4c0
[<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0
[<ffffffff8123c8a2>] walk_page_vma+0x62/0x80
[<ffffffff81307656>] show_smap+0xa6/0x2b0
kernel BUG at fs/proc/task_mmu.c:585!
RIP: 0010:[<ffffffff81306469>] [<ffffffff81306469>] smaps_pte_range+0x499/0x4b0
Call Trace:
[<ffffffff814c2795>] ? vsnprintf+0x255/0x4c0
[<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0
[<ffffffff8123c8a2>] walk_page_vma+0x62/0x80
[<ffffffff81307696>] show_smap+0xa6/0x2b0
These locations are sanity checking page flags that must be set for an
anonymous transparent huge page, but are not set for the zone_device
pages associated with dax mappings.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
While adding proper userfaultfd_wp support with bits in pagetable and
swap entry to avoid false positives WP userfaults through swap/fork/
KSM/etc, I've been adding a framework that mostly mirrors soft dirty.
So I noticed in one place I had to add uffd_wp support to the pagetables
that wasn't covered by soft_dirty and I think it should have.
Example: in the THP migration code migrate_misplaced_transhuge_page()
pmd_mkdirty is called unconditionally after mk_huge_pmd.
entry = mk_huge_pmd(new_page, vma->vm_page_prot);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
That sets soft dirty too (it's a false positive for soft dirty, the soft
dirty bit could be more finegrained and transfer the bit like uffd_wp
will do.. pmd/pte_uffd_wp() enforces the invariant that when it's set
pmd/pte_write is not set).
However in the THP split there's no unconditional pmd_mkdirty after
mk_huge_pmd and pte_swp_mksoft_dirty isn't called after the migration
entry is created. The code sets the dirty bit in the struct page
instead of setting it in the pagetable (which is fully equivalent as far
as the real dirty bit is concerned, as the whole point of pagetable bits
is to be eventually flushed out of to the page, but that is not
equivalent for the soft-dirty bit that gets lost in translation).
This was found by code review only and totally untested as I'm working
to actually replace soft dirty and I don't have time to test potential
soft dirty bugfixes as well :).
Transfer the soft_dirty from pmd to pte during THP splits.
This fix avoids losing the soft_dirty bit and avoids userland memory
corruption in the checkpoint.
Fixes: eef1b3ba05 ("thp: implement split_huge_pmd()")
Link: http://lkml.kernel.org/r/1471610515-30229-2-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After the previous patch, we can distinguish costly allocations that
should be really lightweight, such as THP page faults, with
__GFP_NORETRY. This means we don't need to recognize khugepaged
allocations via PF_KTHREAD anymore. We can also change THP page faults
in areas where madvise(MADV_HUGEPAGE) was used to try as hard as
khugepaged, as the process has indicated that it benefits from THP's and
is willing to pay some initial latency costs.
We can also make the flags handling less cryptic by distinguishing
GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from
GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding
__GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed.
The patch effectively changes the current GFP_TRANSHUGE users as
follows:
* get_huge_zero_page() - the zero page lifetime should be relatively
long and it's shared by multiple users, so it's worth spending some
effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added.
This also restores direct reclaim to this allocation, which was
unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag
by default to madvise and add a stall-free defrag option")
* alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency
is not an issue. So if khugepaged "defrag" is enabled (the default), do
reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the
PF_KTHREAD check from page alloc.
As a side-effect, khugepaged will now no longer check if the initial
compaction was deferred or contended. This is OK, as khugepaged sleep
times between collapsion attempts are long enough to prevent noticeable
disruption, so we should allow it to spend some effort.
* migrate_misplaced_transhuge_page() - already was masking out
__GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is
equivalent.
* alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise)
are now allocating without __GFP_NORETRY. Other vma's keep using
__GFP_NORETRY if direct reclaim/compaction is at all allowed (by default
it's allowed only for madvised vma's). The rest is conversion to
GFP_TRANSHUGE(_LIGHT).
[mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT]
Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The definition of return value of madvise_free_huge_pmd is not clear
before. According to the suggestion of Minchan Kim, change the type of
return value to bool and return true if we do MADV_FREE successfully on
entire pmd page, otherwise, return false. Comments are added too.
Link: http://lkml.kernel.org/r/1467135452-16688-2-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are now a number of accounting oddities such as mapped file pages
being accounted for on the node while the total number of file pages are
accounted on the zone. This can be coped with to some extent but it's
confusing so this patch moves the relevant file-based accounted. Due to
throttling logic in the page allocator for reliable OOM detection, it is
still necessary to track dirty and writeback pages on a per-zone basis.
[mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting]
Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.
Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic. Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes. It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.
Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies. For example, the scans are
per-zone but using per-node counters. We also mark a node as congested
when a zone is congested. This causes weird problems that are fixed
later but is easier to review.
In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions
1. Long-term isolation of highmem pages when reclaim is lowmem
When pages are skipped, they are immediately added back onto the LRU
list. If lowmem reclaim persisted for long periods of time, the same
highmem pages get continually scanned. The idea would be that lowmem
keeps those pages on a separate list until a reclaim for highmem pages
arrives that splices the highmem pages back onto the LRU. It potentially
could be implemented similar to the UNEVICTABLE list.
That would reduce the skip rate with the potential corner case is that
highmem pages have to be scanned and reclaimed to free lowmem slab pages.
2. Linear scan lowmem pages if the initial LRU shrink fails
This will break LRU ordering but may be preferable and faster during
memory pressure than skipping LRU pages.
Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Node-based reclaim requires node-based LRUs and locking. This is a
preparation patch that just moves the lru_lock to the node so later
patches are easier to review. It is a mechanical change but note this
patch makes contention worse because the LRU lock is hotter and direct
reclaim and kswapd can contend on the same lock even when reclaiming
from different zones.
Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To make the comments consistent with the already changed code.
Link: http://lkml.kernel.org/r/1466200004-6196-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For file mappings, we don't deposit page tables on THP allocation
because it's not strictly required to implement split_huge_pmd(): we can
just clear pmd and let following page faults to reconstruct the page
table.
But Power makes use of deposited page table to address MMU quirk.
Let's hide THP page cache, including huge tmpfs, under separate config
option, so it can be forbidden on Power.
We can revert the patch later once solution for Power found.
