Commit Graph

4749 Commits

Author SHA1 Message Date
Josef Bacik ea526d1899 Btrfs: fix ASSERT(list_empty(&cur_trans->dirty_bgs_list)
Dave could hit this assert consistently running btrfs/078.  This is because
when we update the block groups we could truncate the free space, which would
try to delete the csums for that range and dirty the csum root.  For this to
happen we have to have already written out the csum root so it's kind of hard to
hit this case.  This patch fixes this by changing the logic to only write the
dirty block groups if the dirty_cowonly_roots list is empty.  This will get us
the same effect as before since we add the extent root last, and will cover the
case that we dirty some other root again but not the extent root.  Thanks,

Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-13 13:47:04 -07:00
Josef Bacik 6a41dd0922 Btrfs: account for the correct number of extents for delalloc reservations
Direct IO can easily pass in an buffer that is greater than
BTRFS_MAX_EXTENT_SIZE, so take this into account when reserving extents in the
delalloc reservation code.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-13 13:46:59 -07:00
Josef Bacik 8461a3de77 Btrfs: fix merge delalloc logic
My patch to properly count outstanding extents wrt MAX_EXTENT_SIZE introduced a
regression when re-dirtying already dirty areas.  We have logic in split to make
sure we are taking the largest space into account but didn't have it for merge,
so it was sometimes making us think we were turning a tiny extent into a huge
extent, when in reality we already had a huge extent and needed to use the other
side in our logic.  This fixes the regression that was reported by a user on
list.  Thanks,

Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-13 13:46:59 -07:00
Liu Bo 48da5f0a4c Btrfs: fix comp_oper to get right order
Case (oper1->seq > oper2->seq) should differ with case (oper1->seq < oper2->seq).

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-13 13:46:59 -07:00
Liu Bo b4924a0fa1 Btrfs: catch transaction abortion after waiting for it
This problem is uncovered by a test case: http://patchwork.ozlabs.org/patch/244297.

Fsync() can report success when it actually doesn't.  When we
have several threads running fsync() at the same tiem and in one fsync() we
get a transaction abortion due to some problems(in the test case it's disk
failures), and other fsync()s may return successfully which makes userspace
programs think that data is now safely flushed into disk.

It's because that after fsyncs() fail btrfs_sync_log() due to disk failures,
they get to try btrfs_commit_transaction() where it finds that there is
already a transaction being committed, and they'll just call wait_for_commit()
and return.  Note that we actually check "trans->aborted" in btrfs_end_transaction,
but it's likely that the error message is still not yet throwed out and only after
wait_for_commit() we're sure whether the transaction is committed successfully.

This add the necessary check and it now passes the test.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-13 13:38:23 -07:00
Fabian Frederick d22071293f btrfs: fix sizeof format specifier in btrfs_check_super_valid()
This patch fixes mips compilation warning:

fs/btrfs/disk-io.c: In function 'btrfs_check_super_valid':
fs/btrfs/disk-io.c:3927:21: warning: format '%lu' expects argument
of type 'long unsigned int', but argument 3 has type 'unsigned int' [-Wformat]

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-13 13:38:22 -07:00
Linus Torvalds 84399bb075 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "Outside of misc fixes, Filipe has a few fsync corners and we're
  pulling in one more of Josef's fixes from production use here"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
  Btrfs: fix data loss in the fast fsync path
  Btrfs: remove extra run_delayed_refs in update_cowonly_root
  Btrfs: incremental send, don't rename a directory too soon
  btrfs: fix lost return value due to variable shadowing
  Btrfs: do not ignore errors from btrfs_lookup_xattr in do_setxattr
  Btrfs: fix off-by-one logic error in btrfs_realloc_node
  Btrfs: add missing inode update when punching hole
  Btrfs: abort the transaction if we fail to update the free space cache inode
  Btrfs: fix fsync race leading to ordered extent memory leaks
2015-03-06 13:52:54 -08:00
Quentin Casasnovas dd9ef135e3 Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
Improper arithmetics when calculting the address of the extended ref could
lead to an out of bounds memory read and kernel panic.

Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
cc: stable@vger.kernel.org # v3.7+
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-05 17:28:33 -08:00
Filipe Manana 3a8b36f378 Btrfs: fix data loss in the fast fsync path
When using the fast file fsync code path we can miss the fact that new
writes happened since the last file fsync and therefore return without
waiting for the IO to finish and write the new extents to the fsync log.

Here's an example scenario where the fsync will miss the fact that new
file data exists that wasn't yet durably persisted:

1. fs_info->last_trans_committed == N - 1 and current transaction is
   transaction N (fs_info->generation == N);

2. do a buffered write;

3. fsync our inode, this clears our inode's full sync flag, starts
   an ordered extent and waits for it to complete - when it completes
   at btrfs_finish_ordered_io(), the inode's last_trans is set to the
   value N (via btrfs_update_inode_fallback -> btrfs_update_inode ->
   btrfs_set_inode_last_trans);

4. transaction N is committed, so fs_info->last_trans_committed is now
   set to the value N and fs_info->generation remains with the value N;

5. do another buffered write, when this happens btrfs_file_write_iter
   sets our inode's last_trans to the value N + 1 (that is
   fs_info->generation + 1 == N + 1);

6. transaction N + 1 is started and fs_info->generation now has the
   value N + 1;

7. transaction N + 1 is committed, so fs_info->last_trans_committed
   is set to the value N + 1;

8. fsync our inode - because it doesn't have the full sync flag set,
   we only start the ordered extent, we don't wait for it to complete
   (only in a later phase) therefore its last_trans field has the
   value N + 1 set previously by btrfs_file_write_iter(), and so we
   have:

       inode->last_trans <= fs_info->last_trans_committed
           (N + 1)              (N + 1)

   Which made us not log the last buffered write and exit the fsync
   handler immediately, returning success (0) to user space and resulting
   in data loss after a crash.

This can actually be triggered deterministically and the following excerpt
from a testcase I made for xfstests triggers the issue. It moves a dummy
file across directories and then fsyncs the old parent directory - this
is just to trigger a transaction commit, so moving files around isn't
directly related to the issue but it was chosen because running 'sync' for
example does more than just committing the current transaction, as it
flushes/waits for all file data to be persisted. The issue can also happen
at random periods, since the transaction kthread periodicaly commits the
current transaction (about every 30 seconds by default).
The body of the test is:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our main test file 'foo', the one we check for data loss.
  # By doing an fsync against our file, it makes btrfs clear the 'needs_full_sync'
  # bit from its flags (btrfs inode specific flags).
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" \
                  -c "fsync" $SCRATCH_MNT/foo | _filter_xfs_io

  # Now create one other file and 2 directories. We will move this second file
  # from one directory to the other later because it forces btrfs to commit its
  # currently open transaction if we fsync the old parent directory. This is
  # necessary to trigger the data loss bug that affected btrfs.
  mkdir $SCRATCH_MNT/testdir_1
  touch $SCRATCH_MNT/testdir_1/bar
  mkdir $SCRATCH_MNT/testdir_2

  # Make sure everything is durably persisted.
  sync

  # Write more 8Kb of data to our file.
  $XFS_IO_PROG -c "pwrite -S 0xbb 8K 8K" $SCRATCH_MNT/foo | _filter_xfs_io

  # Move our 'bar' file into a new directory.
  mv $SCRATCH_MNT/testdir_1/bar $SCRATCH_MNT/testdir_2/bar

  # Fsync our first directory. Because it had a file moved into some other
  # directory, this made btrfs commit the currently open transaction. This is
  # a condition necessary to trigger the data loss bug.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir_1

  # Now fsync our main test file. If the fsync succeeds, we expect the 8Kb of
  # data we wrote previously to be persisted and available if a crash happens.
  # This did not happen with btrfs, because of the transaction commit that
  # happened when we fsynced the parent directory.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # Now check that all data we wrote before are available.
  echo "File content after log replay:"
  od -t x1 $SCRATCH_MNT/foo

  status=0
  exit

The expected golden output for the test, which is what we get with this
fix applied (or when running against ext3/4 and xfs), is:

  wrote 8192/8192 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  wrote 8192/8192 bytes at offset 8192
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  File content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0020000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
  *
  0040000

Without this fix applied, the output shows the test file does not have
the second 8Kb extent that we successfully fsynced:

  wrote 8192/8192 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  wrote 8192/8192 bytes at offset 8192
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  File content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0020000

So fix this by skipping the fsync only if we're doing a full sync and
if the inode's last_trans is <= fs_info->last_trans_committed, or if
the inode is already in the log. Also remove setting the inode's
last_trans in btrfs_file_write_iter since it's useless/unreliable.

Also because btrfs_file_write_iter no longer sets inode->last_trans to
fs_info->generation + 1, don't set last_trans to 0 if we bail out and don't
bail out if last_trans is 0, otherwise something as simple as the following
example wouldn't log the second write on the last fsync:

  1. write to file

  2. fsync file

  3. fsync file
       |--> btrfs_inode_in_log() returns true and it set last_trans to 0

  4. write to file
       |--> btrfs_file_write_iter() no longers sets last_trans, so it
            remained with a value of 0
  5. fsync
       |--> inode->last_trans == 0, so it bails out without logging the
            second write

A test case for xfstests will be sent soon.

CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-05 17:28:32 -08:00
Josef Bacik f5c0a12280 Btrfs: remove extra run_delayed_refs in update_cowonly_root
This got added with my dirty_bgs patch, it's not needed.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-05 17:28:30 -08:00
David Sterba 258ece0212 btrfs: remove shadowing variables in __btrfs_map_block
1) We can safely use the function's 'i'. Fixes warning

fs/btrfs/volumes.c:5257:7: warning: declaration of 'i' shadows a previous local
fs/btrfs/volumes.c:4951:6: warning: shadowed declaration is here

2) A local variable duplicates name of an argument, we can use the value
directly. Fixes warning

fs/btrfs/volumes.c:5433:8: warning: declaration of 'length' shadows a parameter
fs/btrfs/volumes.c:4935:27: warning: shadowed declaration is here

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:24:35 +01:00
David Sterba 093adbcedf btrfs: switch helper macros to static inlines in sysfs.h
The conversion macros use nested container_of that leads to a warning

fs/btrfs/sysfs.c: In function 'btrfs_feature_visible':
fs/btrfs/sysfs.c:183:8: warning: declaration of '__mptr' shadows a previous local
fs/btrfs/sysfs.c:183:8: warning: shadowed declaration is here

Use of functions will add proper type checking.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:24:02 +01:00
David Sterba 9d644a623e btrfs: cleanup, use correct type in div_u64_rem
div_u64_rem expects u32 for divisior and reminder.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:24:01 +01:00
David Sterba 47c5713f47 btrfs: replace remaining do_div calls with div_u64 variants
Switch to div_u64_rem that does type checking and has more obvious
semantics than do_div.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:24:01 +01:00
David Sterba b8b93addde btrfs: cleanup 64bit/32bit divs, provably bounded values
The divisor is derived from nodesize or PAGE_SIZE, fits into 32bit type.
Get rid of a few more do_div instances.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:24:00 +01:00
David Sterba 3284da7b7b btrfs: use explicit initializer for seq_elem
Using {} as initializer for struct seq_elem does not properly initialize
the list_head member, but it currently works because it gets set through
btrfs_get_tree_mod_seq if 'seq' is 0.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:23:59 +01:00
David Sterba f64c7b12f8 btrfs: remove shadowing variables in __btrfs_buffered_write
There are lockstart and lockend defined in the function and not used
after their duplicate definition scope ends, it's safe to reuse them.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:23:58 +01:00
David Sterba 31e818fe73 btrfs: cleanup, use kmalloc_array/kcalloc array helpers
Convert kmalloc(nr * size, ..) to kmalloc_array that does additional
overflow checks, the zeroing variant is kcalloc.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:23:58 +01:00
David Sterba f8c269d722 btrfs: cleanup 64bit/32bit divs, compile time constants
Switch to div_u64 if the divisor is a numeric constant or sum of
sizeof()s. We can remove a few instances of do_div that has the hidden
semtantics of changing the 1st argument.

Small power-of-two divisors are converted to bitshifts, large values are
kept intact for clarity.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:23:57 +01:00
David Sterba 351810c1d2 btrfs: use cond_resched_lock where possible
Clean the opencoded variant, cond_resched_lock also checks the lock for
contention so it might help in some cases that were not covered by
simple need_resched().

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:23:56 +01:00
David Sterba 853d8ec4b2 btrfs: need_resched not needed with cond_resched
Cleanup, no special reason to do

if (need_resched())
        cond_resched();

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:23:55 +01:00
Filipe Manana 84471e2429 Btrfs: incremental send, don't rename a directory too soon
There's one more case where we can't issue a rename operation for a
directory as soon as we process it. We used to delay directory renames
only if they have some ancestor directory with a higher inode number
that got renamed too, but there's another case where we need to delay
the rename too - when a directory A is renamed to the old name of a
directory B but that directory B has its rename delayed because it
has now (in the send root) an ancestor with a higher inode number that
was renamed. If we don't delay the directory rename in this case, the
receiving end of the send stream will attempt to rename A to the old
name of B before B got renamed to its new name, which results in a
"directory not empty" error. So fix this by delaying directory renames
for this case too.

Steps to reproduce:

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt

  $ mkdir /mnt/a
  $ mkdir /mnt/b
  $ mkdir /mnt/c
  $ touch /mnt/a/file

  $ btrfs subvolume snapshot -r /mnt /mnt/snap1

  $ mv /mnt/c /mnt/x
  $ mv /mnt/a /mnt/x/y
  $ mv /mnt/b /mnt/a

  $ btrfs subvolume snapshot -r /mnt /mnt/snap2

  $ btrfs send /mnt/snap1 -f /tmp/1.send
  $ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.send

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt2
  $ btrfs receive /mnt2 -f /tmp/1.send
  $ btrfs receive /mnt2 -f /tmp/2.send
  ERROR: rename b -> a failed. Directory not empty

A test case for xfstests follows soon.

Reported-by: Ames Cornish <ames@cornishes.net>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-02 14:04:45 -08:00
David Sterba 1932b7be97 btrfs: fix lost return value due to variable shadowing
A block-local variable stores error code but btrfs_get_blocks_direct may
not return it in the end as there's a ret defined in the function scope.

CC: <stable@vger.kernel.org>	# 3.6+
Fixes: d187663ef2 ("Btrfs: lock extents as we map them in DIO")
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-02 14:04:45 -08:00
Filipe Manana 5cdf83edb8 Btrfs: do not ignore errors from btrfs_lookup_xattr in do_setxattr
The return value from btrfs_lookup_xattr() can be a pointer encoding an
error, therefore deal with it. This fixes commit 5f5bc6b1e2
("Btrfs: make xattr replace operations atomic").

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-02 14:04:45 -08:00
Filipe Manana 5dfe2be7ea Btrfs: fix off-by-one logic error in btrfs_realloc_node
The end_slot variable actually matches the number of pointers in the
node and not the last slot (which is 'nritems - 1'). Therefore in order
to check that the current slot in the for loop doesn't match the last
one, the correct logic is to check if 'i' is less than 'end_slot - 1'
and not 'end_slot - 2'.

Fix this and set end_slot to be 'nritems - 1', as it's less confusing
since the variable name implies it's inclusive rather then exclusive.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-02 14:04:45 -08:00
Filipe Manana e8c1c76e80 Btrfs: add missing inode update when punching hole
When punching a file hole if we endup only zeroing parts of a page,
because the start offset isn't a multiple of the sector size or the
start offset and length fall within the same page, we were not updating
the inode item. This prevented an fsync from doing anything, if no other
file changes happened in the current transaction, because the fields
in btrfs_inode used to check if the inode needs to be fsync'ed weren't
updated.

