When we create a new lockd client, we want to be able to pass the
correct credential of the process that created the struct nlm_host.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
nfsd and lockd call vfs_lock_file() to lock/unlock the inode
returned by locks_inode(file).
Many places in nfsd/lockd code use the inode returned by
file_inode(file) for lock manipulation. With Overlayfs, file_inode()
(the underlying inode) is not the same object as locks_inode() (the
overlay inode). This can result in "Leaked POSIX lock" messages
and eventually to a kernel crash as reported by Eddie Horng:
https://marc.info/?l=linux-unionfs&m=153086643202072&w=2
Fix all the call sites in nfsd/lockd that should use locks_inode().
This is a correctness bug that manifested when overlayfs gained
NFS export support in v4.16.
Reported-by: Eddie Horng <eddiehorng.tw@gmail.com>
Tested-by: Eddie Horng <eddiehorng.tw@gmail.com>
Cc: Jeff Layton <jlayton@kernel.org>
Fixes: 8383f17488 ("ovl: wire up NFS export operations")
Cc: stable@vger.kernel.org
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable nlm_rqst.a_count is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
**Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.
The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the nlm_rqst.a_count it might make a difference
in following places:
- nlmclnt_release_call() and nlmsvc_release_call(): decrement
in refcount_dec_and_test() only
provides RELEASE ordering and control dependency on success
vs. fully ordered atomic counterpart
Suggested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable nlm_lockowner.count is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
**Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.
The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the nlm_lockowner.count it might make a difference
in following places:
- nlm_put_lockowner(): decrement in refcount_dec_and_lock() only
provides RELEASE ordering, control dependency on success and
holds a spin lock on success vs. fully ordered atomic counterpart.
No changes in spin lock guarantees.
Suggested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable nsm_handle.sm_count is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
**Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.
The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the nsm_handle.sm_count it might make a difference
in following places:
- nsm_release(): decrement in refcount_dec_and_lock() only
provides RELEASE ordering, control dependency on success
and holds a spin lock on success vs. fully ordered atomic
counterpart. No change for the spin lock guarantees.
Suggested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable nlm_host.h_count is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
**Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.
The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the nlm_host.h_count it might make a difference
in following places:
- nlmsvc_release_host(): decrement in refcount_dec()
provides RELEASE ordering, while original atomic_dec()
was fully unordered. Since the change is for better, it
should not matter.
- nlmclnt_release_host(): decrement in refcount_dec_and_test() only
provides RELEASE ordering and control dependency on success
vs. fully ordered atomic counterpart. It doesn't seem to
matter in this case since object freeing happens under mutex
lock anyway.
Suggested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
struct svc_procinfo contains function pointers, and marking it as
constant avoids it being able to be used as an attach vector for
code injections.
Signed-off-by: Christoph Hellwig <hch@lst.de>
NFS would enjoy the ability to modify the behavior of the NLM client's
unlock RPC task in order to delay the transmission of the unlock until IO
that was submitted under that lock has completed. This ability can ensure
that the NLM client will always complete the transmission of an unlock even
if the waiting caller has been interrupted with fatal signal.
For this purpose, a pointer to a struct nlmclnt_operations can be assigned
in a nfs_module's nfs_rpc_ops that will install those nlmclnt_operations on
the nlm_host. The struct nlmclnt_operations defines three callback
operations that will be used in a following patch:
nlmclnt_alloc_call - used to call back after a successful allocation of
a struct nlm_rqst in nlmclnt_proc().
nlmclnt_unlock_prepare - used to call back during NLM unlock's
rpc_call_prepare. The NLM client defers calling rpc_call_start()
until this callback returns false.
nlmclnt_release_call - used to call back when the NLM client's struct
nlm_rqst is freed.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
It is not sufficient to just check that the lock pids match when
granting a callback, we also need to ensure that we're granting
the callback on the right file.