Link: http://lkml.kernel.org/r/1466021202-61880-36-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
khugepaged implementation grew to the point when it deserve separate
file in source.
Let's move it to mm/khugepaged.c.
Link: http://lkml.kernel.org/r/1466021202-61880-32-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's wire up existing madvise() hugepage hints for file mappings.
MADV_HUGEPAGE advise shmem to allocate huge page on page fault in the
VMA. It only has effect if the filesystem is mounted with huge=advise
or huge=within_size.
MADV_NOHUGEPAGE prevents hugepage from being allocated on page fault in
the VMA. It doesn't prevent a huge page from being allocated by other
means, i.e. page fault into different mapping or write(2) into file.
Link: http://lkml.kernel.org/r/1466021202-61880-31-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here's basic implementation of huge pages support for shmem/tmpfs.
It's all pretty streight-forward:
- shmem_getpage() allcoates huge page if it can and try to inserd into
radix tree with shmem_add_to_page_cache();
- shmem_add_to_page_cache() puts the page onto radix-tree if there's
space for it;
- shmem_undo_range() removes huge pages, if it fully within range.
Partial truncate of huge pages zero out this part of THP.
This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE)
behaviour. As we don't really create hole in this case,
lseek(SEEK_HOLE) may have inconsistent results depending what
pages happened to be allocated.
- no need to change shmem_fault: core-mm will map an compound page as
huge if VMA is suitable;
Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds new mount option "huge=". It can have following values:
- "always":
Attempt to allocate huge pages every time we need a new page;
- "never":
Do not allocate huge pages;
- "within_size":
Only allocate huge page if it will be fully within i_size.
Also respect fadvise()/madvise() hints;
- "advise:
Only allocate huge pages if requested with fadvise()/madvise();
Default is "never" for now.
"mount -o remount,huge= /mountpoint" works fine after mount: remounting
huge=never will not attempt to break up huge pages at all, just stop
more from being allocated.
No new config option: put this under CONFIG_TRANSPARENT_HUGEPAGE, which
is the appropriate option to protect those who don't want the new bloat,
and with which we shall share some pmd code.
Prohibit the option when !CONFIG_TRANSPARENT_HUGEPAGE, just as mpol is
invalid without CONFIG_NUMA (was hidden in mpol_parse_str(): make it
explicit).
Allow enabling THP only if the machine has_transparent_hugepage().
But what about Shmem with no user-visible mount? SysV SHM, memfds,
shared anonymous mmaps (of /dev/zero or MAP_ANONYMOUS), GPU drivers' DRM
objects, Ashmem. Though unlikely to suit all usages, provide sysfs knob
/sys/kernel/mm/transparent_hugepage/shmem_enabled to experiment with
huge on those.
And allow shmem_enabled two further values:
- "deny":
For use in emergencies, to force the huge option off from
all mounts;
- "force":
Force the huge option on for all - very useful for testing;
Based on patch by Hugh Dickins.
Link: http://lkml.kernel.org/r/1466021202-61880-28-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and
smaps. It indicates how many times we allocate and map shmem THP.
NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS.
Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As with anon THP, we only mlock file huge pages if we can prove that the
page is not mapped with PTE. This way we can avoid mlock leak into
non-mlocked vma on split.
We rely on PageDoubleMap() under lock_page() to check if the the page
may be PTE mapped. PG_double_map is set by page_add_file_rmap() when
the page mapped with PTEs.
Link: http://lkml.kernel.org/r/1466021202-61880-21-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Basic scheme is the same as for anon THP.
Main differences:
- File pages are on radix-tree, so we have head->_count offset by
HPAGE_PMD_NR. The count got distributed to small pages during split.
- mapping->tree_lock prevents non-lockless access to pages under split
over radix-tree;
- Lockless access is prevented by setting the head->_count to 0 during
split;
- After split, some pages can be beyond i_size. We drop them from
radix-tree.
- We don't setup migration entries. Just unmap pages. It helps
handling cases when i_size is in the middle of the page: no need
handle unmap pages beyond i_size manually.
Link: http://lkml.kernel.org/r/1466021202-61880-20-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
change_huge_pmd() has assert which is not relvant for file page. For
shared mapping it's perfectly fine to have page table entry writable,
without explicit mkwrite.
Link: http://lkml.kernel.org/r/1466021202-61880-18-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
copy_page_range() has a check for "Don't copy ptes where a page fault
will fill them correctly." It works on VMA level. We still copy all
page table entries from private mappings, even if they map page cache.
We can simplify copy_huge_pmd() a bit by skipping file PMDs.
We don't map file private pages with PMDs, so they only can map page
cache. It's safe to skip them as they can be re-faulted later.
Link: http://lkml.kernel.org/r/1466021202-61880-17-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Splitting THP PMD is simple: just unmap it as in DAX case. This way we
can avoid memory overhead on page table allocation to deposit.
It's probably a good idea to try to allocation page table with
GFP_ATOMIC in __split_huge_pmd_locked() to avoid refaulting the area,
but clearing pmd should be good enough for now.
Unlike DAX, we also remove the page from rmap and drop reference.
pmd_young() is transfered to PageReferenced().
Link: http://lkml.kernel.org/r/1466021202-61880-15-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
split_huge_pmd() for file mappings (and DAX too) is implemented by just
clearing pmd entry as we can re-fill this area from page cache on pte
level later.
This means we don't need deposit page tables when file THP is mapped.
Therefore we shouldn't try to withdraw a page table on zap_huge_pmd()
file THP PMD.
Link: http://lkml.kernel.org/r/1466021202-61880-14-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With postponed page table allocation we have chance to setup huge pages.
do_set_pte() calls do_set_pmd() if following criteria met:
- page is compound;
- pmd entry in pmd_none();
- vma has suitable size and alignment;
Link: http://lkml.kernel.org/r/1466021202-61880-12-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Naive approach: on mapping/unmapping the page as compound we update
->_mapcount on each 4k page. That's not efficient, but it's not obvious
how we can optimize this. We can look into optimization later.
PG_double_map optimization doesn't work for file pages since lifecycle
of file pages is different comparing to anon pages: file page can be
mapped again at any time.
Link: http://lkml.kernel.org/r/1466021202-61880-11-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The idea borrowed from Peter's patch from patchset on speculative page
faults[1]:
Instead of passing around the endless list of function arguments,
replace the lot with a single structure so we can change context without
endless function signature changes.