This issue is easy to reproduce and the following excerpt from the
xfstest case I made shows how to trigger it:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file.
  $XFS_IO_PROG -f -c "pwrite -S 0x22 -b 16K 0 16K" \
      $SCRATCH_MNT/foo | _filter_xfs_io

  # Fsync the file, this makes btrfs update some btrfs inode specific fields
  # that are used to track if the inode needs to be written/updated to the fsync
  # log or not. After this fsync, the new values for those fields indicate that
  # a subsequent fsync does not need to touch the fsync log.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Force a commit of the current transaction. After this point, any operation
  # that modifies the data or metadata of our file, should update those fields in
  # the btrfs inode with values that make the next fsync operation write to the
  # fsync log.
  sync

  # Punch a hole in our file. This small range affects only 1 page.
  # This made the btrfs hole punching implementation write only some zeroes in
  # one page, but it did not update the btrfs inode fields used to determine if
  # the next fsync needs to write to the fsync log.
  $XFS_IO_PROG -c "fpunch 8000 4K" $SCRATCH_MNT/foo

  # Another variation of the previously mentioned case.
  $XFS_IO_PROG -c "fpunch 15000 100" $SCRATCH_MNT/foo

  # Now fsync the file. This was a no-operation because the previous hole punch
  # operation didn't update the inode's fields mentioned before, so they remained
  # with the values they had after the first fsync - that is, they indicate that
  # it is not needed to write to fsync log.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Enable writes and mount the fs. This makes the fsync log replay code run.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # Because the last fsync didn't do anything, here the file content matched what
  # it was after the first fsync, before the holes were punched, and not what it
  # was after the holes were punched.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

This issue has been around since 2012, when the punch hole implementation
was added, commit 2aaa665581 ("Btrfs: add hole punching").

A test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-02 14:04:44 -08:00
Josef Bacik 0c0ef4bc84 Btrfs: abort the transaction if we fail to update the free space cache inode
Our gluster boxes were hitting a problem where they'd run out of space when
updating the block group cache and therefore wouldn't be able to update the free
space inode.  This is a problem because this is how we invalidate the cache and
protect ourselves from errors further down the stack, so if this fails we have
to abort the transaction so we make sure we don't end up with stale free space
cache.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-02 14:04:44 -08:00
Filipe Manana 4d884fceaa Btrfs: fix fsync race leading to ordered extent memory leaks
We can have multiple fsync operations against the same file during the
same transaction and they can collect the same ordered extents while they
don't complete (still accessible from the inode's ordered tree). If this
happens, those ordered extents will never get their reference counts
decremented to 0, leading to memory leaks and inode leaks (an iput for an
ordered extent's inode is scheduled only when the ordered extent's refcount
drops to 0). The following sequence diagram explains this race:

         CPU 1                                         CPU 2

btrfs_sync_file()

                                                 btrfs_sync_file()

  mutex_lock(inode->i_mutex)
  btrfs_log_inode()
    btrfs_get_logged_extents()
      --> collects ordered extent X
      --> increments ordered
          extent X's refcount
    btrfs_submit_logged_extents()
  mutex_unlock(inode->i_mutex)

                                                   mutex_lock(inode->i_mutex)
  btrfs_sync_log()
     btrfs_wait_logged_extents()
       --> list_del_init(&ordered->log_list)
                                                     btrfs_log_inode()
                                                       btrfs_get_logged_extents()
                                                         --> Adds ordered extent X
                                                             to logged_list because
                                                             at this point:
                                                             list_empty(&ordered->log_list)
                                                             && test_bit(BTRFS_ORDERED_LOGGED,
                                                                         &ordered->flags) == 0
                                                         --> Increments ordered extent
                                                             X's refcount
       --> check if ordered extent's io is
           finished or not, start it if
           necessary and wait for it to finish
       --> sets bit BTRFS_ORDERED_LOGGED
           on ordered extent X's flags
           and adds it to trans->ordered
  btrfs_sync_log() finishes

                                                       btrfs_submit_logged_extents()
                                                     btrfs_log_inode() finishes
                                                   mutex_unlock(inode->i_mutex)

btrfs_sync_file() finishes

                                                   btrfs_sync_log()
                                                      btrfs_wait_logged_extents()
                                                        --> Sees ordered extent X has the
                                                            bit BTRFS_ORDERED_LOGGED set in
                                                            its flags
                                                        --> X's refcount is untouched
                                                   btrfs_sync_log() finishes

                                                 btrfs_sync_file() finishes

btrfs_commit_transaction()
  --> called by transaction kthread for e.g.
  btrfs_wait_pending_ordered()
    --> waits for ordered extent X to
        complete
    --> decrements ordered extent X's
        refcount by 1 only, corresponding
        to the increment done by the fsync
        task ran by CPU 1

In the scenario of the above diagram, after the transaction commit,
the ordered extent will remain with a refcount of 1 forever, leaking
the ordered extent structure and preventing the i_count of its inode
from ever decreasing to 0, since the delayed iput is scheduled only
when the ordered extent's refcount drops to 0, preventing the inode
from ever being evicted by the VFS.

Fix this by using the flag BTRFS_ORDERED_LOGGED differently. Use it to
mean that an ordered extent is already being processed by an fsync call,
which will attach it to the current transaction, preventing it from being
collected by subsequent fsync operations against the same inode.

This race was introduced with the following change (added in 3.19 and
backported to stable 3.18 and 3.17):

  Btrfs: make sure logged extents complete in the current transaction V3
  commit 50d9aa99bd

I ran into this issue while running xfstests/generic/113 in a loop, which
failed about 1 out of 10 runs with the following warning in dmesg:

[ 2612.440038] WARNING: CPU: 4 PID: 22057 at fs/btrfs/disk-io.c:3558 free_fs_root+0x36/0x133 [btrfs]()
[ 2612.442810] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop processor parport_pc parport psmouse therma
l_sys i2c_piix4 serio_raw pcspkr evdev microcode button i2c_core ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom virtio_scsi ata_generic virtio_pci ata_piix virtio_ring libata virtio flo
ppy e1000 scsi_mod [last unloaded: btrfs]
[ 2612.452711] CPU: 4 PID: 22057 Comm: umount Tainted: G        W      3.19.0-rc5-btrfs-next-4+ #1
[ 2612.454921] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 2612.457709]  0000000000000009 ffff8801342c3c78 ffffffff8142425e ffff88023ec8f2d8
[ 2612.459829]  0000000000000000 ffff8801342c3cb8 ffffffff81045308 ffff880046460000
[ 2612.461564]  ffffffffa036da56 ffff88003d07b000 ffff880046460000 ffff880046460068
[ 2612.463163] Call Trace:
[ 2612.463719]  [<ffffffff8142425e>] dump_stack+0x4c/0x65
[ 2612.464789]  [<ffffffff81045308>] warn_slowpath_common+0xa1/0xbb
[ 2612.466026]  [<ffffffffa036da56>] ? free_fs_root+0x36/0x133 [btrfs]
[ 2612.467247]  [<ffffffff810453c5>] warn_slowpath_null+0x1a/0x1c
[ 2612.468416]  [<ffffffffa036da56>] free_fs_root+0x36/0x133 [btrfs]
[ 2612.469625]  [<ffffffffa036f2a7>] btrfs_drop_and_free_fs_root+0x93/0x9b [btrfs]
[ 2612.471251]  [<ffffffffa036f353>] btrfs_free_fs_roots+0xa4/0xd6 [btrfs]
[ 2612.472536]  [<ffffffff8142612e>] ? wait_for_completion+0x24/0x26
[ 2612.473742]  [<ffffffffa0370bbc>] close_ctree+0x1f3/0x33c [btrfs]
[ 2612.475477]  [<ffffffff81059d1d>] ? destroy_workqueue+0x148/0x1ba
[ 2612.476695]  [<ffffffffa034e3da>] btrfs_put_super+0x19/0x1b [btrfs]
[ 2612.477911]  [<ffffffff81153e53>] generic_shutdown_super+0x73/0xef
[ 2612.479106]  [<ffffffff811540e2>] kill_anon_super+0x13/0x1e
[ 2612.480226]  [<ffffffffa034e1e3>] btrfs_kill_super+0x17/0x23 [btrfs]
[ 2612.481471]  [<ffffffff81154307>] deactivate_locked_super+0x3b/0x50
[ 2612.482686]  [<ffffffff811547a7>] deactivate_super+0x3f/0x43
[ 2612.483791]  [<ffffffff8116b3ed>] cleanup_mnt+0x59/0x78
[ 2612.484842]  [<ffffffff8116b44c>] __cleanup_mnt+0x12/0x14
[ 2612.485900]  [<ffffffff8105d019>] task_work_run+0x8f/0xbc
[ 2612.486960]  [<ffffffff810028d8>] do_notify_resume+0x5a/0x6b
[ 2612.488083]  [<ffffffff81236e5b>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 2612.489333]  [<ffffffff8142a17f>] int_signal+0x12/0x17
[ 2612.490353] ---[ end trace 54a960a6bdcb8d93 ]---
[ 2612.557253] VFS: Busy inodes after unmount of sdb. Self-destruct in 5 seconds.  Have a nice day...

Kmemleak confirmed the ordered extent leak (and btrfs inode specific
structures such as delayed nodes):

$ cat /sys/kernel/debug/kmemleak
unreferenced object 0xffff880154290db0 (size 576):
  comm "btrfsck", pid 21980, jiffies 4295542503 (age 1273.412s)
  hex dump (first 32 bytes):
    01 40 00 00 01 00 00 00 b0 1d f1 4e 01 88 ff ff  .@.........N....
    00 00 00 00 00 00 00 00 c8 0d 29 54 01 88 ff ff  ..........)T....
  backtrace:
    [<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a
    [<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83
    [<ffffffff8122fb26>] __radix_tree_create+0x109/0x190
    [<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac
    [<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs]
    [<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs]
    [<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs]
    [<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs]
    [<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs]
    [<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed
    [<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa
    [<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b
    [<ffffffff81429e92>] system_call_fastpath+0x12/0x17
    [<ffffffffffffffff>] 0xffffffffffffffff
unreferenced object 0xffff88014ef11db0 (size 576):
  comm "rm", pid 22009, jiffies 4295542593 (age 1273.052s)
  hex dump (first 32 bytes):
    02 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00  ................
    00 00 00 00 00 00 00 00 c8 1d f1 4e 01 88 ff ff  ...........N....
  backtrace:
    [<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a
    [<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83
    [<ffffffff8122fb26>] __radix_tree_create+0x109/0x190
    [<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac
    [<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs]
    [<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs]
    [<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs]
    [<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs]
    [<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs]
    [<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed
    [<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa
    [<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b
    [<ffffffff81429e92>] system_call_fastpath+0x12/0x17
    [<ffffffffffffffff>] 0xffffffffffffffff
unreferenced object 0xffff8800336feda8 (size 584):
  comm "aio-stress", pid 22031, jiffies 4295543006 (age 1271.400s)
  hex dump (first 32 bytes):
    00 40 3e 00 00 00 00 00 00 00 8f 42 00 00 00 00  .@>........B....
    00 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00  ................
  backtrace:
    [<ffffffff8114eb34>] create_object+0x172/0x29a
    [<ffffffff8141d790>] kmemleak_alloc+0x25/0x41
    [<ffffffff81141ae6>] kmemleak_alloc_recursive.constprop.52+0x16/0x18
    [<ffffffff81145288>] kmem_cache_alloc+0xf7/0x198
    [<ffffffffa0389243>] __btrfs_add_ordered_extent+0x43/0x309 [btrfs]
    [<ffffffffa038968b>] btrfs_add_ordered_extent_dio+0x12/0x14 [btrfs]
    [<ffffffffa03810e2>] btrfs_get_blocks_direct+0x3ef/0x571 [btrfs]
    [<ffffffff81181349>] do_blockdev_direct_IO+0x62a/0xb47
    [<ffffffff8118189a>] __blockdev_direct_IO+0x34/0x36
    [<ffffffffa03776e5>] btrfs_direct_IO+0x16a/0x1e8 [btrfs]
    [<ffffffff81100373>] generic_file_direct_write+0xb8/0x12d
    [<ffffffffa038615c>] btrfs_file_write_iter+0x24b/0x42f [btrfs]
    [<ffffffff8118bb0d>] aio_run_iocb+0x2b7/0x32e
    [<ffffffff8118c99a>] do_io_submit+0x26e/0x2ff
    [<ffffffff8118ca3b>] SyS_io_submit+0x10/0x12
    [<ffffffff81429e92>] system_call_fastpath+0x12/0x17

CC: <stable@vger.kernel.org> # 3.19, 3.18 and 3.17
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-02 14:04:44 -08:00
Linus Torvalds 7dac5cb1bc Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fix from Chris Mason:
 "I'm still testing more fixes, but I wanted to get out the fix for the
  btrfs raid5/6 memory corruption I mentioned in my merge window pull"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: fix allocation size calculations in alloc_btrfs_bio
2015-02-26 10:34:24 -08:00
Linus Torvalds be5e6616dd Merge branch 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
 "Assorted stuff from this cycle.  The big ones here are multilayer
  overlayfs from Miklos and beginning of sorting ->d_inode accesses out
  from David"

* 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (51 commits)
  autofs4 copy_dev_ioctl(): keep the value of ->size we'd used for allocation
  procfs: fix race between symlink removals and traversals
  debugfs: leave freeing a symlink body until inode eviction
  Documentation/filesystems/Locking: ->get_sb() is long gone
  trylock_super(): replacement for grab_super_passive()
  fanotify: Fix up scripted S_ISDIR/S_ISREG/S_ISLNK conversions
  Cachefiles: Fix up scripted S_ISDIR/S_ISREG/S_ISLNK conversions
  VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry)
  SELinux: Use d_is_positive() rather than testing dentry->d_inode
  Smack: Use d_is_positive() rather than testing dentry->d_inode
  TOMOYO: Use d_is_dir() rather than d_inode and S_ISDIR()
  Apparmor: Use d_is_positive/negative() rather than testing dentry->d_inode
  Apparmor: mediated_filesystem() should use dentry->d_sb not inode->i_sb
  VFS: Split DCACHE_FILE_TYPE into regular and special types
  VFS: Add a fallthrough flag for marking virtual dentries
  VFS: Add a whiteout dentry type
  VFS: Introduce inode-getting helpers for layered/unioned fs environments
  Infiniband: Fix potential NULL d_inode dereference
  posix_acl: fix reference leaks in posix_acl_create
  autofs4: Wrong format for printing dentry
  ...
2015-02-22 17:42:14 -08:00
David Howells e36cb0b89c VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry)
Convert the following where appropriate:

 (1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).

 (2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).

 (3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry).  This is actually more
     complicated than it appears as some calls should be converted to
     d_can_lookup() instead.  The difference is whether the directory in
     question is a real dir with a ->lookup op or whether it's a fake dir with
     a ->d_automount op.

In some circumstances, we can subsume checks for dentry->d_inode not being
NULL into this, provided we the code isn't in a filesystem that expects
d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
use d_inode() rather than d_backing_inode() to get the inode pointer).

Note that the dentry type field may be set to something other than
DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
manages the fall-through from a negative dentry to a lower layer.  In such a
case, the dentry type of the negative union dentry is set to the same as the
type of the lower dentry.

However, if you know d_inode is not NULL at the call site, then you can use
the d_is_xxx() functions even in a filesystem.

There is one further complication: a 0,0 chardev dentry may be labelled
DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE.  Strictly, this was
intended for special directory entry types that don't have attached inodes.

The following perl+coccinelle script was used:

use strict;

my @callers;
open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
    die "Can't grep for S_ISDIR and co. callers";
@callers = <$fd>;
close($fd);
unless (@callers) {
    print "No matches\n";
    exit(0);
}

my @cocci = (
    '@@',
    'expression E;',
    '@@',
    '',
    '- S_ISLNK(E->d_inode->i_mode)',
    '+ d_is_symlink(E)',
    '',
    '@@',
    'expression E;',
    '@@',
    '',
    '- S_ISDIR(E->d_inode->i_mode)',
    '+ d_is_dir(E)',
    '',
    '@@',
    'expression E;',
    '@@',
    '',
    '- S_ISREG(E->d_inode->i_mode)',
    '+ d_is_reg(E)' );

my $coccifile = "tmp.sp.cocci";
open($fd, ">$coccifile") || die $coccifile;
print($fd "$_\n") || die $coccifile foreach (@cocci);
close($fd);

foreach my $file (@callers) {
    chomp $file;
    print "Processing ", $file, "\n";
    system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
	die "spatch failed";
}

[AV: overlayfs parts skipped]

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-02-22 11:38:41 -05:00
Chris Mason e57cf21e97 Btrfs: fix allocation size calculations in alloc_btrfs_bio
Since commit 8e5cfb55d3 (Btrfs: Make raid_map array be inlined in
btrfs_bio structure), the raid map array is allocated along with the
btrfs bio in alloc_btrfs_bio.  The calculation used to decide how much
we need to allocate was using the wrong parameter passed into the
allocation function.