Reported-by: Pankaj Singh <psingh.ait@gmail.com>
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently we have reference-counted per-net NSM RPC client
which created on the first monitor request and destroyed
after the last unmonitor request. It's needed because
RPC client need to know 'utsname()->nodename', but utsname()
might be NULL when nsm_unmonitor() called.
So instead of holding the rpc client we could just save nodename
in struct nlm_host and pass it to the rpc_create().
Thus ther is no need in keeping rpc client until last
unmonitor request. We could create separate RPC clients
for each monitor/unmonitor requests.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Commit cb7323fffa ("lockd: create and use per-net NSM
RPC clients on MON/UNMON requests") introduced per-net
NSM RPC clients. Unfortunately this doesn't make any sense
without per-net nsm_handle.
E.g. the following scenario could happen
Two hosts (X and Y) in different namespaces (A and B) share
the same nsm struct.
1. nsm_monitor(host_X) called => NSM rpc client created,
nsm->sm_monitored bit set.
2. nsm_mointor(host-Y) called => nsm->sm_monitored already set,
we just exit. Thus in namespace B ln->nsm_clnt == NULL.
3. host X destroyed => nsm->sm_count decremented to 1
4. host Y destroyed => nsm_unmonitor() => nsm_mon_unmon() => NULL-ptr
dereference of *ln->nsm_clnt
So this could be fixed by making per-net nsm_handles list,
instead of global. Thus different net namespaces will not be able
share the same nsm_handle.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
As Kinglong points out, the nlm_block->b_fl field is no longer used at
all. Also, vfs_test_lock in the generic locking code will only return
FILE_LOCK_DEFERRED if FL_SLEEP is set, and it isn't here.
The only other place that returns that value is the DLM lock code, but
it only does that in dlm_posix_lock, never in dlm_posix_get.
Remove all of the deferred locking code from the testlock codepath
since it doesn't appear to ever be used anyway.
I do have a small concern that this might cause a behavior change in the
case where you have a block already sitting on the list when the
testlock request comes in, but that looks like it doesn't really work
properly anyway. I think it's best to just pass that down to
vfs_test_lock and let the filesystem report that instead of trying to
infer what's going on with the lock by looking at an existing block.
Cc: cluster-devel@redhat.com
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Kinglong Mee <kinglongmee@gmail.com>
The only real user of this header is fs/nfsd/nfsfh.h, so merge the
two. Various lockѕ source files used it to indirectly get other
sunrpc or nfs headers, so fix those up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Pull nfsd changes from J Bruce Fields:
"Miscellaneous bugfixes, plus:
- An overhaul of the DRC cache by Jeff Layton. The main effect is
just to make it larger. This decreases the chances of intermittent
errors especially in the UDP case. But we'll need to watch for any
reports of performance regressions.
- Containerized nfsd: with some limitations, we now support
per-container nfs-service, thanks to extensive work from Stanislav
Kinsbursky over the last year."
Some notes about conflicts, since there were *two* non-data semantic
conflicts here:
- idr_remove_all() had been added by a memory leak fix, but has since
become deprecated since idr_destroy() does it for us now.
- xs_local_connect() had been added by this branch to make AF_LOCAL
connections be synchronous, but in the meantime Trond had changed the
calling convention in order to avoid a RCU dereference.
There were a couple of more obvious actual source-level conflicts due to
the hlist traversal changes and one just due to code changes next to
each other, but those were trivial.