The changes are mostly mechanical with exception of faultaround code:
filemap_map_pages() got reworked a bit.
This patch is preparation for the next one.
[1] http://lkml.kernel.org/r/20141020222841.302891540@infradead.org
Link: http://lkml.kernel.org/r/1466021202-61880-9-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently khugepaged makes swapin readahead under down_write. This
patch supplies to make swapin readahead under down_read instead of
down_write.
The patch was tested with a test program that allocates 800MB of memory,
writes to it, and then sleeps. The system was forced to swap out all.
Afterwards, the test program touches the area by writing, it skips a
page in each 20 pages of the area.
[akpm@linux-foundation.org: update comment to match new code]
[kirill.shutemov@linux.intel.com: passing 'vma' to hugepage_vma_revlidate() is useless]
Link: http://lkml.kernel.org/r/20160530095058.GA53044@black.fi.intel.com
Link: http://lkml.kernel.org/r/1466021202-61880-3-git-send-email-kirill.shutemov@linux.intel.com
Link: http://lkml.kernel.org/r/1464335964-6510-4-git-send-email-ebru.akagunduz@gmail.com
Link: http://lkml.kernel.org/r/1466021202-61880-2-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes swapin readahead to improve thp collapse rate. When
khugepaged scanned pages, there can be a few of the pages in swap area.
With the patch THP can collapse 4kB pages into a THP when there are up
to max_ptes_swap swap ptes in a 2MB range.
The patch was tested with a test program that allocates 400B of memory,
writes to it, and then sleeps. I force the system to swap out all.
Afterwards, the test program touches the area by writing, it skips a
page in each 20 pages of the area.
Without the patch, system did not swap in readahead. THP rate was %65
of the program of the memory, it did not change over time.
With this patch, after 10 minutes of waiting khugepaged had collapsed
%99 of the program's memory.
[kirill.shutemov@linux.intel.com: trivial cleanup of exit path of the function]
[kirill.shutemov@linux.intel.com: __collapse_huge_page_swapin(): drop unused 'pte' parameter]
[kirill.shutemov@linux.intel.com: do not hold anon_vma lock during swap in]
Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Xie XiuQi <xiexiuqi@huawei.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a new sysfs integer knob
/sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_swap which makes
optimistic check for swapin readahead to increase thp collapse rate.
Before getting swapped out pages to memory, checks them and allows up to a
certain number. It also prints out using tracepoints amount of unmapped
ptes.
[vdavydov@parallels.com: fix scan not aborted on SCAN_EXCEED_SWAP_PTE]
[sfr@canb.auug.org.au: build fix]
Link: http://lkml.kernel.org/r/20160616154503.65806e12@canb.auug.org.au
Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Xie XiuQi <xiexiuqi@huawei.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows an arch which needs to do special handing with respect to
different page size when flushing tlb to implement the same in mmu
gather.
Link: http://lkml.kernel.org/r/1465049193-22197-3-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise_free_huge_pmd should return 0 if the fallback PTE operations are
required. In madvise_free_huge_pmd, if part pages of THP are discarded,
the THP will be split and fallback PTE operations should be used if
splitting succeeds. But the original code will make fallback PTE
operations skipped, after splitting succeeds. Fix that via make
madvise_free_huge_pmd return 0 after splitting successfully, so that the
fallback PTE operations will be done.
Link: http://lkml.kernel.org/r/1467135452-16688-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1/ Device DAX for persistent memory:
Device DAX is the device-centric analogue of Filesystem DAX
(CONFIG_FS_DAX). It allows memory ranges to be allocated and mapped
without need of an intervening file system. Device DAX is strict,
precise and predictable. Specifically this interface:
a) Guarantees fault granularity with respect to a given page size
(pte, pmd, or pud) set at configuration time.
b) Enforces deterministic behavior by being strict about what fault
scenarios are supported.
Persistent memory is the first target, but the mechanism is also
targeted for exclusive allocations of performance/feature differentiated
memory ranges.
2/ Support for the HPE DSM (device specific method) command formats.
This enables management of these first generation devices until a
unified DSM specification materializes.
3/ Further ACPI 6.1 compliance with support for the common dimm
identifier format.
4/ Various fixes and cleanups across the subsystem.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXQhdeAAoJEB7SkWpmfYgCYP8P/RAgHkroL5lUKKU45TQUBKcY
diC9POeNSccme4tIRIQCGQUZ7+7mKM5ECv2ulF4xYOHvFBCcd/8OF6xKAXs48r3v
oguYhvX1YvIkBc9FUfBQbR1IsCOJ7uWp/UYiYCIQEXS5tS9Jv545j3ASqDt9xWoV
TWlceZn3yWSbASiV9qZ2eXhEkk75pg4yara++rsm2/7rs/TTXn5EIjBs+57BtAo+
6utI4fTy0CQvBYwVzam3m7y9dt2Z2jWXL4hgmT7pkvJ7HDoctVly0P9+bknJPUAo
g+NugKgTGeiqH5GYp5CTZ9KvL91sDF4q00pfinITVdFl0E3VE293cIHlAzSQBm5/
w58xxaRV958ZvpH7EaBmYQG82QDi/eFNqeHqVGn0xAM6MlaqO7avUMQp2lRPYMCJ
u1z/NloR5yo+sffHxsn5Luiq9KqOf6zk33PuxEkKbN74OayCSPn/SeVCO7rQR0B6
yPMJTTcTiCLnId1kOWAPaEmuK2U3BW/+ogg7hKgeCQSysuy5n6Ok5a2vEx/gJRAm
v9yF68RmIWumpHr+QB0TmB8mVbD5SY+xWTm3CqJb9MipuFIOF7AVsPyTgucBvE7s
v+i5F6MDO6tcVfiDT4AiZEt6D2TM5RbtckkUEX3ZTD6j7CGuR5D8bH0HNRrghrYk
KT1lAk6tjWBOGAHc5Ji7
=Y3Xv
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"The bulk of this update was stabilized before the merge window and
appeared in -next. The "device dax" implementation was revised this
week in response to review feedback, and to address failures detected
by the recently expanded ndctl unit test suite.
Not included in this pull request are two dax topic branches (dax
error handling, and dax radix-tree locking). These topics were
deferred to get a few more days of -next integration testing, and to
coordinate a branch baseline with Ted and the ext4 tree. Vishal and
Ross will send the error handling and locking topics respectively in
the next few days.