The passed in real_stripes will be zero if a target replace operation
is not currently running.  We want to use total_stripes instead.

Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: David Sterba <dsterba@suse.cz>
Tested-by: David Sterba <dsterba@suse.cz>
2015-02-20 06:55:15 -08:00
Linus Torvalds 2b9fb532d4 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This pull is mostly cleanups and fixes:

   - The raid5/6 cleanups from Zhao Lei fixup some long standing warts
     in the code and add improvements on top of the scrubbing support
     from 3.19.

   - Josef has round one of our ENOSPC fixes coming from large btrfs
     clusters here at FB.

   - Dave Sterba continues a long series of cleanups (thanks Dave), and
     Filipe continues hammering on corner cases in fsync and others

  This all was held up a little trying to track down a use-after-free in
  btrfs raid5/6.  It's not clear yet if this is just made easier to
  trigger with this pull or if its a new bug from the raid5/6 cleanups.
  Dave Sterba is the only one to trigger it so far, but he has a
  consistent way to reproduce, so we'll get it nailed shortly"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (68 commits)
  Btrfs: don't remove extents and xattrs when logging new names
  Btrfs: fix fsync data loss after adding hard link to inode
  Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group
  Btrfs: account for large extents with enospc
  Btrfs: don't set and clear delalloc for O_DIRECT writes
  Btrfs: only adjust outstanding_extents when we do a short write
  btrfs: Fix out-of-space bug
  Btrfs: scrub, fix sleep in atomic context
  Btrfs: fix scheduler warning when syncing log
  Btrfs: Remove unnecessary placeholder in btrfs_err_code
  btrfs: cleanup init for list in free-space-cache
  btrfs: delete chunk allocation attemp when setting block group ro
  btrfs: clear bio reference after submit_one_bio()
  Btrfs: fix scrub race leading to use-after-free
  Btrfs: add missing cleanup on sysfs init failure
  Btrfs: fix race between transaction commit and empty block group removal
  btrfs: add more checks to btrfs_read_sys_array
  btrfs: cleanup, rename a few variables in btrfs_read_sys_array
  btrfs: add checks for sys_chunk_array sizes
  btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize
  ...
2015-02-19 14:36:00 -08:00
David Sterba a4f3d2c4ef btrfs: cleanup, reduce temporary variables in btrfs_read_roots
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:47 +01:00
David Sterba 6f01105819 btrfs: use correct type for workqueue flags
Through all the local wrappers to alloc_workqueue, __alloc_workqueue_key
takes an unsigned int.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:47 +01:00
Eric Sandeen 4bbcaa648d btrfs: factor btrfs_read_roots() out of open_ctree()
Also, remove the two local variables create_uuid_tree
and check_uuid_tree; we can use the existence of
the uuid root and/or the RESCAN_UUID_TREE flag to
determine what action to take.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:46 +01:00
Eric Sandeen 63443bf54a btrfs: factor btrfs_replay_log() out of open_ctree()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:46 +01:00
Eric Sandeen 2a4581983f btrfs: factor btrfs_init_workqueues() out of open_ctree()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
[renamed to btrfs_init_workqueues]
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:46 +01:00
Eric Sandeen f9e92e40b5 btrfs: factor btrfs_init_qgroup() out of open_ctree()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
[renamed to btrfs_init_qgroup]
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:46 +01:00
Eric Sandeen ad6183680c btrfs: factor btrfs_init_dev_replace_locks() out of open_ctree()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
[renamed to btrfs_init_dev_replace_locks]
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:46 +01:00
Eric Sandeen f37938e0e2 btrfs: factor btrfs_init_btree_inode() out of open_ctree()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
[renamed to btrfs_init_btree_inode]
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:45 +01:00
Eric Sandeen 779a65a495 btrfs: factor btrfs_init_balance() out of open_ctree()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
[renamed to btrfs_init_balance]
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:45 +01:00
Eric Sandeen 638aa7ed46 btrfs: factor btrfs_init_scrub() out of open_ctree()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
[renamed to btrfs_init_scrub]
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:45 +01:00
Eric Sandeen 0489234077 btrfs: consistently use fs_info in close_ctree()
close_ctree() has a local fs_info var for convienience;
use it consistently.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:45 +01:00
Eric Sandeen 9eaed21ef9 btrfs: remove unused fs_info arg from btrfs_close_extra_devices()
The commit:
8dabb74 Btrfs: change core code of btrfs to support the
        device replace operations
added the fs_info argument, but never used it -
just remove it again.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:45 +01:00
Fabian Frederick 41d6b13ea7 btrfs: fix sizeof format specifier in btrfs_check_super_valid()
This patch fixes mips compilation warning:

fs/btrfs/disk-io.c: In function 'btrfs_check_super_valid':
fs/btrfs/disk-io.c:3927:21: warning: format '%lu' expects argument
of type 'long unsigned int', but argument 3 has type 'unsigned int' [-Wformat]

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:44 +01:00
Zhao Lei 08da757d3f btrfs: cleanup: use for() loop in btrfs_map_bio()
for() is obviously better in these code block, and remove noused
init-value to reduce about 6 bytes binary size.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:44 +01:00
Zhao Lei a688a04aab btrfs: remove unused chunk_tree argument in several functions
There functions include unused chunk_tree argument from the begining,
it is time to remove them and clean up relative code to prepare value
of this argument in caller.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:44 +01:00
Zhao Lei b9fd47cde5 btrfs: cleanup: remove no-used alloc_chunk in btrfs_check_data_free_space()
int alloc_chunk is never used in this function, remove it.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:44 +01:00
David Sterba e8c9f18603 btrfs: constify structs with op functions or static definitions
There are some op tables that can be easily made const, similarly the
sysfs feature and raid tables. This is motivated by PaX CONSTIFY plugin.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:44 +01:00
Wang Shilong f749303bda Btrfs: switch to kvfree() helper
A new helper kvfree() in mm/utils.c will do this.

Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:43 +01:00
Daniel Dressler 01d58472a8 Btrfs: disk-io: replace root args iff only fs_info used
This is the 3rd independent patch of a larger project to cleanup btrfs's
internal usage of btrfs_root. Many functions take btrfs_root only to
grab the fs_info struct.

By requiring a root these functions cause programmer overhead. That
these functions can accept any valid root is not obvious until
inspection.

This patch reduces the specificity of such functions to accept the
fs_info directly.

These patches can be applied independently and thus are not being
submitted as a patch series. There should be about 26 patches by the
project's completion. Each patch will cleanup between 1 and 34 functions
apiece.  Each patch covers a single file's functions.

This patch affects the following function(s):
  1) csum_tree_block
  2) csum_dirty_buffer
  3) check_tree_block_fsid
  4) btrfs_find_tree_block
  5) clean_tree_block

Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:43 +01:00
Daniel Dressler a585e94895 Btrfs: delayed-inode: replace root args iff only fs_info used
This is the second independent patch of a larger project to cleanup
btrfs's internal usage of btrfs_root. Many functions take btrfs_root
only to grab the fs_info struct.

By requiring a root these functions cause programmer overhead. That
these functions can accept any valid root is not obvious until
inspection.

This patch reduces the specificity of such functions to accept the
fs_info directly.

These patches can be applied independently and thus are not being
submitted as a patch series. There should be about 26 patches by the
project's completion. Each patch will cleanup between 1 and 34 functions
apiece.  Each patch covers a single file's functions.

This patch affects the following function(s):
  1) btrfs_wq_run_delayed_node

Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:43 +01:00
Daniel Dressler b7a0365ec7 Btrfs: ctree: reduce args where only fs_info used
This patch is part of a larger project to cleanup btrfs's internal usage
of struct btrfs_root. Many functions take btrfs_root only to grab a
pointer to fs_info.

This causes programmers to ponder which root can be passed. Since only
the fs_info is read affected functions can accept any root, except this
is only obvious upon inspection.

This patch reduces the specificty of such functions to accept the
fs_info directly.

This patch does not address the two functions in ctree.c (insert_ptr,
and split_item) which only use root for BUG_ONs in ctree.c

This patch affects the following functions:
  1) fixup_low_keys
  2) btrfs_set_item_key_safe

Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:43 +01:00
Filipe Manana a742994aa2 Btrfs: don't remove extents and xattrs when logging new names
If we are recording in the tree log that an inode has new names (new hard
links were added), we would drop items, belonging to the inode, that we
shouldn't:

1) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
   flags, we ended up dropping all the extent and xattr items that were
   previously logged. This was done only in memory, since logging a new
   name doesn't imply syncing the log;

2) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
   flags, we ended up dropping all the xattr items that were previously
   logged. Like the case before, this was done only in memory because
   logging a new name doesn't imply syncing the log.

This led to some surprises in scenarios such as the following:

1) write some extents to an inode;
2) fsync the inode;
3) truncate the inode or delete/modify some of its xattrs
4) add a new hard link for that inode
5) fsync some other file, to force the log tree to be durably persisted
6) power failure happens

The next time the fs is mounted, the fsync log replay code is executed,
and the resulting file doesn't have the content it had when the last fsync
against it was performed, instead if has a content matching what it had
when the last transaction commit happened.

So change the behaviour such that when a new name is logged, only the inode
item and reference items are processed.

This is easy to reproduce with the test I just made for xfstests, whose
main body is:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with some data.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
      $SCRATCH_MNT/foo | _filter_xfs_io

  # Make sure the file is durably persisted.
  sync

  # Append some data to our file, to increase its size.
  $XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
      $SCRATCH_MNT/foo | _filter_xfs_io

  # Fsync the file, so from this point on if a crash/power failure happens, our
  # new data is guaranteed to be there next time the fs is mounted.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Now shrink our file to 5000 bytes.
  $XFS_IO_PROG -c "truncate 5000" $SCRATCH_MNT/foo

  # Now do an expanding truncate to a size larger than what we had when we last
  # fsync'ed our file. This is just to verify that after power failure and
  # replaying the fsync log, our file matches what it was when we last fsync'ed
  # it - 12Kb size, first 8Kb of data had a value of 0xaa and the last 4Kb of
  # data had a value of 0xcc.
  $XFS_IO_PROG -c "truncate 32K" $SCRATCH_MNT/foo

  # Add one hard link to our file. This made btrfs drop all of our file's
  # metadata from the fsync log, including the metadata relative to the
  # extent we just wrote and fsync'ed. This change was made only to the fsync
  # log in memory, so adding the hard link alone doesn't change the persisted
  # fsync log. This happened because the previous truncates set the runtime
  # flag BTRFS_INODE_NEEDS_FULL_SYNC in the btrfs inode structure.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link

  # Now make sure the in memory fsync log is durably persisted.
  # Creating and fsync'ing another file will do it.
  # After this our persisted fsync log will no longer have metadata for our file
  # foo that points to the extent we wrote and fsync'ed before.
  touch $SCRATCH_MNT/bar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar

  # As expected, before the crash/power failure, we should be able to see a file
  # with a size of 32Kb, with its first 5000 bytes having the value 0xaa and all
  # the remaining bytes with value 0x00.
  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After mounting the fs again, the fsync log was replayed.
  # The expected result is to see a file with a size of 12Kb, with its first 8Kb
  # of data having the value 0xaa and its last 4Kb of data having a value of 0xcc.
  # The btrfs bug used to leave the file as it used te be as of the last
  # transaction commit - that is, with a size of 8Kb with all bytes having a
  # value of 0xaa.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

The test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:22:49 -08:00
Filipe Manana 1a4bcf470c Btrfs: fix fsync data loss after adding hard link to inode
We have a scenario where after the fsync log replay we can lose file data
that had been previously fsync'ed if we added an hard link for our inode
and after that we sync'ed the fsync log (for example by fsync'ing some
other file or directory).

This is because when adding an hard link we updated the inode item in the
log tree with an i_size value of 0. At that point the new inode item was
in memory only and a subsequent fsync log replay would not make us lose
the file data. However if after adding the hard link we sync the log tree
to disk, by fsync'ing some other file or directory for example, we ended
up losing the file data after log replay, because the inode item in the
persisted log tree had an an i_size of zero.

This is easy to reproduce, and the following excerpt from my test for
xfstests shows this:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create one file with data and fsync it.
  # This made the btrfs fsync log persist the data and the inode metadata with
  # a correct inode->i_size (4096 bytes).
  $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 4K 0 4K" -c "fsync" \
       $SCRATCH_MNT/foo | _filter_xfs_io

  # Now add one hard link to our file. This made the btrfs code update the fsync
  # log, in memory only, with an inode metadata having a size of 0.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link

  # Now force persistence of the fsync log to disk, for example, by fsyncing some
  # other file.
  touch $SCRATCH_MNT/bar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar

  # Before a power loss or crash, we could read the 4Kb of data from our file as
  # expected.
  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After the fsync log replay, because the fsync log had a value of 0 for our
  # inode's i_size, we couldn't read anymore the 4Kb of data that we previously
  # wrote and fsync'ed. The size of the file became 0 after the fsync log replay.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

Another alternative test, that doesn't need to fsync an inode in the same
transaction it was created, is:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with some data.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
       $SCRATCH_MNT/foo | _filter_xfs_io

  # Make sure the file is durably persisted.
  sync

  # Append some data to our file, to increase its size.
  $XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
       $SCRATCH_MNT/foo | _filter_xfs_io

  # Fsync the file, so from this point on if a crash/power failure happens, our
  # new data is guaranteed to be there next time the fs is mounted.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Add one hard link to our file. This made btrfs write into the in memory fsync
  # log a special inode with generation 0 and an i_size of 0 too. Note that this
  # didn't update the inode in the fsync log on disk.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link

  # Now make sure the in memory fsync log is durably persisted.
  # Creating and fsync'ing another file will do it.
  touch $SCRATCH_MNT/bar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar

  # As expected, before the crash/power failure, we should be able to read the
  # 12Kb of file data.
  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After mounting the fs again, the fsync log was replayed.
  # The btrfs fsync log replay code didn't update the i_size of the persisted
  # inode because the inode item in the log had a special generation with a
  # value of 0 (and it couldn't know the correct i_size, since that inode item
  # had a 0 i_size too). This made the last 4Kb of file data inaccessible and
  # effectively lost.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

This isn't a new issue/regression. This problem has been around since the
log tree code was added in 2008:

  Btrfs: Add a write ahead tree log to optimize synchronous operations
  (commit e02119d5a7)

Test cases for xfstests follow soon.

CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:22:49 -08:00
Forrest Liu 3d84be7991 Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group
Removing large amount of block group in a transaction may encounters
BUG_ON() in btrfs_orphan_add(). That is because btrfs_orphan_reserve_metadata()
will grab metadata reservation from transaction handle, and
btrfs_delete_unused_bgs() didn't reserve metadata for trnasaction handle when
delete unused block group.