* 'for-3.9' of git://linux-nfs.org/~bfields/linux: (49 commits)
SUNRPC: make AF_LOCAL connect synchronous
nfsd: fix compiler warning about ambiguous types in nfsd_cache_csum
svcrpc: fix rpc server shutdown races
svcrpc: make svc_age_temp_xprts enqueue under sv_lock
lockd: nlmclnt_reclaim(): avoid stack overflow
nfsd: enable NFSv4 state in containers
nfsd: disable usermode helper client tracker in container
nfsd: use proper net while reading "exports" file
nfsd: containerize NFSd filesystem
nfsd: fix comments on nfsd_cache_lookup
SUNRPC: move cache_detail->cache_request callback call to cache_read()
SUNRPC: remove "cache_request" argument in sunrpc_cache_pipe_upcall() function
SUNRPC: rework cache upcall logic
SUNRPC: introduce cache_detail->cache_request callback
NFS: simplify and clean cache library
NFS: use SUNRPC cache creation and destruction helper for DNS cache
nfsd4: free_stid can be static
nfsd: keep a checksum of the first 256 bytes of request
sunrpc: trim off trailing checksum before returning decrypted or integrity authenticated buffer
sunrpc: fix comment in struct xdr_buf definition
...
Even though nlmclnt_reclaim() is only one call into the stack frame,
928 bytes on the stack seems like a lot. Recode to dynamically
allocate the request structure once from within the reclaimer task,
then pass this pointer into nlmclnt_reclaim() for reuse on
subsequent calls.
smatch analysis:
fs/lockd/clntproc.c:620 nlmclnt_reclaim() warn: 'reqst' puts
928 bytes on stack
Also remove redundant assignment of 0 after memset.
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Tim Gardner <tim.gardner@canonical.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Passed network namespace replaced hard-coded init_net
Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
This is required for per-network NLM shutdown and cleanup.
This patch passes init_net for a while.
Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Lockd now managed in network namespace context. And this patch introduces
network namespace related NLM hosts shutdown in case of releasing per-net Lockd
resources.
Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
This object depends on RPC client, and thus on network namespace.
So let's make it's allocation and lookup in network namespace context.
Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
module_param(bool) used to counter-intuitively take an int. In
fddd5201 (mid-2009) we allowed bool or int/unsigned int using a messy
trick.
It's time to remove the int/unsigned int option. For this version
it'll simply give a warning, but it'll break next kernel version.
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead of testing defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Clean up.
Change nlmsvc_lookup_host() to be purpose-built for server-side
nlm_host management. This replaces the generic nlm_lookup_host()
helper function, just like on the client side. The lookup logic is
specialized for server host lookups.
The server side cache also gets its own specialized equivalent of the
nlm_release_host() function.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
NFS clients don't need the garbage collection processing that is
performed on nlm_host structures. The client picks up an nlm_host at
mount time and holds a reference to it until the file system is
unmounted.
Servers, on the other hand, don't have a precise way to tell when an
nlm_host is no longer being used, so zero refcount nlm_host entries
are left to expire in the cache after a time.
Basically there's nothing holding a reference to an nlm_host between
individual server-side NLM requests, but we can't afford the expense
of recreating them for every new NLM request from a client. The
nlm_host cache adds some lifetime hysteresis to entries in the cache
so the next time a particular nlm_host is needed, it's likely to be
discovered by a lookup rather than created from whole cloth.
With the new implementation, client nlm_host cache items are no longer
garbage collected, and are destroyed directly by a new release
function specialized for client entries, nlmclnt_release_host(). They
are cached in their own data structure, and have their own lookup
logic, simplified and specialized for client nlm_host entries.
However, the client nlm_host cache still shares reboot recovery logic
with the server nlm_host cache. The NSM "peer rebooted" downcall for
clients and servers still come through the same RPC call. This is a
legacy formal API that would be difficult to alter, and besides, the
user space NSM implementation can't tell the difference between peers
that are clients or servers.
For this reason, the client cache continues to share the
nlm_host_mutex (and reboot recovery logic) with the server cache.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The nlm_release_call() function is invoked from both the server and
the client side. We're about to introduce a distinct server- and
client-side nlm_release_host(), so nlm_release_call() must first be
split into a client-side and a server-side version.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Nick Bowler reports:
There are no unusual messages on the client... but I just logged into
the server and I see lots of messages of the following form:
nfsd: request from insecure port (192.168.8.199:35766)!
nfsd: request from insecure port (192.168.8.199:35766)!
nfsd: request from insecure port (192.168.8.199:35766)!
nfsd: request from insecure port (192.168.8.199:35766)!
nfsd: request from insecure port (192.168.8.199:35766)!