This branch has received a positive build result from the kbuild robot
across 226 configs.
Summary:
- Device DAX for persistent memory: Device DAX is the device-centric
analogue of Filesystem DAX (CONFIG_FS_DAX). It allows memory
ranges to be allocated and mapped without need of an intervening
file system. Device DAX is strict, precise and predictable.
Specifically this interface:
a) Guarantees fault granularity with respect to a given page size
(pte, pmd, or pud) set at configuration time.
b) Enforces deterministic behavior by being strict about what
fault scenarios are supported.
Persistent memory is the first target, but the mechanism is also
targeted for exclusive allocations of performance/feature
differentiated memory ranges.
- Support for the HPE DSM (device specific method) command formats.
This enables management of these first generation devices until a
unified DSM specification materializes.
- Further ACPI 6.1 compliance with support for the common dimm
identifier format.
- Various fixes and cleanups across the subsystem"
* tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (40 commits)
libnvdimm, dax: fix deletion
libnvdimm, dax: fix alignment validation
libnvdimm, dax: autodetect support
libnvdimm: release ida resources
Revert "block: enable dax for raw block devices"
/dev/dax, core: file operations and dax-mmap
/dev/dax, pmem: direct access to persistent memory
libnvdimm: stop requiring a driver ->remove() method
libnvdimm, dax: record the specified alignment of a dax-device instance
libnvdimm, dax: reserve space to store labels for device-dax
libnvdimm, dax: introduce device-dax infrastructure
nfit: add sysfs dimm 'family' and 'dsm_mask' attributes
tools/testing/nvdimm: ND_CMD_CALL support
nfit: disable vendor specific commands
nfit: export subsystem ids as attributes
nfit: fix format interface code byte order per ACPI6.1
nfit, libnvdimm: limited/whitelisted dimm command marshaling mechanism
nfit, libnvdimm: clarify "commands" vs "_DSMs"
libnvdimm: increase max envelope size for ioctl
acpi/nfit: Add sysfs "id" for NVDIMM ID
...
The "Device DAX" core enables dax mappings of performance / feature
differentiated memory. An open mapping or file handle keeps the backing
struct device live, but new mappings are only possible while the device
is enabled. Faults are handled under rcu_read_lock to synchronize
with the enabled state of the device.
Similar to the filesystem-dax case the backing memory may optionally
have struct page entries. However, unlike fs-dax there is no support
for private mappings, or mappings that are not backed by media (see
use of zero-page in fs-dax).
Mappings are always guaranteed to match the alignment of the dax_region.
If the dax_region is configured to have a 2MB alignment, all mappings
are guaranteed to be backed by a pmd entry. Contrast this determinism
with the fs-dax case where pmd mappings are opportunistic. If userspace
attempts to force a misaligned mapping, the driver will fail the mmap
attempt. See dax_dev_check_vma() for other scenarios that are rejected,
like MAP_PRIVATE mappings.
Cc: Hannes Reinecke <hare@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
If a large value is written to scan_sleep_millisecs, for example, that
period must lapse before khugepaged will wake up for periodic
collapsing.
If this value is tuned to 1 day, for example, and then re-tuned to its
default 10s, khugepaged will still wait for a day before scanning again.
This patch causes khugepaged to wakeup immediately when the value is
changed and then sleep until that value is rewritten or the new value
lapses.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1605181453200.4786@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Comment is partly wrong, this improves it by including the case of
split_huge_pmd_address() called by try_to_unmap_one if TTU_SPLIT_HUGE_PMD
is set.
Link: http://lkml.kernel.org/r/1462547040-1737-4-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The implementation of mk_huge_pmd looks verbose, it could be just
simplified to one line code.
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove move_huge_pmd()'s redundant new_vma arg: all it was used for was
a VM_NOHUGEPAGE check on new_vma flags, but the new_vma is cloned from
the old vma, so a trans_huge_pmd in the new_vma will be as acceptable as
it was in the old vma, alignment and size permitting.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many developers already know that field for reference count of the
struct page is _count and atomic type. They would try to handle it
directly and this could break the purpose of page reference count
tracepoint. To prevent direct _count modification, this patch rename it
to _refcount and add warning message on the code. After that, developer
who need to handle reference count will find that field should not be
accessed directly.
[akpm@linux-foundation.org: fix comments, per Vlastimil]
[akpm@linux-foundation.org: Documentation/vm/transhuge.txt too]
[sfr@canb.auug.org.au: sync ethernet driver changes]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Sunil Goutham <sgoutham@cavium.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Manish Chopra <manish.chopra@qlogic.com>
Cc: Yuval Mintz <yuval.mintz@qlogic.com>
Cc: Tariq Toukan <tariqt@mellanox.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will provide fully accuracy to the mapcount calculation in the
write protect faults, so page pinning will not get broken by false
positive copy-on-writes.
total_mapcount() isn't the right calculation needed in
reuse_swap_page(), so this introduces a page_trans_huge_mapcount()
that is effectively the full accurate return value for page_mapcount()
if dealing with Transparent Hugepages, however we only use the
page_trans_huge_mapcount() during COW faults where it strictly needed,
due to its higher runtime cost.
This also provide at practical zero cost the total_mapcount
information which is needed to know if we can still relocate the page
anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we
can reuse the page no matter if it's a pte or a pmd_trans_huge
triggering the fault, but we can only relocate the page anon_vma to
the local vma->anon_vma if we're sure it's only this "vma" mapping the
whole THP physical range.
Kirill A. Shutemov discovered the problem with moving the page
anon_vma to the local vma->anon_vma in a previous version of this
patch and another problem in the way page_move_anon_rmap() was called.
Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a
previous version, because reuse_swap_page must be a macro to call
page_trans_huge_mapcount from swap.h, so this uses a macro again
instead of an inline function. With this change at least it's a less
dangerous usage than it was before, because "page" is used only once
now, while with the previous code reuse_swap_page(page++) would have
called page_mapcount on page+1 and it would have increased page twice
instead of just once.
Dean Luick noticed an uninitialized variable that could result in a
rmap inefficiency for the non-THP case in a previous version.
Mike Marciniszyn said:
: Our RDMA tests are seeing an issue with memory locking that bisects to
: commit 61f5d698cc ("mm: re-enable THP")
:
: The test program registers two rather large MRs (512M) and RDMA
: writes data to a passive peer using the first and RDMA reads it back
: into the second MR and compares that data. The sizes are chosen randomly
: between 0 and 1024 bytes.