The problem can be reproduce by following script

    mntpath=/btrfs
    loopdev=/dev/loop0
    filepath=/home/forrest/image

    umount $mntpath
    losetup -d $loopdev
    truncate --size 1000g $filepath
    losetup $loopdev $filepath
    mkfs.btrfs -f $loopdev
    mount $loopdev $mntpath

    for j in `seq 1 1 1000`; do
        fallocate -l 1g $mntpath/$j
    done
    # wait cleaner thread remove unused block group
    sleep 300

The call trace that results from the BUG_ON() is:

[  613.093084] ------------[ cut here ]------------
[  613.097928] kernel BUG at fs/btrfs/inode.c:3142!
[  613.105855] invalid opcode: 0000 [#1] SMP
[  613.112702] Modules linked in: coretemp(E) crc32_pclmul(E) ghash_clmulni_intel(E) aesni_intel(E) snd_ens1371(E) snd_ac97_codec(E) aes_x86_64(E) lrw(E) gf128mul(E) glue_helper(E) ppdev(E) ac97_bus(E) ablk_helper(E) gameport(E) cryptd(E) snd_rawmidi(E) snd_seq_device(E) snd_pcm(E) vmw_balloon(E) snd_timer(E) snd(E) soundcore(E) serio_raw(E) vmwgfx(E) ttm(E) drm_kms_helper(E) drm(E) vmw_vmci(E) parport_pc(E) shpchp(E) i2c_piix4(E) mac_hid(E) lp(E) parport(E) btrfs(E) xor(E) raid6_pq(E) hid_generic(E) usbhid(E) hid(E) psmouse(E) ahci(E) libahci(E) e1000(E) mptspi(E) mptscsih(E) mptbase(E) floppy(E) vmw_pvscsi(E) vmxnet3(E)
[  613.144196] CPU: 0 PID: 1480 Comm: btrfs-cleaner Tainted: G            E  3.19.0-rc7-custom #2
[  613.148501] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013
[  613.152694] task: ffff880035cdb1a0 ti: ffff880039cf4000 task.ti: ffff880039cf4000
[  613.154969] RIP: 0010:[<ffffffffa01441c2>]  [<ffffffffa01441c2>] btrfs_orphan_add+0x1d2/0x1e0 [btrfs]
[  613.157780] RSP: 0018:ffff880039cf7c48  EFLAGS: 00010286
[  613.159560] RAX: 00000000ffffffe4 RBX: ffff88003bd981a0 RCX: ffff88003c9e4000
[  613.161904] RDX: 0000000000002244 RSI: 0000000000040000 RDI: ffff88003c9e4138
[  613.164264] RBP: ffff880039cf7c88 R08: 000060ffc0000850 R09: 0000000000000000
[  613.166507] R10: ffff88003bc4b7a0 R11: ffffea0000eb6740 R12: ffff88003c9c0000
[  613.168681] R13: ffff88003c102160 R14: ffff88003c9c0458 R15: 0000000000000001
[  613.170932] FS:  0000000000000000(0000) GS:ffff88003f600000(0000) knlGS:0000000000000000
[  613.173316] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  613.175227] CR2: 00007f6343537000 CR3: 0000000036329000 CR4: 00000000000407f0
[  613.177554] Stack:
[  613.178712]  ffff880039cf7c88 ffffffffa0182a54 ffff88003c9e4b04 ffff88003c9c7800
[  613.181297]  ffff88003bc4b7a0 ffff88003bd981a0 ffff88003c8db200 ffff88003c2fcc60
[  613.183782]  ffff880039cf7d18 ffffffffa012da97 ffff88003bc4b7a4 ffff88003bc4b7a0
[  613.186171] Call Trace:
[  613.187493]  [<ffffffffa0182a54>] ? lookup_free_space_inode+0x44/0x100 [btrfs]
[  613.189801]  [<ffffffffa012da97>] btrfs_remove_block_group+0x137/0x740 [btrfs]
[  613.192126]  [<ffffffffa0166912>] btrfs_remove_chunk+0x672/0x780 [btrfs]
[  613.194267]  [<ffffffffa012e2ff>] btrfs_delete_unused_bgs+0x25f/0x280 [btrfs]
[  613.196567]  [<ffffffffa0135e4c>] cleaner_kthread+0x12c/0x190 [btrfs]
[  613.198687]  [<ffffffffa0135d20>] ? check_leaf+0x350/0x350 [btrfs]
[  613.200758]  [<ffffffff8108f232>] kthread+0xd2/0xf0
[  613.202616]  [<ffffffff8108f160>] ? kthread_create_on_node+0x180/0x180
[  613.204738]  [<ffffffff8175dabc>] ret_from_fork+0x7c/0xb0
[  613.206652]  [<ffffffff8108f160>] ? kthread_create_on_node+0x180/0x180
[  613.208741] Code: ff ff 0f 1f 80 00 00 00 00 89 45 c8 3e 80 63 80 fd 48 89 df e8 d0 23 fe ff 8b 45 c8 e9 14 ff ff ff b8 f4 ff ff ff e9 12 ff ff ff <0f> 0b 66 66 66 2e 0f 1f 84 00 00 00 00 00 66 66 66 66 90 55 48
[  613.216562] RIP  [<ffffffffa01441c2>] btrfs_orphan_add+0x1d2/0x1e0 [btrfs]
[  613.218828]  RSP <ffff880039cf7c48>
[  613.220382] ---[ end trace 71073106deb8a457 ]---

This patch replace btrfs_join_transaction() with btrfs_start_transaction() in
btrfs_delete_unused_bgs() to revent BUG_ON() in btrfs_orphan_add()

Signed-off-by: Forrest Liu <forrestl@synology.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:22:49 -08:00
Josef Bacik dcab6a3b2a Btrfs: account for large extents with enospc
On our gluster boxes we stream large tar balls of backups onto our fses.  With
160gb of ram this means we get really large contiguous ranges of dirty data, but
the way our ENOSPC stuff works is that as long as it's contiguous we only hold
metadata reservation for one extent.  The problem is we limit our extents to
128mb, so we'll end up with at least 800 extents so our enospc accounting is
quite a bit lower than what we need.  To keep track of this make sure we
increase outstanding_extents for every multiple of the max extent size so we can
be sure to have enough reserved metadata space.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:22:48 -08:00
Josef Bacik 3266789f9d Btrfs: don't set and clear delalloc for O_DIRECT writes
We do this to get the space accounting, but this is just needless churn on the
io_tree, so just drop setting/clearing delalloc and just drop the reserved data
space when we have a successfull allocation.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:19:14 -08:00
Josef Bacik 3e05bde8c3 Btrfs: only adjust outstanding_extents when we do a short write
We have this weird dance where we always inc outstanding_extents when we do a
O_DIRECT write, even if we allocate the entire range.  To get around this we
also drop the metadata space if we successfully write.  This is an unnecessary
dance, we only need to jack up outstanding_extents if we don't satisfy the
entire range request in get_blocks_direct, otherwise we are good using our
original reservation.  So drop the unconditional inc and the drop of the
metadata space that we have for the unconditional inc.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:19:14 -08:00
Zhao Lei 13212b54d1 btrfs: Fix out-of-space bug
Btrfs will report NO_SPACE when we create and remove files for several times,
and we can't write to filesystem until mount it again.

Steps to reproduce:
 1: Create a single-dev btrfs fs with default option
 2: Write a file into it to take up most fs space
 3: Delete above file
 4: Wait about 100s to let chunk removed
 5: goto 2

Script is like following:
 #!/bin/bash

 # Recommend 1.2G space, too large disk will make test slow
 DEV="/dev/sda16"
 MNT="/mnt/tmp"

 dev_size="$(lsblk -bn -o SIZE "$DEV")" || exit 2
 file_size_m=$((dev_size * 75 / 100 / 1024 / 1024))

 echo "Loop write ${file_size_m}M file on $((dev_size / 1024 / 1024))M dev"

 for ((i = 0; i < 10; i++)); do umount "$MNT" 2>/dev/null; done
 echo "mkfs $DEV"
 mkfs.btrfs -f "$DEV" >/dev/null || exit 2
 echo "mount $DEV $MNT"
 mount "$DEV" "$MNT" || exit 2

 for ((loop_i = 0; loop_i < 20; loop_i++)); do
     echo
     echo "loop $loop_i"

     echo "dd file..."
     cmd=(dd if=/dev/zero of="$MNT"/file0 bs=1M count="$file_size_m")
     "${cmd[@]}" 2>/dev/null || {
         # NO_SPACE error triggered
         echo "dd failed: ${cmd[*]}"
         exit 1
     }

     echo "rm file..."
     rm -f "$MNT"/file0 || exit 2

     for ((i = 0; i < 10; i++)); do
         df "$MNT" | tail -1
         sleep 10
     done
 done

Reason:
 It is triggered by commit: 47ab2a6c68
 which is used to remove empty block groups automatically, but the
 reason is not in that patch. Code before works well because btrfs
 don't need to create and delete chunks so many times with high
 complexity.
 Above bug is caused by many reason, any of them can trigger it.

Reason1:
 When we remove some continuous chunks but leave other chunks after,
 these disk space should be used by chunk-recreating, but in current
 code, only first create will successed.
 Fixed by Forrest Liu <forrestl@synology.com> in:
 Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole

Reason2:
 contains_pending_extent() return wrong value in calculation.
 Fixed by Forrest Liu <forrestl@synology.com> in:
 Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole

Reason3:
 btrfs_check_data_free_space() try to commit transaction and retry
 allocating chunk when the first allocating failed, but space_info->full
 is set in first allocating, and prevent second allocating in retry.
 Fixed in this patch by clear space_info->full in commit transaction.

 Tested for severial times by above script.

Changelog v3->v4:
 use light weight int instead of atomic_t to record have_remove_bgs in
 transaction, suggested by:
 Josef Bacik <jbacik@fb.com>

Changelog v2->v3:
 v2 fixed the bug by adding more commit-transaction, but we
 only need to reclaim space when we are really have no space for
 new chunk, noticed by:
 Filipe David Manana <fdmanana@gmail.com>

 Actually, our code already have this type of commit-and-retry,
 we only need to make it working with removed-bgs.
 v3 fixed the bug with above way.

Changelog v1->v2:
 v1 will introduce a new bug when delete and create chunk in same disk
 space in same transaction, noticed by:
 Filipe David Manana <fdmanana@gmail.com>
 V2 fix this bug by commit transaction after remove block grops.

Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Suggested-by: Filipe David Manana <fdmanana@gmail.com>
Suggested-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:19:14 -08:00
Filipe Manana f55985f4dd Btrfs: scrub, fix sleep in atomic context
My previous patch "Btrfs: fix scrub race leading to use-after-free"
introduced the possibility to sleep in an atomic context, which happens
when the scrub_lock mutex is held at the time scrub_pending_bio_dec()
is called - this function can be called under an atomic context.
Chris ran into this in a debug kernel which gave the following trace:

[ 1928.950319] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:621
[ 1928.967334] in_atomic(): 1, irqs_disabled(): 0, pid: 149670, name: fsstress
[ 1928.981324] INFO: lockdep is turned off.
[ 1928.989244] CPU: 24 PID: 149670 Comm: fsstress Tainted: G        W     3.19.0-rc7-mason+ #41
[ 1929.006418] Hardware name: ZTSYSTEMS Echo Ridge T4  /A9DRPF-10D, BIOS 1.07 05/10/2012
[ 1929.022207]  ffffffff81a22cf8 ffff881076e03b78 ffffffff816b8dd9 ffff881076e03b78
[ 1929.037267]  ffff880d8e828710 ffff881076e03ba8 ffffffff810856c4 ffff881076e03bc8
[ 1929.052315]  0000000000000000 000000000000026d ffffffff81a22cf8 ffff881076e03bd8
[ 1929.067381] Call Trace:
[ 1929.072344]  <IRQ>  [<ffffffff816b8dd9>] dump_stack+0x4f/0x6e
[ 1929.083968]  [<ffffffff810856c4>] ___might_sleep+0x174/0x230
[ 1929.095352]  [<ffffffff810857d2>] __might_sleep+0x52/0x90
[ 1929.106223]  [<ffffffff816bb68f>] mutex_lock_nested+0x2f/0x3b0
[ 1929.117951]  [<ffffffff810ab37d>] ? trace_hardirqs_on+0xd/0x10
[ 1929.129708]  [<ffffffffa05dc838>] scrub_pending_bio_dec+0x38/0x70 [btrfs]
[ 1929.143370]  [<ffffffffa05dd0e0>] scrub_parity_bio_endio+0x50/0x70 [btrfs]
[ 1929.157191]  [<ffffffff812fa603>] bio_endio+0x53/0xa0
[ 1929.167382]  [<ffffffffa05f96bc>] rbio_orig_end_io+0x7c/0xa0 [btrfs]
[ 1929.180161]  [<ffffffffa05f97ba>] raid_write_parity_end_io+0x5a/0x80 [btrfs]
[ 1929.194318]  [<ffffffff812fa603>] bio_endio+0x53/0xa0
[ 1929.204496]  [<ffffffff8130401b>] blk_update_request+0x1eb/0x450
[ 1929.216569]  [<ffffffff81096e58>] ? trigger_load_balance+0x78/0x500
[ 1929.229176]  [<ffffffff8144c74d>] scsi_end_request+0x3d/0x1f0
[ 1929.240740]  [<ffffffff8144ccac>] scsi_io_completion+0xac/0x5b0
[ 1929.252654]  [<ffffffff81441c50>] scsi_finish_command+0xf0/0x150
[ 1929.264725]  [<ffffffff8144d317>] scsi_softirq_done+0x147/0x170
[ 1929.276635]  [<ffffffff8130ace6>] blk_done_softirq+0x86/0xa0
[ 1929.288014]  [<ffffffff8105d92e>] __do_softirq+0xde/0x600
[ 1929.298885]  [<ffffffff8105df6d>] irq_exit+0xbd/0xd0
(...)

Fix this by using a reference count on the scrub context structure
instead of locking the scrub_lock mutex.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:19:14 -08:00
Filipe Manana 575849ecf5 Btrfs: fix scheduler warning when syncing log
We try to lock a mutex while the current task state is not TASK_RUNNING,
which results in the following warning when CONFIG_DEBUG_LOCK_ALLOC=y:

[30736.772501] ------------[ cut here ]------------
[30736.774545] WARNING: CPU: 9 PID: 19972 at kernel/sched/core.c:7300 __might_sleep+0x8b/0xa8()
[30736.783453] do not call blocking ops when !TASK_RUNNING; state=2 set at [<ffffffff8107499b>] prepare_to_wait+0x43/0x89
[30736.786261] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop parport_pc psmouse parport pcspkr microcode serio_raw evdev processor thermal_sys i2c_piix4 i2c_core button ext4 crc16 jbd2 mbcache sg sr_mod cdrom sd_mod ata_generic virtio_scsi floppy ata_piix libata virtio_pci virtio_ring e1000 virtio scsi_mod
[30736.794323] CPU: 9 PID: 19972 Comm: fsstress Not tainted 3.19.0-rc7-btrfs-next-5+ #1
[30736.795821] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[30736.798788]  0000000000000009 ffff88042743fbd8 ffffffff814248ed ffff88043d32f2d8
[30736.800504]  ffff88042743fc28 ffff88042743fc18 ffffffff81045338 0000000000000001
[30736.802131]  ffffffff81064514 ffffffff817c52d1 000000000000026d 0000000000000000
[30736.803676] Call Trace:
[30736.804256]  [<ffffffff814248ed>] dump_stack+0x4c/0x65
[30736.805245]  [<ffffffff81045338>] warn_slowpath_common+0xa1/0xbb
[30736.806360]  [<ffffffff81064514>] ? __might_sleep+0x8b/0xa8
[30736.807391]  [<ffffffff81045398>] warn_slowpath_fmt+0x46/0x48
[30736.808511]  [<ffffffff8107499b>] ? prepare_to_wait+0x43/0x89
[30736.809620]  [<ffffffff8107499b>] ? prepare_to_wait+0x43/0x89
[30736.810691]  [<ffffffff81064514>] __might_sleep+0x8b/0xa8
[30736.811703]  [<ffffffff81426eaf>] mutex_lock_nested+0x2f/0x3a0
[30736.812889]  [<ffffffff8107bfa1>] ? trace_hardirqs_on_caller+0x18f/0x1ab
[30736.814138]  [<ffffffff8107bfca>] ? trace_hardirqs_on+0xd/0xf
[30736.819878]  [<ffffffffa038cfff>] wait_for_writer.isra.12+0x91/0xaa [btrfs]
[30736.821260]  [<ffffffff810748bd>] ? signal_pending_state+0x31/0x31
[30736.822410]  [<ffffffffa0391f0a>] btrfs_sync_log+0x160/0x947 [btrfs]
[30736.823574]  [<ffffffff8107bfa1>] ? trace_hardirqs_on_caller+0x18f/0x1ab
[30736.824847]  [<ffffffff8107bfca>] ? trace_hardirqs_on+0xd/0xf
[30736.825972]  [<ffffffffa036e555>] btrfs_sync_file+0x2b0/0x319 [btrfs]
[30736.827684]  [<ffffffff8117901a>] vfs_fsync_range+0x21/0x23
[30736.828932]  [<ffffffff81179038>] vfs_fsync+0x1c/0x1e
[30736.829917]  [<ffffffff8117928b>] do_fsync+0x34/0x4e
[30736.830862]  [<ffffffff811794b3>] SyS_fsync+0x10/0x14
[30736.831819]  [<ffffffff8142a512>] system_call_fastpath+0x12/0x17
[30736.832982] ---[ end trace c0b57df60d32ae5c ]---

Fix this my acquiring the mutex after calling finish_wait(), which sets the
task's state to TASK_RUNNING.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:19:14 -08:00
Linus Torvalds 6bec003528 Merge branch 'for-3.20/bdi' of git://git.kernel.dk/linux-block
Pull backing device changes from Jens Axboe:
 "This contains a cleanup of how the backing device is handled, in
  preparation for a rework of the life time rules.  In this part, the
  most important change is to split the unrelated nommu mmap flags from
  it, but also removing a backing_dev_info pointer from the
  address_space (and inode), and a cleanup of other various minor bits.