Bisected to commit 9247685088 (SUNRPC:
Properly initialize sock_xprt.srcaddr in all cases)
Apparently, removing the 'transport->srcaddr.ss_family = family' from
xs_create_sock() triggers this due to nlmclnt_lookup_host() incorrectly
initialising the srcaddr family to AF_UNSPEC.
Reported-by: Nick Bowler <nbowler@elliptictech.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
* 'for-2.6.32' of git://linux-nfs.org/~bfields/linux: (68 commits)
nfsd4: nfsv4 clients should cross mountpoints
nfsd: revise 4.1 status documentation
sunrpc/cache: avoid variable over-loading in cache_defer_req
sunrpc/cache: use list_del_init for the list_head entries in cache_deferred_req
nfsd: return success for non-NFS4 nfs4_state_start
nfsd41: Refactor create_client()
nfsd41: modify nfsd4.1 backchannel to use new xprt class
nfsd41: Backchannel: Implement cb_recall over NFSv4.1
nfsd41: Backchannel: cb_sequence callback
nfsd41: Backchannel: Setup sequence information
nfsd41: Backchannel: Server backchannel RPC wait queue
nfsd41: Backchannel: Add sequence arguments to callback RPC arguments
nfsd41: Backchannel: callback infrastructure
nfsd4: use common rpc_cred for all callbacks
nfsd4: allow nfs4 state startup to fail
SUNRPC: Defer the auth_gss upcall when the RPC call is asynchronous
nfsd4: fix null dereference creating nfsv4 callback client
nfsd4: fix whitespace in NFSPROC4_CLNT_CB_NULL definition
nfsd41: sunrpc: add new xprt class for nfsv4.1 backchannel
sunrpc/cache: simplify cache_fresh_locked and cache_fresh_unlocked.
...
lockd needs these sort of routines, as does the NFSv4 callback code.
Move lockd's routines into common code and rename them so that they can
be used by others.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Acked-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
When rpc.statd starts up in user space at boot time, it attempts to
write the latest NSM local state number into
/proc/sys/fs/nfs/nsm_local_state.
If lockd.ko isn't loaded yet (as is the case in most configurations),
that file doesn't exist, thus the kernel's NSM state remains set to
its initial value of zero during lockd operation.
This is a problem because rpc.statd and lockd use the NSM state number
to prevent repeated lock recovery on rebooted hosts. If lockd sends
a zero NSM state, but then a delayed SM_NOTIFY with a real NSM state
number is received, there is no way for lockd or rpc.statd to
distinguish that stale SM_NOTIFY from an actual reboot. Thus lock
recovery could be performed after the rebooted host has already
started reclaiming locks, and those locks will be lost.
We could change /etc/init.d/nfslock so it always modprobes lockd.ko
before starting rpc.statd. However, if lockd.ko is ever unloaded
and reloaded, we are back at square one, since the NSM state is not
preserved across an unload/reload cycle. This may happen frequently
on clients that use automounter. A period of NFS inactivity causes
lockd.ko to be unloaded, and the kernel loses its NSM state setting.
Instead, let's use the fact that rpc.statd plants the local system's
NSM state in every SM_MON (and SM_UNMON) reply. lockd performs a
synchronous SM_MON upcall to the local rpc.statd _before_ sending its
first NLM request to a new remote. This would permit rpc.statd to
provide the current NSM state to lockd, even after lockd.ko had been
unloaded and reloaded.
Note that NLMPROC_LOCK arguments are constructed before the
nsm_monitor() call, so we have to rearrange argument construction very
slightly to make this all work out.