:
: The test will get through a few (<= 4 iterations) and then gets a
: compare error.
:
: Tracing indicates the kernel logical addresses associated with the individual
: pages at registration ARE correct , the data in the "RDMA read response only"
: packets ARE correct.
:
: The "corruption" occurs when the packet crosse two pages that are not physically
: contiguous. The second page reads back as zero in the program.
:
: It looks like the user VA at the point of the compare error no longer points to
: the same physical address as was registered.
:
: This patch totally resolves the issue!
Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Reviewed-by: Dean Luick <dean.luick@intel.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Tested-by: Josh Collier <josh.d.collier@intel.com>
Cc: Marc Haber <mh+linux-kernel@zugschlus.de>
Cc: <stable@vger.kernel.org> [4.5]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
split_huge_pages doesn't support get method at all, so the read
permission sounds confusing, change the permission to write only.
And, add "\n" to the output of set method to make it more readable.
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Khugepaged detects own VMAs by checking vm_file and vm_ops but this way
it cannot distinguish private /dev/zero mappings from other special
mappings like /dev/hpet which has no vm_ops and popultes PTEs in mmap.
This fixes false-positive VM_BUG_ON and prevents installing THP where
they are not expected.
Link: http://lkml.kernel.org/r/CACT4Y+ZmuZMV5CjSFOeXviwQdABAgT7T+StKfTqan9YDtgEi5g@mail.gmail.com
Fixes: 78f11a2557 ("mm: thp: fix /dev/zero MAP_PRIVATE and vm_flags cleanups")
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrea has found[1] a race condition on MMU-gather based TLB flush vs
split_huge_page() or shrinker which frees huge zero under us (patch 1/2
and 2/2 respectively).
With new THP refcounting, we don't need patch 1/2: mmu_gather keeps the
page pinned until flush is complete and the pin prevents the page from
being split under us.
We still need patch 2/2. This is simplified version of Andrea's patch.
We don't need fancy encoding.
[1] http://lkml.kernel.org/r/1447938052-22165-1-git-send-email-aarcange@redhat.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
!PageLRU should lead to SCAN_PAGE_LRU, not SCAN_SCAN_ABORT result.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy, Cyril
Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell Currey,
Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_* helpers from
Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/relaxed
variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs from Wei
Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter values,
display domain indices in sysfs, eliminate domain suffix in event names,
from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit checksum
optimizations, 86xx consolidation, e5500/e6500 cpu hotplug, more fman and
other dt bits, and minor fixes/cleanup."
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW69OrAAoJEFHr6jzI4aWAe5EQAJw/hE6WBQc6a7Tj70AnXOqR
qk/m5pZjuTwQxfBteIvHR1pE5eXdlvtAjcD254LVkFkAbIn19W/h2k0VX/nlee7P
n/VRHRifjtGmukqHrPYJJ7ua9mNlY7pxh3leGSixBFASnSWqMxNNNziNQtSTcuCs
TjHiw6NkZ/kzeunA4bAfE4yHVUZjmL74oiS9JbLyaVHqoW4fqWLlh26AKo2yYMZI
qPicBBG4HBi3FGvoexnKxlJNdcV4HO7LzDjJmCSfUKYCJi+Pw19T5qmhso0q0qVz
vHg/A8HNeG4Hn83pNVmLeQSAIQRZ3DvTtcLgbjPo+TVwm/hzrRRBWipTeOVbkLW8
2bcOXT4t7LWUq15EAJ1LYgYZGzcLrfRfUeOcuQ1TWd3+PcfY9pE7FmizsxAAfaVe
E9j9mpz4XnIqBtWkFHneTIHkQ5OWptyKuZJEaYH0nut4VsP0k8NarkseafGqBPu7
5eG83gbiQbCVixfOgblV9eocJ29JcwpjPAY4CZSGJimShg909FV7WRgZgJkKWrbK
dBRco8Jcp4VglGfo2qymv7Uj4KwQoypBREOhiKUvrAsVlDxPfx+bcskhjGu9xGDC
xs/+nme0/lKa/wg5K4C3mQ1GAlkMWHI0ojhJjsyODbetup5UbkEu03wjAaTdO9dT
Y6ptGm0rYAJluPNlziFj
=qkAt
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This was delayed a day or two by some build-breakage on old toolchains
which we've now fixed.
There's two PCI commits both acked by Bjorn.
There's one commit to mm/hugepage.c which is (co)authored by Kirill.
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul
Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh
Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy,
Cyril Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell
Currey, Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_*
helpers from Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/
relaxed variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas
Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs
from Wei Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell
Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev
Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter
values, display domain indices in sysfs, eliminate domain suffix in
event names, from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit
checksum optimizations, 86xx consolidation, e5500/e6500 cpu
hotplug, more fman and other dt bits, and minor fixes/cleanup"
* tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (179 commits)
powerpc: Fix unrecoverable SLB miss during restore_math()
powerpc/8xx: Fix do_mtspr_cpu6() build on older compilers
powerpc/rcpm: Fix build break when SMP=n
powerpc/book3e-64: Use hardcoded mttmr opcode
powerpc/fsl/dts: Add "jedec,spi-nor" flash compatible
powerpc/T104xRDB: add tdm riser card node to device tree
powerpc32: PAGE_EXEC required for inittext
powerpc/mpc85xx: Add pcsphy nodes to FManV3 device tree
powerpc/mpc85xx: Add MDIO bus muxing support to the board device tree(s)
powerpc/86xx: Introduce and use common dtsi
powerpc/86xx: Update device tree
powerpc/86xx: Move dts files to fsl directory
powerpc/86xx: Switch to kconfig fragments approach
powerpc/86xx: Update defconfigs
powerpc/86xx: Consolidate common platform code
powerpc32: Remove one insn in mulhdu
powerpc32: small optimisation in flush_icache_range()
powerpc: Simplify test in __dma_sync()
powerpc32: move xxxxx_dcache_range() functions inline
powerpc32: Remove clear_pages() and define clear_page() inline
...
split_huge_pmd() tries to munlock page with munlock_vma_page(). That
requires the page to locked.
If the is locked by caller, we would get a deadlock:
Unable to find swap-space signature
INFO: task trinity-c85:1907 blocked for more than 120 seconds.