  Christoph did all the work here, I just fixed an oops with pages that
  have a swap backing.  Arnd fixed a missing export, and Oleg killed the
  lustre backing_dev_info from staging.  Last patch was from Al,
  unexporting parts that are now no longer needed outside"

* 'for-3.20/bdi' of git://git.kernel.dk/linux-block:
  Make super_blocks and sb_lock static
  mtd: export new mtd_mmap_capabilities
  fs: make inode_to_bdi() handle NULL inode
  staging/lustre/llite: get rid of backing_dev_info
  fs: remove default_backing_dev_info
  fs: don't reassign dirty inodes to default_backing_dev_info
  nfs: don't call bdi_unregister
  ceph: remove call to bdi_unregister
  fs: remove mapping->backing_dev_info
  fs: export inode_to_bdi and use it in favor of mapping->backing_dev_info
  nilfs2: set up s_bdi like the generic mount_bdev code
  block_dev: get bdev inode bdi directly from the block device
  block_dev: only write bdev inode on close
  fs: introduce f_op->mmap_capabilities for nommu mmap support
  fs: kill BDI_CAP_SWAP_BACKED
  fs: deduplicate noop_backing_dev_info
2015-02-12 13:50:21 -08:00
Konstantin Khebnikov 8d38633c3b page_writeback: put account_page_redirty() after set_page_dirty()
Helper account_page_redirty() fixes dirty pages counter for redirtied
pages.  This patch puts it after dirtying and prevents temporary
underflows of dirtied pages counters on zone/bdi and current->nr_dirtied.

Signed-off-by: Konstantin Khebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:04 -08:00
Kirill A. Shutemov d83a08db5b mm: drop vm_ops->remap_pages and generic_file_remap_pages() stub
Nobody uses it anymore.

[akpm@linux-foundation.org: fix filemap_xip.c]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:30 -08:00
Linus Torvalds 23e8fe2e16 Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
 "The main RCU changes in this cycle are:

   - Documentation updates.

   - Miscellaneous fixes.

   - Preemptible-RCU fixes, including fixing an old bug in the
     interaction of RCU priority boosting and CPU hotplug.

   - SRCU updates.

   - RCU CPU stall-warning updates.

   - RCU torture-test updates"

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
  rcu: Initialize tiny RCU stall-warning timeouts at boot
  rcu: Fix RCU CPU stall detection in tiny implementation
  rcu: Add GP-kthread-starvation checks to CPU stall warnings
  rcu: Make cond_resched_rcu_qs() apply to normal RCU flavors
  rcu: Optionally run grace-period kthreads at real-time priority
  ksoftirqd: Use new cond_resched_rcu_qs() function
  ksoftirqd: Enable IRQs and call cond_resched() before poking RCU
  rcutorture: Add more diagnostics in rcu_barrier() test failure case
  torture: Flag console.log file to prevent holdovers from earlier runs
  torture: Add "-enable-kvm -soundhw pcspk" to qemu command line
  rcutorture: Handle different mpstat versions
  rcutorture: Check from beginning to end of grace period
  rcu: Remove redundant rcu_batches_completed() declaration
  rcutorture: Drop rcu_torture_completed() and friends
  rcu: Provide rcu_batches_completed_sched() for TINY_RCU
  rcutorture: Use unsigned for Reader Batch computations
  rcutorture: Make build-output parsing correctly flag RCU's warnings
  rcu: Make _batches_completed() functions return unsigned long
  rcutorture: Issue warnings on close calls due to Reader Batch blows
  documentation: Fix smp typo in memory-barriers.txt
  ...
2015-02-09 14:28:42 -08:00
Linus Torvalds bdfeb5a104 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fix from Chris Mason:
 "Forrest Liu tracked down a missing blk_finish_plug in the btrfs
  logging code.  This isn't a new bug, and it's hard to hit.  But, it's
  safe enough for inclusion now, and in my for-linus branch"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: add missing blk_finish_plug in btrfs_sync_log()
2015-02-07 11:04:48 -08:00
Forrest Liu 3da5ab5648 Btrfs: add missing blk_finish_plug in btrfs_sync_log()
Add missing blk_finish_plug in btrfs_sync_log()

Signed-off-by: Forrest Liu <forrestl@synology.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-04 18:02:37 -08:00
Gui Hecheng b76808fc26 btrfs: cleanup init for list in free-space-cache
o removed an unecessary INIT_LIST_HEAD after LIST_HEAD

o merge a declare & INIT_LIST_HEAD pair into one LIST_HEAD

Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:25:50 -08:00
Shaohua Li 2f0810880f btrfs: delete chunk allocation attemp when setting block group ro
Below test will fail currently:
      mkfs.ext4 -F /dev/sda
      btrfs-convert /dev/sda
      mount /dev/sda /mnt
      btrfs device add -f /dev/sdb /mnt
      btrfs balance start -v -dconvert=raid1 -mconvert=raid1 /mnt

The reason is there are some block groups with usage 0, but the whole
disk hasn't free space to allocate new chunk, so we even can't set such
block group readonly. This patch deletes the chunk allocation when
setting block group ro. For META, we already have reserve. But for
SYSTEM, we don't have, so the check_system_chunk is still required.

Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:25:20 -08:00
Naohiro Aota 289454ad26 btrfs: clear bio reference after submit_one_bio()
After submit_one_bio(), `bio' can go away. However submit_extent_page()
leave `bio' referable if submit_one_bio() failed (e.g. -ENOMEM on OOM).
It will cause invalid paging request when submit_extent_page() is called
next time.

I reproduced ENOMEM case with the following script (need
CONFIG_FAIL_PAGE_ALLOC, and CONFIG_FAULT_INJECTION_DEBUG_FS).

  #!/bin/bash

  dmesgout=dmesg.txt
  start=100000
  end=300000
  step=1000

  # btrfs options
  device=/dev/vdb1
  directory=/mnt/btrfs

  # fault-injection options
  percent=100
  times=3

  mkdir -p $directory || exit 1
  mount -o compress $device $directory || exit 1

  rm -f $directory/file || exit 1
  dd if=/dev/zero of=$directory/file bs=1M count=512 || exit 1

  for interval in `seq $start $step $end`; do
          dmesg -C
          echo 1 > /proc/sys/vm/drop_caches
          sync
          export FAILCMD_TYPE=fail_page_alloc
          ./failcmd.sh -p $percent -t $times -i $interval \
                  --ignore-gfp-highmem=N --ignore-gfp-wait=N --min-order=0 \
                  -- \
                  cat $directory/file > /dev/null
          dmesg > ${dmesgout}
          if grep -q BUG: ${dmesgout}; then
                  cat ${dmesgout}
                  exit 1
          fi
  done

  umount $directory
  exit 0

Signed-off-by: Naohiro Aota <naota@elisp.net>
Tested-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:24:51 -08:00
Filipe Manana de554a4fa6 Btrfs: fix scrub race leading to use-after-free
While running a scrub on a kernel with CONFIG_DEBUG_PAGEALLOC=y, I got
the following trace:

[68127.807663] BUG: unable to handle kernel paging request at ffff8803f8947a50
[68127.807663] IP: [<ffffffff8107da31>] do_raw_spin_lock+0x94/0x122
[68127.807663] PGD 3003067 PUD 43e1f5067 PMD 43e030067 PTE 80000003f8947060
[68127.807663] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC
[68127.807663] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop parport_pc processor parpo
[68127.807663] CPU: 2 PID: 3081 Comm: kworker/u8:5 Not tainted 3.18.0-rc6-btrfs-next-3+ #4
[68127.807663] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[68127.807663] Workqueue: btrfs-btrfs-scrub btrfs_scrub_helper [btrfs]
[68127.807663] task: ffff880101fc5250 ti: ffff8803f097c000 task.ti: ffff8803f097c000
[68127.807663] RIP: 0010:[<ffffffff8107da31>]  [<ffffffff8107da31>] do_raw_spin_lock+0x94/0x122
[68127.807663] RSP: 0018:ffff8803f097fbb8  EFLAGS: 00010093
[68127.807663] RAX: 0000000028dd386c RBX: ffff8803f8947a50 RCX: 0000000028dd3854
[68127.807663] RDX: 0000000000000018 RSI: 0000000000000002 RDI: 0000000000000001
[68127.807663] RBP: ffff8803f097fbd8 R08: 0000000000000004 R09: 0000000000000001
[68127.807663] R10: ffff880102620980 R11: ffff8801f3e8c900 R12: 000000000001d390
[68127.807663] R13: 00000000cabd13c8 R14: ffff8803f8947800 R15: ffff88037c574f00
[68127.807663] FS:  0000000000000000(0000) GS:ffff88043dd00000(0000) knlGS:0000000000000000
[68127.807663] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[68127.807663] CR2: ffff8803f8947a50 CR3: 00000000b6481000 CR4: 00000000000006e0
[68127.807663] Stack:
[68127.807663]  ffffffff823942a8 ffff8803f8947a50 ffff8802a3416f80 0000000000000000
[68127.807663]  ffff8803f097fc18 ffffffff8141e7c0 ffffffff81072948 000000000034f314
[68127.807663]  ffff8803f097fc08 0000000000000292 ffff8803f097fc48 ffff8803f8947a50
[68127.807663] Call Trace:
[68127.807663]  [<ffffffff8141e7c0>] _raw_spin_lock_irqsave+0x4b/0x55
[68127.807663]  [<ffffffff81072948>] ? __wake_up+0x22/0x4b
[68127.807663]  [<ffffffff81072948>] __wake_up+0x22/0x4b
[68127.807663]  [<ffffffffa0392327>] scrub_pending_bio_dec+0x32/0x36 [btrfs]
[68127.807663]  [<ffffffffa0395e70>] scrub_bio_end_io_worker+0x5a3/0x5c9 [btrfs]
[68127.807663]  [<ffffffff810e0c7c>] ? time_hardirqs_off+0x15/0x28
[68127.807663]  [<ffffffff81078106>] ? trace_hardirqs_off_caller+0x4c/0xb9
[68127.807663]  [<ffffffffa0372a7c>] normal_work_helper+0xf1/0x238 [btrfs]
[68127.807663]  [<ffffffffa0372d3d>] btrfs_scrub_helper+0x12/0x14 [btrfs]
[68127.807663]  [<ffffffff810582d2>] process_one_work+0x1e4/0x3b6
[68127.807663]  [<ffffffff81078180>] ? trace_hardirqs_off+0xd/0xf
[68127.807663]  [<ffffffff81058dc9>] worker_thread+0x1fb/0x2a8
[68127.807663]  [<ffffffff81058bce>] ? rescuer_thread+0x219/0x219
[68127.807663]  [<ffffffff8105cd75>] kthread+0xdb/0xe3
[68127.807663]  [<ffffffff8105cc9a>] ? __kthread_parkme+0x67/0x67
[68127.807663]  [<ffffffff8141f1ec>] ret_from_fork+0x7c/0xb0
[68127.807663]  [<ffffffff8105cc9a>] ? __kthread_parkme+0x67/0x67
[68127.807663] Code: 39 c2 75 14 8d 8a 00 00 01 00 89 d0 f0 0f b1 0b 39 d0 0f 84 81 00 00 00 4c 69 2d 27 86 99 00 fa 00 00 00 45 31 e4 4d 39 ec 74 2b <8b> 13 89 d0 c1 e8 10 66 39 c2 75
[68127.807663] RIP  [<ffffffff8107da31>] do_raw_spin_lock+0x94/0x122
[68127.807663]  RSP <ffff8803f097fbb8>
[68127.807663] CR2: ffff8803f8947a50
[68127.807663] ---[ end trace d7045aac00a66cd8 ]---

This is due to a race that can happen in a very tiny time window and is
illustrated by the following sequence diagram:

         CPU 1                                                     CPU 2

                                                                btrfs_scrub_dev()
scrub_bio_end_io_worker()
   scrub_pending_bio_dec()
       atomic_dec(&sctx->bios_in_flight)
                                                                   wait sctx->bios_in_flight == 0
                                                                   wait sctx->workers_pending == 0
                                                                   mutex_lock(&fs_info->scrub_lock)
                                                                   (...)
                                                                   mutex_lock(&fs_info->scrub_lock)
                                                                   scrub_free_ctx(sctx)
                                                                      kfree(sctx)
       wake_up(&sctx->list_wait)
          __wake_up()
              spin_lock_irqsave(&sctx->list_wait->lock, flags)

Another variation of this scenario that results in the same use-after-free
issue is:

         CPU 1                                                     CPU 2

                                                                btrfs_scrub_dev()
                                                                   wait sctx->bios_in_flight == 0
scrub_bio_end_io_worker()
   scrub_pending_bio_dec()
       __wake_up(&sctx->list_wait)
          spin_lock_irqsave(&sctx->list_wait->lock, flags)
          default_wake_function()
              wake up task at CPU 2
                                                                   wait sctx->workers_pending == 0
                                                                   mutex_lock(&fs_info->scrub_lock)
                                                                   (...)
                                                                   mutex_lock(&fs_info->scrub_lock)
                                                                   scrub_free_ctx(sctx)
                                                                      kfree(sctx)
          spin_unlock_irqrestore(&sctx->list_wait->lock, flags)

Fix this by holding the scrub lock while doing the wakeup.

This isn't a recent regression, the issue as been around since the scrub
feature was added (2011, commit a2de733c78).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:24:50 -08:00
Filipe Manana 001a648df4 Btrfs: add missing cleanup on sysfs init failure
If we failed during initialization of sysfs, we weren't unregistering the
top level btrfs sysfs entry nor the debugfs stuff.
Not unregistering the top level sysfs entry makes future attempts to reload
the btrfs module impossible and the following is reported in dmesg:

[ 2246.451296] WARNING: CPU: 3 PID: 10999 at fs/sysfs/dir.c:486 sysfs_warn_dup+0x91/0xb0()
[ 2246.451298] sysfs: cannot create duplicate filename '/fs/btrfs'
[ 2246.451298] Modules linked in: btrfs(+) raid6_pq xor bnep rfcomm bluetooth binfmt_misc nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc parport_pc parport psmouse serio_raw pcspkr evbug i2c_piix4 e1000 floppy [last unloaded: btrfs]
[ 2246.451310] CPU: 3 PID: 10999 Comm: modprobe Tainted: G        W    3.13.0-fdm-btrfs-next-24+ #7
[ 2246.451311] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 2246.451312]  0000000000000009 ffff8800d353fa08 ffffffff816f1da6 0000000000000410
[ 2246.451314]  ffff8800d353fa58 ffff8800d353fa48 ffffffff8104a32c ffff88020821a290
[ 2246.451316]  ffff88020821a290 ffff88020821a290 ffff8802148f0000 ffff8800d353fb80
[ 2246.451318] Call Trace:
[ 2246.451322]  [<ffffffff816f1da6>] dump_stack+0x4e/0x68
[ 2246.451324]  [<ffffffff8104a32c>] warn_slowpath_common+0x8c/0xc0
[ 2246.451325]  [<ffffffff8104a416>] warn_slowpath_fmt+0x46/0x50
[ 2246.451328]  [<ffffffff81367dc5>] ? strlcat+0x65/0x90
(....)