And, the kernel appears to treat NSM state as a u32 (see struct
nlm_args and nsm_res). Make nsm_local_state a u32 as well, to ensure
we don't get bogus comparison results.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean up/micro-optimatization: Make the AF_INET-only version of
nlm_cmp_addr() smaller. This matches the style of
nlm_privileged_requester(), and makes the AF_INET-only version of
nlm_cmp_addr() nearly the same size as it was before IPv6 support.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean up.
For consistency, rewrite the IPv4 check to match the same style as the
new IPv6 check. Note that ipv4_is_loopback() is somewhat broader in
its interpretation of what is a loopback address than simply
"127.0.0.1".
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Commit b85e4676 added the nlm_privileged_requester() helper to check
whether an RPC request was sent from a local privileged caller. It
recognizes IPv4 privileged callers (from "127.0.0.1"), and IPv6
privileged callers (from "::1").
However, IPV6_ADDR_LOOPBACK is not set for the mapped IPv4 loopback
address (::ffff:7f00:0001), so the test breaks when the kernel's RPC
service is IPv6-enabled but user space is calling via the IPv4
loopback address. This is actually the most common case for IPv6-
enabled RPC services on Linux.
Rewrite the IPv6 check to handle the mapped IPv4 loopback address as
well as a normal IPv6 loopback address.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Clean up: nsm_addr_in() is no longer used, and nsm_addr() is used only in
fs/lockd/mon.c, so move it there.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Clean up: The include/linux/lockd/sm_inter.h header is nearly empty
now. Remove it.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Clean up: nsm_find() now has only one caller, and that caller
unconditionally sets the @create argument. Thus the @create
argument is no longer needed.
Since nsm_find() now has a more specific purpose, pick a more
appropriate name for it.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Introduce a new API to fs/lockd/mon.c that allows nlm_host_rebooted()
to lookup up nsm_handles via the contents of an nlm_reboot struct.
The new function is equivalent to calling nsm_find() with @create set
to zero, but it takes a struct nlm_reboot instead of separate
arguments.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Pass the nlm_reboot data structure directly from the NLMPROC_SM_NOTIFY
XDR decoders to nlm_host_rebooted(). This eliminates some packing and
unpacking of the NLMPROC_SM_NOTIFY results, and prepares for passing
these results, including the "priv" cookie, directly to a lookup
routine in fs/lockd/mon.c.
This patch changes code organization but should not cause any
behavioral change.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Introduce a new data type, used by both the in-kernel NLM and NSM
implementations, that is used to manage the opaque "priv" argument
for the NSMPROC_MON and NLMPROC_SM_NOTIFY calls.
Construct the "priv" cookie when the nsm_handle is created.
The nsm_init_private() function may look a little strange, but it is
roughly equivalent to how the XDR encoder formed the "priv" argument.
It's going to go away soon.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
The nsm_find() function sets up fresh nsm_handle entries. This is
where we will store the "priv" cookie used to lookup nsm_handles during
reboot recovery. The cookie will be constructed when nsm_find()
creates a new nsm_handle.
As much as possible, I would like to keep everything that handles a
"priv" cookie in fs/lockd/mon.c so that all the smarts are in one
source file. That organization should make it pretty simple to see how
all this works.
To me, it makes more sense than the current arrangement to keep
nsm_find() with nsm_monitor() and nsm_unmonitor().
So, start reorganizing by moving nsm_find() into fs/lockd/mon.c. The
nsm_release() function comes along too, since it shares the nsm_lock
global variable.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Clean up.
Make the nlm_host argument "const," and move the public declaration to
lockd.h. Add a documenting comment.
Bruce observed that nsm_unmonitor()'s only caller doesn't care about
its return code, so make nsm_unmonitor() return void.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
The nsm_handle's reference count is bumped in nlm_lookup_host(). It
should be decremented in nlm_destroy_host() to make it easier to see
the balance of these two operations.