Not tainted 4.4.0-00032-gf19d0bdced41-dirty #1606
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
trinity-c85 D ffff88084d997608 0 1907 309 0x00000000
Call Trace:
schedule+0x9f/0x1c0
schedule_timeout+0x48e/0x600
io_schedule_timeout+0x1c3/0x390
bit_wait_io+0x29/0xd0
__wait_on_bit_lock+0x94/0x140
__lock_page+0x1d4/0x280
__split_huge_pmd+0x5a8/0x10f0
split_huge_pmd_address+0x1d9/0x230
try_to_unmap_one+0x540/0xc70
rmap_walk_anon+0x284/0x810
rmap_walk_locked+0x11e/0x190
try_to_unmap+0x1b1/0x4b0
split_huge_page_to_list+0x49d/0x18a0
follow_page_mask+0xa36/0xea0
SyS_move_pages+0xaf3/0x1570
entry_SYSCALL_64_fastpath+0x12/0x6b
2 locks held by trinity-c85/1907:
#0: (&mm->mmap_sem){++++++}, at: SyS_move_pages+0x933/0x1570
#1: (&anon_vma->rwsem){++++..}, at: split_huge_page_to_list+0x402/0x18a0
I don't think the deadlock is triggerable without split_huge_page()
simplifilcation patchset.
But munlock_vma_page() here is wrong: we want to munlock the page
unconditionally, no need in rmap lookup, that munlock_vma_page() does.
Let's use clear_page_mlock() instead. It can be called under ptl.
Fixes: e90309c9f7 ("thp: allow mlocked THP again")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
freeze_page() and unfreeze_page() helpers evolved in rather complex
beasts. It would be nice to cut complexity of this code.
This patch rewrites freeze_page() using standard try_to_unmap().
unfreeze_page() is rewritten with remove_migration_ptes().
The result is much simpler.
But the new variant is somewhat slower for PTE-mapped THPs. Current
helpers iterates over VMAs the compound page is mapped to, and then over
ptes within this VMA. New helpers iterates over small page, then over
VMA the small page mapped to, and only then find relevant pte.
We have short cut for PMD-mapped THP: we directly install migration
entries on PMD split.
I don't think the slowdown is critical, considering how much simpler
result is and that split_huge_page() is quite rare nowadays. It only
happens due memory pressure or migration.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for two ttu_flags:
- TTU_SPLIT_HUGE_PMD would split PMD if it's there, before trying to
unmap page;
- TTU_RMAP_LOCKED indicates that caller holds relevant rmap lock;
Also, change rwc->done to !page_mapcount() instead of !page_mapped().
try_to_unmap() works on pte level, so we are really interested in the
mappedness of this small page rather than of the compound page it's a
part of.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel style prefers a single string over split strings when the string is
'user-visible'.
Miscellanea:
- Add a missing newline
- Realign arguments
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org> [percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The success of CMA allocation largely depends on the success of
migration and key factor of it is page reference count. Until now, page
reference is manipulated by direct calling atomic functions so we cannot
follow up who and where manipulate it. Then, it is hard to find actual
reason of CMA allocation failure. CMA allocation should be guaranteed
to succeed so finding offending place is really important.
In this patch, call sites where page reference is manipulated are
converted to introduced wrapper function. This is preparation step to
add tracepoint to each page reference manipulation function. With this
facility, we can easily find reason of CMA allocation failure. There is
no functional change in this patch.
In addition, this patch also converts reference read sites. It will
help a second step that renames page._count to something else and
prevents later attempt to direct access to it (Suggested by Andrew).
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure. The problem is that
THP allocation requests potentially enter reclaim/compaction. This
potentially incurs a severe stall that is not guaranteed to be offset by
reduced TLB misses. While there has been considerable effort to reduce
the impact of reclaim/compaction, it is still a high cost and workloads
that should fit in memory fail to do so. Specifically, a simple
anon/file streaming workload will enter direct reclaim on NUMA at least
even though the working set size is 80% of RAM. It's been years and
it's time to throw in the towel.
First, this patch defines THP defrag as follows;
madvise: A failed allocation will direct reclaim/compact if the application requests it
never: Neither reclaim/compact nor wake kswapd
defer: A failed allocation will wake kswapd/kcompactd
always: A failed allocation will direct reclaim/compact (historical behaviour)
khugepaged defrag will enter direct/reclaim but not wake kswapd.
Next it sets the default defrag option to be "madvise" to only enter
direct reclaim/compaction for applications that specifically requested
it.
Lastly, it removes a check from the page allocator slowpath that is
related to __GFP_THISNODE to allow "defer" to work. The callers that
really cares are slub/slab and they are updated accordingly. The slab
one may be surprising because it also corrects a comment as kswapd was
never woken up by that path.
This means that a THP fault will no longer stall for most applications
by default and the ideal for most users that get THP if they are
immediately available. There are still options for users that prefer a
stall at startup of a new application by either restoring historical
behaviour with "always" or pick a half-way point with "defer" where
kswapd does some of the work in the background and wakes kcompactd if
necessary. THP defrag for khugepaged remains enabled and will enter
direct/reclaim but no wakeup kswapd or kcompactd.
After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future. In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction
is definitely measurable and can be painful.
The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times. The
total size of the mappings is 80% of RAM and the benchmark simply
measures how long it takes to complete. It uses multiple threads to see
if that is a factor. On UMA, the performance is almost identical so is
not reported but on NUMA, we see this
usemem
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%)
Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%)
Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%)
Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%)
Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%)
Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%)
Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%)
Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%)
Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%)
Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%)
Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%)
Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%)
Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%)
Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%)
For a single thread, the benchmark completes 43.23% faster with this
patch applied with smaller benefits as the thread increases. Similar,
notice the large reduction in most cases in system CPU usage. The
overall CPU time is
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
User 10357.65 10438.33
System 3988.88 3543.94
Elapsed 2203.01 1634.41
Which is substantial. Now, the reclaim figures
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 128458477 278352931
Major Faults 2174976 225
Swap Ins 16904701 0
Swap Outs 17359627 0
Allocation stalls 43611 0
DMA allocs 0 0
DMA32 allocs 19832646 19448017
Normal allocs 614488453 580941839
Movable allocs 0 0
Direct pages scanned 24163800 0
Kswapd pages scanned 0 0
Kswapd pages reclaimed 0 0
Direct pages reclaimed 20691346 0
Compaction stalls 42263 0
Compaction success 938 0
Compaction failures 41325 0
This patch eliminates almost all swapping and direct reclaim activity.