This fixes the following change:

    btrfs: add simple debugfs interface
    commit 1bae30982b

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:24:49 -08:00
Filipe Manana d4b450cd4b Btrfs: fix race between transaction commit and empty block group removal
Committing a transaction can race with automatic removal of empty block
groups (cleaner kthread), leading to a BUG_ON() in the transaction
commit code while running btrfs_finish_extent_commit(). The following
sequence diagram shows how it can happen:

           CPU 1                                       CPU 2

btrfs_commit_transaction()
  fs_info->running_transaction = NULL
  btrfs_finish_extent_commit()
    find_first_extent_bit()
      -> found range for block group X
         in fs_info->freed_extents[]

                                               btrfs_delete_unused_bgs()
                                                 -> found block group X

                                                 Removed block group X's range
                                                 from fs_info->freed_extents[]

                                                 btrfs_remove_chunk()
                                                    btrfs_remove_block_group(bg X)

    unpin_extent_range(bg X range)
       btrfs_lookup_block_group(bg X)
          -> returns NULL
            -> BUG_ON()

The trace that results from the BUG_ON() is:

[48665.187808] ------------[ cut here ]------------
[48665.188032] kernel BUG at fs/btrfs/extent-tree.c:5675!
[48665.188032] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
[48665.188032] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop parport_pc evdev microcode
[48665.197388] CPU: 2 PID: 31211 Comm: kworker/u32:16 Tainted: G        W      3.19.0-rc5-btrfs-next-4+ #1
[48665.197388] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[48665.197388] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[48665.197388] task: ffff880222011810 ti: ffff8801b56a4000 task.ti: ffff8801b56a4000
[48665.197388] RIP: 0010:[<ffffffffa0350d05>]  [<ffffffffa0350d05>] unpin_extent_range+0x6a/0x1ba [btrfs]
[48665.197388] RSP: 0018:ffff8801b56a7b88  EFLAGS: 00010246
[48665.197388] RAX: 0000000000000000 RBX: ffff8802143a6000 RCX: ffff8802220120c8
[48665.197388] RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff8800a3c140b0
[48665.197388] RBP: ffff8801b56a7bd8 R08: 0000000000000003 R09: 0000000000000000
[48665.197388] R10: 0000000000000000 R11: 000000000000bbac R12: 0000000012e8e000
[48665.197388] R13: ffff8800a3c14000 R14: 0000000000000000 R15: 0000000000000000
[48665.197388] FS:  0000000000000000(0000) GS:ffff88023ec40000(0000) knlGS:0000000000000000
[48665.197388] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[48665.197388] CR2: 00007f065e42f270 CR3: 0000000206f70000 CR4: 00000000000006e0
[48665.197388] Stack:
[48665.197388]  ffff8801b56a7bd8 0000000012ea0000 01ff8800a3c14138 0000000012e9ffff
[48665.197388]  ffff880141df3dd8 ffff8802143a6000 ffff8800a3c14138 ffff880141df3df0
[48665.197388]  ffff880141df3dd8 0000000000000000 ffff8801b56a7c08 ffffffffa0354227
[48665.197388] Call Trace:
[48665.197388]  [<ffffffffa0354227>] btrfs_finish_extent_commit+0xb0/0xd9 [btrfs]
[48665.197388]  [<ffffffffa0366b4b>] btrfs_commit_transaction+0x791/0x92c [btrfs]
[48665.197388]  [<ffffffffa0352432>] flush_space+0x43d/0x452 [btrfs]
[48665.197388]  [<ffffffff814295c3>] ? _raw_spin_unlock+0x28/0x33
[48665.197388]  [<ffffffffa035255f>] btrfs_async_reclaim_metadata_space+0x118/0x164 [btrfs]
[48665.197388]  [<ffffffff81059917>] ? process_one_work+0x14b/0x3ab
[48665.197388]  [<ffffffff810599ac>] process_one_work+0x1e0/0x3ab
[48665.197388]  [<ffffffff81079fa9>] ? trace_hardirqs_off+0xd/0xf
[48665.197388]  [<ffffffff8105a55b>] worker_thread+0x210/0x2d0
[48665.197388]  [<ffffffff8105a34b>] ? rescuer_thread+0x2c3/0x2c3
[48665.197388]  [<ffffffff8105e5c0>] kthread+0xef/0xf7
[48665.197388]  [<ffffffff81429682>] ? _raw_spin_unlock_irq+0x2d/0x39
[48665.197388]  [<ffffffff8105e4d1>] ? __kthread_parkme+0xad/0xad
[48665.197388]  [<ffffffff81429dec>] ret_from_fork+0x7c/0xb0
[48665.197388]  [<ffffffff8105e4d1>] ? __kthread_parkme+0xad/0xad
[48665.197388] Code: 85 f6 74 14 49 8b 06 49 03 46 09 49 39 c4 72 1d 4c 89 f7 e8 83 ec ff ff 4c 89 e6 4c 89 ef e8 1e f1 ff ff 48 85 c0 49 89 c6 75 02 <0f> 0b 49 8b 1e 49 03 5e 09 48 8b
[48665.197388] RIP  [<ffffffffa0350d05>] unpin_extent_range+0x6a/0x1ba [btrfs]
[48665.197388]  RSP <ffff8801b56a7b88>
[48665.272246] ---[ end trace b9c6ab9957521376 ]---

Fix this by ensuring that unpining the block group's range in
btrfs_finish_extent_commit() is done in a synchronized fashion
with removing the block group's range from freed_extents[]
in btrfs_delete_unused_bgs()

This race got introduced with the change:

    Btrfs: remove empty block groups automatically
    commit 47ab2a6c68

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:24:48 -08:00
David Sterba e3540eab29 btrfs: add more checks to btrfs_read_sys_array
Verify that the sys_array has enough bytes to read the next item.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:24:39 -08:00
David Sterba 1ffb22cf8c btrfs: cleanup, rename a few variables in btrfs_read_sys_array
There's a pointer to buffer, integer offset and offset passed as
pointer, try to find matching names for them.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:24:28 -08:00
David Sterba ce7fca5f57 btrfs: add checks for sys_chunk_array sizes
Verify that possible minimum and maximum size is set, validity of
contents is checked in btrfs_read_sys_array.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:23:43 -08:00
David Sterba 75d6ad382b btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize
I received a few crafted images from Jiri, all got through the recently
added superblock checks. The lower bounds checks for num_devices and
sector/node -sizes were missing and caused a crash during mount.

Tools for symbolic code execution were used to prepare the images
contents.

Reported-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 19:20:39 -08:00
chandan r 9cc97d6462 Btrfs: Add code to support file creation time
This patch adds a new member to the 'struct btrfs_inode' structure to hold
the file creation time.

Signed-off-by: chandan <chandanrmail@gmail.com>
[refreshed, removed btrfs_inode_otime]
Signed-off-by: David Sterba <dsterba@suse.cz>

Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 18:39:16 -08:00
David Sterba a937b9791e btrfs: kill btrfs_inode_*time helpers
They just opencode taking address of the timespec member.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 18:39:07 -08:00
Linus Torvalds bc208e0ee0 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fix from Chris Mason:
 "We have one more fix for btrfs in my for-linus branch - this was a bug
  in the new raid5/6 scrubbing support"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix raid56 scrub failed in xfstests btrfs/072
2015-01-30 14:25:52 -08:00
Gui Hecheng 063c54dccd btrfs: fix raid56 scrub failed in xfstests btrfs/072
The xfstests btrfs/072 reports uncorrectable read errors in dmesg,
because scrub forgets to use commit_root for parity scrub routine
and scrub attempts to scrub those extents items whose contents are
not fully on disk.

To fix it, we just add the @search_commit_root flag back.

Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaoxie@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-27 15:26:16 -08:00
Linus Torvalds c4e00f1d31 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "We have a few fixes in my for-linus branch.

  Qu Wenruo's batch fix a regression between some our merge window pull
  and the inode_cache feature.  The rest are smaller bugs"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: Don't call btrfs_start_transaction() on frozen fs to avoid deadlock.
  btrfs: Fix the bug that fs_info->pending_changes is never cleared.
  btrfs: fix state->private cast on 32 bit machines
  Btrfs: fix race deleting block group from space_info->ro_bgs list
  Btrfs: fix incorrect freeing in scrub_stripe
  btrfs: sync ioctl, handle errors after transaction start
2015-01-24 14:31:27 +12:00
chandan 95449a1626 Btrfs: insert_new_root: Fix lock type of the extent buffer.
btrfs_alloc_tree_block() returns an extent buffer on which a blocked lock has
been taken. Hence assign the appropriate value to path->locks[level].

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-22 05:42:23 -08:00
Anand Jain 78f55e5e1f Btrfs: fix unused members in struct btrfs_root
There isn't any real use of following members of struct btrfs_root
so delete them.

struct kobject root_kobj;
struct completion kobj_unregister;

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:22:37 -08:00
Yang Dongsheng 0ee13fe28c btrfs: qgroup: move WARN_ON() to the correct location.
In function qgroup_excl_accounting(), we need to WARN when
qg->excl is less than what we want to free, same to child
and parents. But currently, for parent qgroup, the WARN_ON()
is located after freeing qg->excl. It will WARN out even we
free it normally.

This patch move this WARN_ON() before freeing qg->excl.

Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:22:37 -08:00
Liu Bo 26455d3318 Btrfs: cleanup unused run_most
"run_most" is not used anymore.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:22:16 -08:00
Zhao Lei 570193454a Rename all ref_count to refs in struct
refs is better than ref_count to record a struct's ref count.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Suggested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:50 -08:00
Zhao Lei ffe2d2034b Btrfs: Introduce BTRFS_BLOCK_GROUP_RAID56_MASK to check raid56 simply
So we can check raid56 with:
 (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
instead of long:
 (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:49 -08:00
Zhao Lei 10f1190016 Btrfs: Include map_type in raid_bio
Corrent code use many kinds of "clever" way to determine operation
target's raid type, as:
  raid_map != NULL
  or
  raid_map[MAX_NR] == RAID[56]_Q_STRIPE

To make code easy to maintenance, this patch put raid type into
bbio, and we can always get raid type from bbio with a "stupid"
way.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:49 -08:00
Zhao Lei be50a8ddaa Btrfs: Simplify scrub_setup_recheck_block()'s argument
scrub_setup_recheck_block() have many arguments but most of them
can be get from one of them, we can remove them to make code clean.
Some other cleanup for that function also included in this patch.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:49 -08:00
Zhao Lei b968fed1c3 Btrfs: Combine per-page recover in dev-replace and scrub
The code are similar, combine them to make code clean and easy to maintenance.
Some lost condition are also completed with benefit of this combination.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:49 -08:00
Zhao Lei 8d6738c1bd Btrfs: Separate finding-right-mirror and writing-to-target's process in scrub_handle_errored_block()
In corrent code, code of finding-right-mirror and writing-to-target
are mixed in logic, if we find a right mirror but failed in writing
to target, it will treat as "hadn't found right block", and fill the
target with sblock_bad.

Actually, "failed in writing to target" does not mean "source
block is wrong", this patch separate above two condition in logic,
and do some cleanup to make code clean.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:49 -08:00
Zhao Lei dc5f7a3bd8 Btrfs: Break loop when reach BTRFS_MAX_MIRRORS in scrub_setup_recheck_block()
Use break instead of useless loop should be more suitable in this
case.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:48 -08:00
Zhao Lei 7653947fe6 Btrfs: btrfs_rm_dev_replace_blocked(): Use wait_event()
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:48 -08:00
Zhao Lei 09dd7a01c3 Btrfs: Cleanup btrfs_bio_counter_inc_blocked()
1: Remove no-need DEFINE_WAIT(wait)
2: Add likely() for BTRFS_FS_STATE_DEV_REPLACING condition
3: Use while loop instead of goto

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:48 -08:00
Zhao Lei 114ab50d82 Btrfs: Remove noneed force_write in scrub_write_block_to_dev_replace
It is always 1 in this place, because !1 case was already jumped
out in previous code.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:48 -08:00
Zhao Lei b25c94c580 Btrfs: Fix a jump typo of nodatasum_case to avoid wrong WARN_ON()
if (sctx->is_dev_replace && !is_metadata && !have_csum) {
    ...
    goto nodatasum_case;
}
...
nodatasum_case:
    WARN_ON(sctx->is_dev_replace);

In above code, nodatasum_case marker should be moved after
WARN_ON().

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:48 -08:00
Zhao Lei 6e9606d2a2 Btrfs: add ref_count and free function for btrfs_bio
1: ref_count is simple than current RBIO_HOLD_BBIO_MAP_BIT flag
   to keep btrfs_bio's memory in raid56 recovery implement.
2: free function for bbio will make code clean and flexible, plus
   forced data type checking in compile.

Changelog v1->v2:
 Rename following by David Sterba's suggestion:
 put_btrfs_bio() -> btrfs_put_bio()
 get_btrfs_bio() -> btrfs_get_bio()
 bbio->ref_count -> bbio->refs

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:48 -08:00
Zhao Lei 8e5cfb55d3 Btrfs: Make raid_map array be inlined in btrfs_bio structure
It can make code more simple and clear, we need not care about
free bbio and raid_map together.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:47 -08:00
Zhao Lei cc7539edea Btrfs: sort raid_map before adding tgtdev stripes
It can avoid complex calculation of real stripes in sort,
moreover, we can clean up code of sorting tgtdev_map because it
will be in order initially.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:47 -08:00
Zhao Lei e34c330d63 Btrfs: fix a out-of-bound access of raid_map
We add the number of stripes on target devices into bbio->num_stripes
if we are under device replacement, and we just sort the raid_map of
those stripes that not on the target devices, so if when we need
real raid_map, we need skip the stripes on the target devices.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:47 -08:00
Filipe Manana df8d116ffa Btrfs: fix fsync log replay for inodes with a mix of regular refs and extrefs
If we have an inode with a large number of hard links, some of which may
be extrefs, turn a regular ref into an extref, fsync the inode and then
replay the fsync log (after a crash/reboot), we can endup with an fsync
log that makes the replay code always fail with -EOVERFLOW when processing
the inode's references.

This is easy to reproduce with the test case I made for xfstests. Its steps
are the following:

   _scratch_mkfs "-O extref" >> $seqres.full 2>&1
   _init_flakey
   _mount_flakey

   # Create a test file with 3001 hard links. This number is large enough to
   # make btrfs start using extrefs at some point even if the fs has the maximum
   # possible leaf/node size (64Kb).
   echo "hello world" > $SCRATCH_MNT/foo
   for i in `seq 1 3000`; do
       ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i`
   done

   # Make sure all metadata and data are durably persisted.
   sync

   # Now remove one link, add a new one with a new name, add another new one with
   # the same name as the one we just removed and fsync the inode.
   rm -f $SCRATCH_MNT/foo_link_0001
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_0001
   rm -f $SCRATCH_MNT/foo_link_0002
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3002
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3003
   $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

   # Simulate a crash/power loss. This makes sure the next mount
   # will see an fsync log and will replay that log.

   _load_flakey_table $FLAKEY_DROP_WRITES
   _unmount_flakey

   _load_flakey_table $FLAKEY_ALLOW_WRITES
   _mount_flakey

   # Check that the number of hard links is correct, we are able to remove all
   # the hard links and read the file's data. This is just to verify we don't
   # get stale file handle errors (due to dangling directory index entries that
   # point to inodes that no longer exist).
   echo "Link count: $(stat --format=%h $SCRATCH_MNT/foo)"
   [ -f $SCRATCH_MNT/foo ] || echo "Link foo is missing"
   for ((i = 1; i <= 3003; i++)); do
       name=foo_link_`printf "%04d" $i`
       if [ $i -eq 2 ]; then
           [ -f $SCRATCH_MNT/$name ] && echo "Link $name found"
       else
           [ -f $SCRATCH_MNT/$name ] || echo "Link $name is missing"
       fi
   done
   rm -f $SCRATCH_MNT/foo_link_*
   cat $SCRATCH_MNT/foo
   rm -f $SCRATCH_MNT/foo

   status=0
   exit

The fix is simply to correct the overflow condition when overwriting a
reference item because it was wrong, trying to increase the item in the
fs/subvol tree by an impossible amount. Also ensure that we don't insert
one normal ref and one ext ref for the same dentry - this happened because
processing a dir index entry from the parent in the log happened when
the normal ref item was full, which made the logic insert an extref and
later when the normal ref had enough room, it would be inserted again
when processing the ref item from the child inode in the log.

This issue has been present since the introduction of the extrefs feature
(2012).

A test case for xfstests follows soon. This test only passes if the previous
patch titled "Btrfs: fix fsync when extend references are added to an inode"
is applied too.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:05 -08:00
Filipe Manana 2c2c452b0c Btrfs: fix fsync when extend references are added to an inode
If we added an extended reference to an inode and fsync'ed it, the log
replay code would make our inode have an incorrect link count, which
was lower then the expected/correct count.
This resulted in stale directory index entries after deleting some of
the hard links, and any access to the dangling directory entries resulted
in -ESTALE errors because the entries pointed to inode items that don't
exist anymore.