Move the nsm_release() call to fs/lockd/host.c.
The h_nsmhandle pointer is set in nlm_lookup_host(), and never cleared.
The nlm_destroy_host() function is never called for the same nlm_host
twice, so h_nsmhandle won't ever be NULL when nsm_unmonitor() is
called.
All references to the nlm_host are gone before it is freed. We can
skip making h_nsmhandle NULL just before the nlm_host is deallocated.
It's also likely we can remove the h_nsmhandle NULL check in
nlmsvc_is_client() as well, but we can do that later when rearchitect-
ing the nlm_host cache.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Clean up.
Make the nlm_host argument "const," and move the public declaration to
lockd.h with other NSM public function (nsm_release, eg) and global
variable declarations.
Add a documenting comment.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
The "mon_name" argument of the NSMPROC_MON and NSMPROC_UNMON upcalls
is a string that contains the hostname or IP address of the remote peer
to be notified when this host has rebooted. The sm-notify command uses
this identifier to contact the peer when we reboot, so it must be
either a well-qualified DNS hostname or a presentation format IP
address string.
When the "nsm_use_hostnames" sysctl is set to zero, the kernel's NSM
provides a presentation format IP address in the "mon_name" argument.
Otherwise, the "caller_name" argument from NLM requests is used,
which is usually just the DNS hostname of the peer.
To support IPv6 addresses for the mon_name argument, we use the
nsm_handle's address eye-catcher, which already contains an appropriate
presentation format address string. Using the eye-catcher string
obviates the need to use a large buffer on the stack to form the
presentation address string for the upcall.
This patch also addresses a subtle bug.
An NSMPROC_MON request and the subsequent NSMPROC_UNMON request for the
same peer are required to use the same value for the "mon_name"
argument. Otherwise, rpc.statd's NSMPROC_UNMON processing cannot
locate the database entry for that peer and remove it.
If the setting of nsm_use_hostnames is changed between the time the
kernel sends an NSMPROC_MON request and the time it sends the
NSMPROC_UNMON request for the same peer, the "mon_name" argument for
these two requests may not be the same. This is because the value of
"mon_name" is currently chosen at the moment the call is made based on
the setting of nsm_use_hostnames
To ensure both requests pass identical contents in the "mon_name"
argument, we now select which string to use for the argument in the
nsm_monitor() function. A pointer to this string is saved in the
nsm_handle so it can be used for a subsequent NSMPROC_UNMON upcall.
NB: There are other potential problems, such as how nlm_host_rebooted()
might behave if nsm_use_hostnames were changed while hosts are still
being monitored. This patch does not attempt to address those
problems.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Clean up: I'm about to add another "char *" field to the nsm_handle
structure. The sm_name field uses an older style of declaring a
"char *" field. If I match that style for the new field, checkpatch.pl
will complain.
So, fix the sm_name field to use the new style.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Scope ID support is needed since the kernel's NSM implementation is
about to use these displayed addresses as a mon_name in some cases.
When nsm_use_hostnames is zero, without scope ID support NSM will fail
to handle peers that contact us via a link-local address. Link-local
addresses do not work without an interface ID, which is stored in the
sockaddr's sin6_scope_id field.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
The h_name field in struct nlm_host is a just copy of
h_nsmhandle->sm_name. Likewise, the contents of the h_addrbuf field
should be identical to the sm_addrbuf field.
The h_srcaddrbuf field is used only in one place for debugging. We can
live without this until we get %pI formatting for printk().
Currently these buffers are 48 bytes, but we need to support scope IDs
in IPv6 presentation addresses, which means making the buffers even
larger. Instead, let's find ways to eliminate them to save space.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Clean up: I'm about to add another "char *" field to the nlm_host
structure. The h_name field, for example, uses an older style of
declaring a "char *" field. If I match that style for the new field,
checkpatch.pl will complain.
So, fix pointer fields to use the new style.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>