There is still overhead but it's from NUMA balancing which does not
identify that it's pointless trying to do anything with this workload.
I also tried the thpscale benchmark which forces a corner case where
compaction can be used heavily and measures the latency of whether base
or huge pages were used
thpscale Fault Latencies
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%)
Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%)
Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%)
Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%)
Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%)
Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%)
Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%)
Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%)
Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%)
Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%)
Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%)
Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%)
Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%)
Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%)
Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%)
Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%)
Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%)
Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%)
The average time to fault pages is substantially reduced in the majority
of caseds but with the obvious caveat that fewer THPs are actually used
in this adverse workload
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%)
Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%)
Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%)
Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%)
Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%)
Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%)
Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%)
Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%)
Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%)
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 37429143 47564000
Major Faults 1916 1558
Swap Ins 1466 1079
Swap Outs 2936863 149626
Allocation stalls 62510 3
DMA allocs 0 0
DMA32 allocs 6566458 6401314
Normal allocs 216361697 216538171
Movable allocs 0 0
Direct pages scanned 25977580 17998
Kswapd pages scanned 0 3638931
Kswapd pages reclaimed 0 207236
Direct pages reclaimed 8833714 88
Compaction stalls 103349 5
Compaction success 270 4
Compaction failures 103079 1
Note again that while this does swap as it's an aggressive workload, the
direct relcim activity and allocation stalls is substantially reduced.
There is some kswapd activity but ftrace showed that the kswapd activity
was due to normal wakeups from 4K pages being allocated.
Compaction-related stalls and activity are almost eliminated.
I also tried the stutter benchmark. For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is
available
stutter
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%)
1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%)
2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%)
3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%)
Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%)
Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%)
Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%)
Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%)
Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%)
Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%)
This benchmark is trying to fault an anonymous mapping while there is a
heavy IO load -- a scenario that desktop users used to complain about
frequently. This shows a mix because the ideal case of mapping with THP
is not hit as often. However, note that 99% of the mappings complete
13.79% faster. The CPU usage here is particularly interesting
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
User 67.50 0.99
System 1327.88 91.30
Elapsed 2079.00 2128.98
And once again we look at the reclaim figures
4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 335241922 1314582827
Major Faults 715 819
Swap Ins 0 0
Swap Outs 0 0
Allocation stalls 532723 0
DMA allocs 0 0
DMA32 allocs 1822364341 1177950222
Normal allocs 1815640808 1517844854
Movable allocs 0 0
Direct pages scanned 21892772 0
Kswapd pages scanned 20015890 41879484
Kswapd pages reclaimed 19961986 41822072
Direct pages reclaimed 21892741 0
Compaction stalls 1065755 0
Compaction success 514 0
Compaction failures 1065241 0
Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.
THP gives impressive gains in some cases but only if they are quickly
available. We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Count how many times we put a THP in split queue. Currently, it happens
on partial unmap of a THP.
Rapidly growing value can indicate that an application behaves
unfriendly wrt THP: often fault in huge page and then unmap part of it.
This leads to unnecessary memory fragmentation and the application may
require tuning.
The event also can help with debugging kernel [mis-]behaviour.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After one of bugfixes to freeze_page(), we don't have freezed pages in
rmap, therefore mapcount of all subpages of freezed THP is zero. And we
have assert for that.
Let's drop code which deal with non-zero mapcount of subpages.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With next generation power processor, we are having a new mmu model
[1] that require us to maintain a different linux page table format.
Inorder to support both current and future ppc64 systems with a single
kernel we need to make sure kernel can select between different page
table format at runtime. With the new MMU (radix MMU) added, we will
have two different pmd hugepage size 16MB for hash model and 2MB for
Radix model. Hence make HPAGE_PMD related values as a variable.
Actual conversion of HPAGE_PMD to a variable for ppc64 happens in a
followup patch.
[1] http://ibm.biz/power-isa3 (Needs registration).
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- eeh: Fix partial hotplug criterion from Gavin Shan
- mm: Clear the invalid slot information correctly from Aneesh Kumar K.V
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWzXquAAoJEFHr6jzI4aWADHsP/2lbwqz/vS3Ep4zlySHNvStL
/DrRN2TN35THZ59FPRxgEfeqPxTCXtbpD6zEXwD0gf6m39I2zArhaQMOHXMtVPvV
p0nAtwR0PX/PxlQTJDpHlg074vVAD7s3iuvad6oNQObLcXhoZ7wYtbStZ9Ithm4R
YfqZTelzsw+GfMuTYnvAQf5aoRYztUpy7OheaJbbDmSZgMFwF896ZPJnaG9rAOPE
xcSsRaSfHiUR2NE2ua1K5yya+1ilZqrZhib7QxXgzGuxoVa2AAiPR7Hpx2kX1Wm+
z0DqPXISzRbVf9zyLgWD3TpJ4OMHI/CYVW+t/Gx/yWCMfNcfavUrh0vPdHRVEPZu
zxmIUoI6yv7jQ6bcfdzR5s0Mr5pYWlUj5MZg2r8aGqloYcLPk5DiENg+c0QmKI05
kQPCBoQz2ezzJWAt1BYshkc+mlimv3ODaNWFP34Nc6kcDaSO6a0rhVOecvKuR6dv
UBNpeh5np1rKq1wX0ri0yAmnm//yXqe+bK0I8Ctipi0++e73sVJGzfFdVvXwEhhW
h+v1BkdgW8WK/xlH+JCPiXd5dfXrUeFI0D65Kgpb7IbFc9hcXDmp2Dv7+8zx/Wcl
L2NpuucSDxi+LHkE10QiypgLWSKjn9OSi8PLocqABNXG8uHxIp54jRfyViBNALXF
XlPveqTgpt7On3aa0qVh
=bk3U
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.5-4' into next
Pull in our current fixes from 4.5, in particular the "Fix Multi hit
ERAT" bug is causing folks some grief when testing next.
Sebastian Ott and Gerald Schaefer reported random crashes on s390.
It was bisected to my THP refcounting patchset.
The problem is that pmdp_invalidated() called with wrong virtual
address. It got offset up by HPAGE_PMD_SIZE by loop over ptes.