This is easy to reproduce with the test case I made for xfstests, and
the bulk of that test is:

    _scratch_mkfs "-O extref" >> $seqres.full 2>&1
    _init_flakey
    _mount_flakey

    # Create a test file with 3001 hard links. This number is large enough to
    # make btrfs start using extrefs at some point even if the fs has the maximum
    # possible leaf/node size (64Kb).
    echo "hello world" > $SCRATCH_MNT/foo
    for i in `seq 1 3000`; do
        ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i`
    done

    # Make sure all metadata and data are durably persisted.
    sync

    # Add one more link to the inode that ends up being a btrfs extref and fsync
    # the inode.
    ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001
    $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

    # Simulate a crash/power loss. This makes sure the next mount
    # will see an fsync log and will replay that log.

    _load_flakey_table $FLAKEY_DROP_WRITES
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    _mount_flakey

    # Now after the fsync log replay btrfs left our inode with a wrong link count N,
    # which was smaller than the correct link count M (N < M).
    # So after removing N hard links, the remaining M - N directory entries were
    # still visible to user space but it was impossible to do anything with them
    # because they pointed to an inode that didn't exist anymore. This resulted in
    # stale file handle errors (-ESTALE) when accessing those dentries for example.
    #
    # So remove all hard links except the first one and then attempt to read the
    # file, to verify we don't get an -ESTALE error when accessing the inodel
    #
    # The btrfs fsck tool also detected the incorrect inode link count and it
    # reported an error message like the following:
    #
    # root 5 inode 257 errors 2001, no inode item, link count wrong
    #   unresolved ref dir 256 index 2978 namelen 13 name foo_link_2976 filetype 1 errors 4, no inode ref
    #
    # The fstests framework automatically calls fsck after a test is run, so we
    # don't need to call fsck explicitly here.

    rm -f $SCRATCH_MNT/foo_link_*
    cat $SCRATCH_MNT/foo

    status=0
    exit

So make sure an fsync always flushes the delayed inode item, so that the
fsync log contains it (needed in order to trigger the link count fixup
code) and fix the extref counting function, which always return -ENOENT
to its caller (and made it assume there were always 0 extrefs).

This issue has been present since the introduction of the extrefs feature
(2012).

A test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
Filipe Manana d36808e0d4 Btrfs: fix directory inconsistency after fsync log replay
If we have an inode (file) with a link count greater than 1, remove
one of its hard links, fsync the inode, power fail/crash and then
replay the fsync log on the next mount, we end up getting the parent
directory's metadata inconsistent - its i_size still reflects the
deleted hard link and has dangling index entries (with no matching
inode reference entries). This prevents the directory from ever being
deletable, as its i_size can never decrease to BTRFS_EMPTY_DIR_SIZE
even if all of its children inodes are deleted, and the dangling index
entries can never be removed (as they point to an inode that does not
exist anymore).

This is easy to reproduce with the following excerpt from the test case
for xfstests that I just made:

    _scratch_mkfs >> $seqres.full 2>&1

    _init_flakey
    _mount_flakey

    # Create a test file with 2 hard links in the same directory.
    mkdir -p $SCRATCH_MNT/a/b
    echo "hello world" > $SCRATCH_MNT/a/b/foo
    ln $SCRATCH_MNT/a/b/foo $SCRATCH_MNT/a/b/bar

    # Make sure all metadata and data are durably persisted.
    sync

    # Now remove one of the hard links and fsync the inode.
    rm -f $SCRATCH_MNT/a/b/bar
    $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/a/b/foo

    # Simulate a crash/power loss. This makes sure the next mount
    # will see an fsync log and will replay that log.

    _load_flakey_table $FLAKEY_DROP_WRITES
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    _mount_flakey

    # Remove the last hard link of the file and attempt to remove its parent
    # directory - this failed in btrfs because the fsync log and replay code
    # didn't decrement the parent directory's i_size and left dangling directory
    # index entries - this made the btrfs rmdir implementation always fail with
    # the error -ENOTEMPTY.
    #
    # The dangling directory index entries were visible to user space, but it was
    # impossible to do anything on them (unlink, open, read, write, stat, etc)
    # because the inode they pointed to did not exist anymore.
    #
    # The parent directory's metadata inconsistency (stale index entries) was
    # also detected by btrfs' fsck tool, which is run automatically by the fstests
    # framework when the test finishes. The error message reported by fsck was:
    #
    # root 5 inode 259 errors 2001, no inode item, link count wrong
    #   unresolved ref dir 258 index 3 namelen 3 name bar filetype 1 errors 4, no inode ref
    #
    rm -f $SCRATCH_MNT/a/b/*
    rmdir $SCRATCH_MNT/a/b
    rmdir $SCRATCH_MNT/a

To fix this just make sure that after an unlink, if the inode is fsync'ed,
he parent inode is fully logged in the fsync log.

A test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
Filipe Manana 6219872dc6 Btrfs: lookup for block group only if needed when freeing a tree block
Very often our extent buffer's header generation doesn't match the current
transaction's id or it is also referenced by other trees (snapshots), so
we don't need the corresponding block group cache object. Therefore only
search for it if we are going to use it, so we avoid an unnecessary search
in the block groups rbtree (and acquiring and releasing its spinlock).

Freeing a tree block is performed when COWing or deleting a node/leaf,
which implies we are holding the node/leaf's parent node lock, therefore
reducing the amount of time spent when freeing a tree block helps reducing
the amount of time we are holding the parent node's lock.

For example, for a run of xfstests/generic/083, the block group cache
object was needed only 682 times for a total of 226691 calls to free
a tree block.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
David Sterba 730a78c741 btrfs: remove a no-op unfreeze superbock callback
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
David Sterba 9ee49a047d btrfs: switch extent_state state to unsigned
Currently there's a 4B hole in the structure between refs and state and there
are only 16 bits used so we can make it unsigned. This will get a better
packing and may save some stack space for local variables.

The size of extent_state gets reduced by 8B and there are usually a lot
of slab objects.

struct extent_state {
	u64                        start;                /*     0     8 */
	u64                        end;                  /*     8     8 */
	struct rb_node             rb_node;              /*    16    24 */
	wait_queue_head_t          wq;                   /*    40    24 */
	/* --- cacheline 1 boundary (64 bytes) --- */
	atomic_t                   refs;                 /*    64     4 */

	/* XXX 4 bytes hole, try to pack */

	long unsigned int          state;                /*    72     8 */
	u64                        private;              /*    80     8 */

	/* size: 88, cachelines: 2, members: 7 */
	/* sum members: 84, holes: 1, sum holes: 4 */
	/* last cacheline: 24 bytes */
};

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
David Sterba 5efa0490cc btrfs: set proper message level for skinny metadata
This has been confusing people for too long, the message is really just
informative.

CC: <stable@vger.kernel.org> # 3.10+
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:03 -08:00
David Sterba f0954c6637 btrfs: update message levels after checksum errors
The errors are worth noting and might get missed with INFO level.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:03 -08:00
David Sterba aa8ee31209 btrfs: update message levels during failed mount
All error conditions from open_ctree shall be ERR. Warning would
suggest that something's wrong and we can continue.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:03 -08:00
David Sterba 68b663d13c btrfs: update message levels for errors
Several messages that point to some internal problem, level INFO is
wrong here.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:03 -08:00
Filipe Manana a8df6fe666 Btrfs: fix setup_leaf_for_split() to avoid leaf corruption
We were incorrectly detecting when the target key didn't exist anymore
after releasing the path and re-searching the tree. This could make
us split or duplicate (btrfs_split_item() and btrfs_duplicate_item()
are its only callers at the moment) an item when we should not.

For the case of duplicating an item, we currently only duplicate
checksum items (csum tree) and file extent items (fs/subvol trees).
For the checksum items we end up overriding the item completely,
but for file extent items we update only some of their fields in
the copy (done in __btrfs_drop_extents), which means we can end up
having a logical corruption for some values.

Also for the case where we duplicate a file extent item it will make
us produce a leaf with a wrong key order, as btrfs_duplicate_item()
advances us to the next slot and then its caller sets a smaller key
on the new item at that slot (like in __btrfs_drop_extents() e.g.).
Alternatively if the tree search in setup_leaf_for_split() leaves
with path->slots[0] == btrfs_header_nritems(path->nodes[0]), we end
up accessing beyond the leaf's end (when we check if the item's size
has changed) and make our caller insert an item at the invalid slot
btrfs_header_nritems(path->nodes[0]) + 1, causing an invalid memory
access if the leaf is full or nearly full.

This issue has been present since the introduction of this function
in 2009:

    Btrfs: Add btrfs_duplicate_item
    commit ad48fd7546

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:03 -08:00
Chris Mason 57bbddd7fb Merge branch 'cleanup/blocksize-diet-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus 2015-01-21 17:49:35 -08:00
Chris Mason d354183488 Merge branch 'fix/find-item-path-leak' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus 2015-01-21 17:45:25 -08:00
Josef Bacik ce93ec548c Btrfs: track dirty block groups on their own list
Currently any time we try to update the block groups on disk we will walk _all_
block groups and check for the ->dirty flag to see if it is set.  This function
can get called several times during a commit.  So if you have several terabytes
of data you will be a very sad panda as we will loop through _all_ of the block
groups several times, which makes the commit take a while which slows down the
rest of the file system operations.

This patch introduces a dirty list for the block groups that we get added to
when we dirty the block group for the first time.  Then we simply update any
block groups that have been dirtied since the last time we called
btrfs_write_dirty_block_groups.  This allows us to clean up how we write the
free space cache out so it is much cleaner.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 17:36:52 -08:00
Josef Bacik e7070be198 Btrfs: change how we track dirty roots
I've been overloading root->dirty_list to keep track of dirty roots and which
roots need to have their commit roots switched at transaction commit time.  This
could cause us to lose an update to the root which could corrupt the file
system.  To fix this use a state bit to know if the root is dirty, and if it
isn't set we go ahead and move the root to the dirty list.  This way if we
re-dirty the root after adding it to the switch_commit list we make sure to
update it.  This also makes it so that the extent root is always the last root
on the dirty list to try and keep the amount of churn down at this point in the
commit.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 17:35:49 -08:00
Ingo Molnar f49028292c Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull RCU updates from Paul E. McKenney:

  - Documentation updates.

  - Miscellaneous fixes.

  - Preemptible-RCU fixes, including fixing an old bug in the
    interaction of RCU priority boosting and CPU hotplug.

  - SRCU updates.

  - RCU CPU stall-warning updates.

  - RCU torture-test updates.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-21 06:12:21 +01:00
Qu Wenruo a53f4f8e9c btrfs: Don't call btrfs_start_transaction() on frozen fs to avoid deadlock.
Commit 6b5fe46dfa (btrfs: do commit in sync_fs if there are pending
changes) will call btrfs_start_transaction() in sync_fs(), to handle
some operations needed to be done in next transaction.

However this can cause deadlock if the filesystem is frozen, with the
following sys_r+w output:
[  143.255932] Call Trace:
[  143.255936]  [<ffffffff816c0e09>] schedule+0x29/0x70
[  143.255939]  [<ffffffff811cb7f3>] __sb_start_write+0xb3/0x100
[  143.255971]  [<ffffffffa040ec06>] start_transaction+0x2e6/0x5a0
[btrfs]
[  143.255992]  [<ffffffffa040f1eb>] btrfs_start_transaction+0x1b/0x20
[btrfs]
[  143.256003]  [<ffffffffa03dc0ba>] btrfs_sync_fs+0xca/0xd0 [btrfs]
[  143.256007]  [<ffffffff811f7be0>] sync_fs_one_sb+0x20/0x30
[  143.256011]  [<ffffffff811cbd01>] iterate_supers+0xe1/0xf0
[  143.256014]  [<ffffffff811f7d75>] sys_sync+0x55/0x90
[  143.256017]  [<ffffffff816c49d2>] system_call_fastpath+0x12/0x17
[  143.256111] Call Trace:
[  143.256114]  [<ffffffff816c0e09>] schedule+0x29/0x70
[  143.256119]  [<ffffffff816c3405>] rwsem_down_write_failed+0x1c5/0x2d0
[  143.256123]  [<ffffffff8133f013>] call_rwsem_down_write_failed+0x13/0x20
[  143.256131]  [<ffffffff811caae8>] thaw_super+0x28/0xc0
[  143.256135]  [<ffffffff811db3e5>] do_vfs_ioctl+0x3f5/0x540
[  143.256187]  [<ffffffff811db5c1>] SyS_ioctl+0x91/0xb0
[  143.256213]  [<ffffffff816c49d2>] system_call_fastpath+0x12/0x17

The reason is like the following:
(Holding s_umount)
VFS sync_fs staff:
|- btrfs_sync_fs()
   |- btrfs_start_transaction()
      |- sb_start_intwrite()
      (Waiting thaw_fs to unfreeze)
					VFS thaw_fs staff:
					thaw_fs()
					(Waiting sync_fs to release
					 s_umount)

So deadlock happens.
This can be easily triggered by fstest/generic/068 with inode_cache
mount option.

The fix is to check if the fs is frozen, if the fs is frozen, just
return and waiting for the next transaction.

Cc: David Sterba <dsterba@suse.cz>
Reported-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
[enhanced comment, changed to SB_FREEZE_WRITE]
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-20 17:20:21 -08:00
Qu Wenruo 6c9fe14f9d btrfs: Fix the bug that fs_info->pending_changes is never cleared.
Fs_info->pending_changes is never cleared since the original code uses
cmpxchg(&fs_info->pending_changes, 0, 0), which will only clear it if
pending_changes is already 0.

This will cause a lot of problem when mount it with inode_cache mount
option.
If the btrfs is mounted as inode_cache, pending_changes will always be
1, even when the fs is frozen.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-20 17:19:40 -08:00
Christoph Hellwig df0ce26cb4 fs: remove default_backing_dev_info
Now that default_backing_dev_info is not used for writeback purposes we can
git rid of it easily:

 - instead of using it's name for tracing unregistered bdi we just use
   "unknown"
 - btrfs and ceph can just assign the default read ahead window themselves
   like several other filesystems already do.
 - we can assign noop_backing_dev_info as the default one in alloc_super.
   All filesystems already either assigned their own or
   noop_backing_dev_info.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-01-20 14:05:38 -07:00
Christoph Hellwig b83ae6d421 fs: remove mapping->backing_dev_info
Now that we never use the backing_dev_info pointer in struct address_space
we can simply remove it and save 4 to 8 bytes in every inode.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-01-20 14:03:05 -07:00
Christoph Hellwig de1414a654 fs: export inode_to_bdi and use it in favor of mapping->backing_dev_info
Now that we got rid of the bdi abuse on character devices we can always use
sb->s_bdi to get at the backing_dev_info for a file, except for the block
device special case.  Export inode_to_bdi and replace uses of
mapping->backing_dev_info with it to prepare for the removal of
mapping->backing_dev_info.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-01-20 14:03:04 -07:00
Christoph Hellwig b4caecd480 fs: introduce f_op->mmap_capabilities for nommu mmap support
Since "BDI: Provide backing device capability information [try #3]" the
backing_dev_info structure also provides flags for the kind of mmap
operation available in a nommu environment, which is entirely unrelated
to it's original purpose.

Introduce a new nommu-only file operation to provide this information to
the nommu mmap code instead.  Splitting this from the backing_dev_info
structure allows to remove lots of backing_dev_info instance that aren't
otherwise needed, and entirely gets rid of the concept of providing a
backing_dev_info for a character device.  It also removes the need for
the mtd_inodefs filesystem.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Tejun Heo <tj@kernel.org>
Acked-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-01-20 14:02:58 -07:00
Satoru Takeuchi 6e1103a6e9 btrfs: fix state->private cast on 32 bit machines
Suppress the following warning displayed on building 32bit (i686) kernel.

===============================================================================
...
   CC [M]  fs/btrfs/extent_io.o
fs/btrfs/extent_io.c: In function ‘btrfs_free_io_failure_record’:
fs/btrfs/extent_io.c:2193:13: warning: cast to pointer from integer of
different size [-Wint-to-pointer-cast]
    failrec = (struct io_failure_record *)state->private;
...
===============================================================================

Signed-off-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Reported-by: Chris Murphy <chris@colorremedies.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-19 13:06:06 -08:00
Filipe Manana 75c68e9fbb Btrfs: fix race deleting block group from space_info->ro_bgs list
When removing a block group we were deleting it from its space_info's
ro_bgs list without the correct protection - the space info's spinlock.
Fix this by doing the list delete while holding the spinlock of the
corresponding space info, which is the correct lock for any operation
on that list.