The solution is to introduce new variable to be used in loop and don't
touch 'haddr'.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-and-tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reported-and-tested-by Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Fix build error on 32-bit with checkpoint restart from Aneesh Kumar
- Fix dedotify for binutils >= 2.26 from Andreas Schwab
- Don't trace hcalls on offline CPUs from Denis Kirjanov
- eeh: Fix stale cached primary bus from Gavin Shan
- eeh: Fix stale PE primary bus from Gavin Shan
- mm: Fix Multi hit ERAT cause by recent THP update from Aneesh Kumar K.V
- ioda: Set "read" permission when "write" is set from Alexey Kardashevskiy
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWx8l5AAoJEFHr6jzI4aWAeY0P/AomeQCRieoBMKJi36WX4+gU
Cm1iBgM593VEM/KFsYtedm5+4QaCmPE+1tVm4/u0wbLeEQ8TqNLSZLniB9USE0hb
9655gGQyFE95BZa8WfbqHOI7+BK+TkUOWGY0CfyqPVrknzSN2MCDHjUaNo1wge6l
zmIYIkKhaQAinFSFovOdjQ63rYdk6CxsfgbP1Gl2aX0cmzWW1n07AvZLqNmLFJ+4
L3uBXPcrEKY/nfkRi+FutoTb86ggt9J9dqCfJHHfWKn60qwhpKwiva84k3jI/BOu
yBTFeNzlobXt0ceDSWx1ITXzKmJQokWGC5+Lo+0mDb4veAbhLgHlXdx7NUcZIB6+
YGYGSOkeKCnbnInIOGLz45LlevJFviI94y0YY4tt++Csq/IjnBhDeTkGx7zcqRLG
v5hl7AhykHd3Me5iRuyRRVoVyk6+318OZW450Oxxj7EtkzpSeLfHCMKxk5w1Nxuk
tenWQeApdkTVr91m5VJNFOsrmtFDLJv51C8duiUFWzc195ejSMYDR86K+qBeaebs
39obXHVYRnCrn9TzODIR9SnEd7dHImekQ4a3G3F54mLJ4qqUN089TDqBGY2GNuT8
j8QVBttp3SWuZSvtvDJLxoFt2QTKxcuiMQ4FX/OAS4qWRjSR8v2WTCyBZt68l7er
kpUnIelJSuIDVLdNuFlf
=7Yzi
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- Fix build error on 32-bit with checkpoint restart from Aneesh Kumar
- Fix dedotify for binutils >= 2.26 from Andreas Schwab
- Don't trace hcalls on offline CPUs from Denis Kirjanov
- eeh: Fix stale cached primary bus from Gavin Shan
- eeh: Fix stale PE primary bus from Gavin Shan
- mm: Fix Multi hit ERAT cause by recent THP update from Aneesh Kumar K.V
- ioda: Set "read" permission when "write" is set from Alexey Kardashevskiy
* tag 'powerpc-4.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/ioda: Set "read" permission when "write" is set
powerpc/mm: Fix Multi hit ERAT cause by recent THP update
powerpc/powernv: Fix stale PE primary bus
powerpc/eeh: Fix stale cached primary bus
powerpc/pseries: Don't trace hcalls on offline CPUs
powerpc: Fix dedotify for binutils >= 2.26
powerpc/book3s_32: Fix build error with checkpoint restart
DAX doesn't deposit pgtables when it maps huge pages: nothing to
withdraw. It can lead to crash.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With ppc64 we use the deposited pgtable_t to store the hash pte slot
information. We should not withdraw the deposited pgtable_t without
marking the pmd none. This ensure that low level hash fault handling
will skip this huge pte and we will handle them at upper levels.
Recent change to pmd splitting changed the above in order to handle the
race between pmd split and exit_mmap. The race is explained below.
Consider following race:
CPU0 CPU1
shrink_page_list()
add_to_swap()
split_huge_page_to_list()
__split_huge_pmd_locked()
pmdp_huge_clear_flush_notify()
// pmd_none() == true
exit_mmap()
unmap_vmas()
zap_pmd_range()
// no action on pmd since pmd_none() == true
pmd_populate()
As result the THP will not be freed. The leak is detected by check_mm():
BUG: Bad rss-counter state mm:ffff880058d2e580 idx:1 val:512
The above required us to not mark pmd none during a pmd split.
The fix for ppc is to clear the huge pte of _PAGE_USER, so that low
level fault handling code skip this pte. At higher level we do take ptl
lock. That should serialze us against the pmd split. Once the lock is
acquired we do check the pmd again using pmd_same. That should always
return false for us and hence we should retry the access. We do the
pmd_same check in all case after taking plt with
THP (do_huge_pmd_wp_page, do_huge_pmd_numa_page and
huge_pmd_set_accessed)
Also make sure we wait for irq disable section in other cpus to finish
before flipping a huge pte entry with a regular pmd entry. Code paths
like find_linux_pte_or_hugepte depend on irq disable to get
a stable pte_t pointer. A parallel thp split need to make sure we
don't convert a pmd pte to a regular pmd entry without waiting for the
irq disable section to finish.
Fixes: eef1b3ba05 ("thp: implement split_huge_pmd()")
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We need to iterate over split_queue, not local empty list to get
anything split from the shrinker.
Fixes: e3ae19535c ("thp: limit number of object to scan on deferred_split_scan()")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We allocate a pgtable but do not attach it to anything if the PMD is in
a DAX VMA, causing it to leak.
We certainly try to not free pgtables associated with the huge zero page
if the zero page is in a DAX VMA, so I think this is the right solution.
This needs to be properly audited.
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we have a lot of pages in queue to be split, deferred_split_scan()
can spend unreasonable amount of time under spinlock with disabled
interrupts.
Let's cap number of pages to split on scan by sc->nr_to_scan.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've got meaning of shrinker::count_objects() wrong: it should return
number of potentially freeable objects, which is not necessary correlate
with freeable memory.
Returning 256 per THP in queue is not reasonable:
shrinker::scan_objects() never called with nr_to_scan > 128 in my setup.
Let's return 1 per THP and correct scan_object accordingly.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After THP refcounting rework we have only two possible return values
from pmd_trans_huge_lock(): success and failure. Return-by-pointer for
ptl doesn't make much sense in this case.
Let's convert pmd_trans_huge_lock() to return ptl on success and NULL on
failure.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>