This issue was introduced in the 3.19 kernel by the following change:

    Btrfs: move read only block groups onto their own list V2
    commit 633c0aad4c

I ran into a kernel crash while a task was running statfs, which iterates
the space_info->ro_bgs list while holding the space info's spinlock,
and another task was deleting it from the same list, without holding that
spinlock, as part of the block group remove operation (while running the
function btrfs_remove_block_group). This happened often when running the
stress test xfstests/generic/038 I recently made.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-19 13:05:45 -08:00
Tsutomu Itoh 379d6854a2 Btrfs: fix incorrect freeing in scrub_stripe
The address that should be freed is not 'ppath' but 'path'.

Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Reviewed-by: Miao Xie <miaoxie@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-19 13:05:44 -08:00
David Sterba 98bd5c547e btrfs: sync ioctl, handle errors after transaction start
The version merged to 3.19 did not handle errors from start_trancaction
and could pass an invalid pointer to commit_transaction.

Fixes: 6b5fe46dfa ("btrfs: do commit in sync_fs if there are pending changes")
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-19 13:05:44 -08:00
David Sterba 1d4c08e0a6 btrfs: expand btrfs_find_item if found_key is NULL
If the found_key is NULL, then btrfs_find_item becomes a verbose wrapper
for simple btrfs_search_slot.

After we've removed all such callers, passing a NULL key is not valid
anymore.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:48 +01:00
David Sterba 9c4f61f01d btrfs: simplify insert_orphan_item
We can search and add the orphan item in one go,
btrfs_insert_orphan_item will find out if the item already exists.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:48 +01:00
David Sterba c234a24de9 btrfs: cleanup, remove inode_ref_info helper
A simple wrapper around btrfs_find_item.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:47 +01:00
David Sterba 14692cc150 btrfs: cleanup, remove inode_item_info helper
It's only a simple wrapper around btrfs_find_item, the locally defined
key is not used.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:47 +01:00
David Sterba 381cf6587f btrfs: fix leak of path in btrfs_find_item
If btrfs_find_item is called with NULL path it allocates one locally but
does not free it. Affected paths are inserting an orphan item for a file
and for a subvol root.

Move the path allocation to the callers.

CC: <stable@vger.kernel.org> # 3.14+
Fixes: 3f870c2899 ("btrfs: expand btrfs_find_item() to include find_orphan_item functionality")
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:46 +01:00
Linus Torvalds 03c751a5e1 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "None of these are huge, but my commit does fix a regression from 3.18
  that could cause lost files during log replay.

  This also adds Dave Sterba to the list of Btrfs maintainers.  It
  doesn't mean we're doing things differently, but Dave has really been
  helping with the maintainer workload for years"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: don't delay inode ref updates during log replay
  Btrfs: correctly get tree level in tree_backref_for_extent
  Btrfs: call inode_dec_link_count() on mkdir error path
  Btrfs: abort transaction if we don't find the block group
  Btrfs, scrub: uninitialized variable in scrub_extent_for_parity()
  Btrfs: add more maintainers
2015-01-09 17:46:07 -08:00
Pranith Kumar 83fe27ea53 rcu: Make SRCU optional by using CONFIG_SRCU
SRCU is not necessary to be compiled by default in all cases. For tinification
efforts not compiling SRCU unless necessary is desirable.

The current patch tries to make compiling SRCU optional by introducing a new
Kconfig option CONFIG_SRCU which is selected when any of the components making
use of SRCU are selected.

If we do not select CONFIG_SRCU, srcu.o will not be compiled at all.

   text    data     bss     dec     hex filename
   2007       0       0    2007     7d7 kernel/rcu/srcu.o

Size of arch/powerpc/boot/zImage changes from

   text    data     bss     dec     hex filename
 831552   64180   23944  919676   e087c arch/powerpc/boot/zImage : before
 829504   64180   23952  917636   e0084 arch/powerpc/boot/zImage : after

so the savings are about ~2000 bytes.

Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
CC: Josh Triplett <josh@joshtriplett.org>
CC: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: resolve conflict due to removal of arch/ia64/kvm/Kconfig. ]
2015-01-06 11:04:29 -08:00
Chris Mason 6f8960541b Btrfs: don't delay inode ref updates during log replay
Commit 1d52c78afb (Btrfs: try not to ENOSPC on log replay) added a
check to skip delayed inode updates during log replay because it
confuses the enospc code.  But the delayed processing will end up
ignoring delayed refs from log replay because the inode itself wasn't
put through the delayed code.

This can end up triggering a warning at commit time:

WARNING: CPU: 2 PID: 778 at fs/btrfs/delayed-inode.c:1410 btrfs_assert_delayed_root_empty+0x32/0x34()

Which is repeated for each commit because we never process the delayed
inode ref update.

The fix used here is to change btrfs_delayed_delete_inode_ref to return
an error if we're currently in log replay.  The caller will do the ref
deletion immediately and everything will work properly.

Signed-off-by: Chris Mason <clm@fb.com>
cc: stable@vger.kernel.org # v3.18 and any stable series that picked 1d52c78afb
2015-01-02 14:47:56 -05:00
Filipe Manana a1317f455a Btrfs: correctly get tree level in tree_backref_for_extent
If we are using skinny metadata, the block's tree level is in the offset
of the key and not in a btrfs_tree_block_info structure following the
extent item (it doesn't exist). Therefore fix it.

Besides returning the correct level in the tree, this also prevents reading
past the leaf's end in the case where the extent item is the last item in
the leaf (eb) and it has only 1 inline reference - this is because
sizeof(struct btrfs_tree_block_info) is greater than
sizeof(struct btrfs_extent_inline_ref).

Got it while running a scrub which produced the following warning:

    BTRFS: checksum error at logical 42123264 on dev /dev/sde, sector 15840: metadata node (level 24) in tree 5

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-02 14:47:56 -05:00
Wang Shilong c7cfb8a540 Btrfs: call inode_dec_link_count() on mkdir error path
In btrfs_mkdir(), if it fails to create dir, we should
clean up existed items, setting inode's link properly
to make sure it could be cleaned up properly.

Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-02 14:47:55 -05:00
Josef Bacik df95e7f0d9 Btrfs: abort transaction if we don't find the block group
We shouldn't BUG_ON() if there is corruption.  I hit this while testing my block
group patch and the abort worked properly.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-02 14:47:55 -05:00
Dan Carpenter 6b6d24b389 Btrfs, scrub: uninitialized variable in scrub_extent_for_parity()
The only way that "ret" is set is when we call scrub_pages_for_parity()
so the skip to "if (ret) " test doesn't make sense and causes a static
checker warning.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-02 14:47:55 -05:00
Linus Torvalds ecb5ec044a Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs pile #3 from Al Viro:
 "Assorted fixes and patches from the last cycle"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  [regression] chunk lost from bd9b51
  vfs: make mounts and mountstats honor root dir like mountinfo does
  vfs: cleanup show_mountinfo
  init: fix read-write root mount
  unfuck binfmt_misc.c (broken by commit e6084d4)
  vm_area_operations: kill ->migrate()
  new helper: iter_is_iovec()
  move_extent_per_page(): get rid of unused w_flags
  lustre: get rid of playing with ->fs
  btrfs: filp_open() returns ERR_PTR() on failure, not NULL...
2014-12-19 18:19:19 -08:00
Linus Torvalds 5c68eac68b Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull more btrfs updates from Chris Mason:
 "This is part two of our merge window patches.

  These are all from Filipe, and fix some really hard to find races that
  can cause corruptions.  Most of them involved block group removal
  (balance) or discard"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: remove non-sense btrfs_error_discard_extent() function
  Btrfs: fix fs corruption on transaction abort if device supports discard
  Btrfs: always clear a block group node when removing it from the tree
  Btrfs: ensure deletion from pinned_chunks list is protected
2014-12-19 18:10:42 -08:00
Al Viro 98af592f5b btrfs: filp_open() returns ERR_PTR() on failure, not NULL...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-12-17 06:43:56 -05:00
Linus Torvalds bdeb03cada Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs update from Chris Mason:
 "From a feature point of view, most of the code here comes from Miao
  Xie and others at Fujitsu to implement scrubbing and replacing devices
  on raid56.  This has been in development for a while, and it's a big
  improvement.

  Filipe and Josef have a great assortment of fixes, many of which solve
  problems corruptions either after a crash or in error conditions.  I
  still have a round two from Filipe for next week that solves
  corruptions with discard and block group removal"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (62 commits)
  Btrfs: make get_caching_control unconditionally return the ctl
  Btrfs: fix unprotected deletion from pending_chunks list
  Btrfs: fix fs mapping extent map leak
  Btrfs: fix memory leak after block remove + trimming
  Btrfs: make btrfs_abort_transaction consider existence of new block groups
  Btrfs: fix race between writing free space cache and trimming
  Btrfs: fix race between fs trimming and block group remove/allocation
  Btrfs, replace: enable dev-replace for raid56
  Btrfs: fix freeing used extents after removing empty block group
  Btrfs: fix crash caused by block group removal
  Btrfs: fix invalid block group rbtree access after bg is removed
  Btrfs, raid56: fix use-after-free problem in the final device replace procedure on raid56
  Btrfs, replace: write raid56 parity into the replace target device
  Btrfs, replace: write dirty pages into the replace target device
  Btrfs, raid56: support parity scrub on raid56
  Btrfs, raid56: use a variant to record the operation type
  Btrfs, scrub: repair the common data on RAID5/6 if it is corrupted
  Btrfs, raid56: don't change bbio and raid_map
  Btrfs: remove unnecessary code of stripe_index assignment in __btrfs_map_block
  Btrfs: remove noused bbio_ret in __btrfs_map_block in condition
  ...
2014-12-12 11:15:23 -08:00
David Sterba ce3e69847e btrfs: sink parameter len to alloc_extent_buffer
Because we're using globally known nodesize. Do the same for the sanity
test function variant.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:26:57 +01:00
David Sterba 3f556f7853 btrfs: unify extent buffer allocation api
Make the extent buffer allocation interface consistent.  Cloned eb will
set a valid fs_info.  For dummy eb, we can drop the length parameter and
set it from fs_info.

The built-in sanity checks may pass a NULL fs_info that's queried for
nodesize, but we know it's 4096.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:26:55 +01:00
David Sterba 23d79d81b1 btrfs: use GFP_NOFS in __alloc_extent_buffer directly
Same mask from all callers.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:23 +01:00
David Sterba 7476dfdaad btrfs: sink blocksize parameter to tree_block_processed
Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:22 +01:00
David Sterba a83fffb75d btrfs: sink blocksize parameter to btrfs_find_create_tree_block
Finally it's clear that the requested blocksize is always equal to
nodesize, with one exception, the superblock.

Superblock has fixed size regardless of the metadata block size, but
uses the same helpers to initialize sys array/chunk tree and to work
with the chunk items. So it pretends to be an extent_buffer for a
moment, btrfs_read_sys_array is full of special cases, we're adding one
more.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:21 +01:00
David Sterba fe864576de btrfs: sink blocksize parameter to btrfs_init_new_buffer
Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:20 +01:00
David Sterba c0dcaa4d7b btrfs: sink blocksize parameter to reada_tree_block_flagged
Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:20 +01:00
David Sterba b6ae40ec76 btrfs: remove blocksize from reada_extent
Replace with global nodesize instead.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:19 +01:00
David Sterba d3e46fea1b btrfs: sink blocksize parameter to readahead_tree_block
All callers pass nodesize.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:18 +01:00
Linus Torvalds cbfe0de303 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull VFS changes from Al Viro:
 "First pile out of several (there _definitely_ will be more).  Stuff in
  this one:

   - unification of d_splice_alias()/d_materialize_unique()

   - iov_iter rewrite

   - killing a bunch of ->f_path.dentry users (and f_dentry macro).

     Getting that completed will make life much simpler for
     unionmount/overlayfs, since then we'll be able to limit the places
     sensitive to file _dentry_ to reasonably few.  Which allows to have
     file_inode(file) pointing to inode in a covered layer, with dentry
     pointing to (negative) dentry in union one.

     Still not complete, but much closer now.

   - crapectomy in lustre (dead code removal, mostly)

   - "let's make seq_printf return nothing" preparations

   - assorted cleanups and fixes

  There _definitely_ will be more piles"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
  copy_from_iter_nocache()
  new helper: iov_iter_kvec()
  csum_and_copy_..._iter()
  iov_iter.c: handle ITER_KVEC directly
  iov_iter.c: convert copy_to_iter() to iterate_and_advance
  iov_iter.c: convert copy_from_iter() to iterate_and_advance
  iov_iter.c: get rid of bvec_copy_page_{to,from}_iter()
  iov_iter.c: convert iov_iter_zero() to iterate_and_advance
  iov_iter.c: convert iov_iter_get_pages_alloc() to iterate_all_kinds
  iov_iter.c: convert iov_iter_get_pages() to iterate_all_kinds
  iov_iter.c: convert iov_iter_npages() to iterate_all_kinds
  iov_iter.c: iterate_and_advance
  iov_iter.c: macros for iterating over iov_iter
  kill f_dentry macro
  dcache: fix kmemcheck warning in switch_names
  new helper: audit_file()
  nfsd_vfs_write(): use file_inode()
  ncpfs: use file_inode()
  kill f_dentry uses
  lockd: get rid of ->f_path.dentry->d_sb
  ...
2014-12-10 16:10:49 -08:00
Filipe Manana 1edb647bb9 Btrfs: remove non-sense btrfs_error_discard_extent() function
It doesn't do anything special, it just calls btrfs_discard_extent(),
so just remove it.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-10 12:22:32 -08:00
Filipe Manana 678886bdc6 Btrfs: fix fs corruption on transaction abort if device supports discard
When we abort a transaction we iterate over all the ranges marked as dirty
in fs_info->freed_extents[0] and fs_info->freed_extents[1], clear them
from those trees, add them back (unpin) to the free space caches and, if
the fs was mounted with "-o discard", perform a discard on those regions.
Also, after adding the regions to the free space caches, a fitrim ioctl call
can see those ranges in a block group's free space cache and perform a discard
on the ranges, so the same issue can happen without "-o discard" as well.

This causes corruption, affecting one or multiple btree nodes (in the worst
case leaving the fs unmountable) because some of those ranges (the ones in
the fs_info->pinned_extents tree) correspond to btree nodes/leafs that are
referred by the last committed super block - breaking the rule that anything
that was committed by a transaction is untouched until the next transaction
commits successfully.

I ran into this while running in a loop (for several hours) the fstest that
I recently submitted:

  [PATCH] fstests: add btrfs test to stress chunk allocation/removal and fstrim

The corruption always happened when a transaction aborted and then fsck complained
like this:

   _check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent
   *** fsck.btrfs output ***
   Check tree block failed, want=94945280, have=0
   Check tree block failed, want=94945280, have=0
   Check tree block failed, want=94945280, have=0
   Check tree block failed, want=94945280, have=0
   Check tree block failed, want=94945280, have=0
   read block failed check_tree_block
   Couldn't open file system

In this case 94945280 corresponded to the root of a tree.
Using frace what I observed was the following sequence of steps happened:

   1) transaction N started, fs_info->pinned_extents pointed to
      fs_info->freed_extents[0];

   2) node/eb 94945280 is created;

   3) eb is persisted to disk;

   4) transaction N commit starts, fs_info->pinned_extents now points to
      fs_info->freed_extents[1], and transaction N completes;

   5) transaction N + 1 starts;

   6) eb is COWed, and btrfs_free_tree_block() called for this eb;

   7) eb range (94945280 to 94945280 + 16Kb) is added to
      fs_info->pinned_extents (fs_info->freed_extents[1]);

   8) Something goes wrong in transaction N + 1, like hitting ENOSPC
      for example, and the transaction is aborted, turning the fs into
      readonly mode. The stack trace I got for example:

      [112065.253935]  [<ffffffff8140c7b6>] dump_stack+0x4d/0x66
      [112065.254271]  [<ffffffff81042984>] warn_slowpath_common+0x7f/0x98
      [112065.254567]  [<ffffffffa0325990>] ? __btrfs_abort_transaction+0x50/0x10b [btrfs]
      [112065.261674]  [<ffffffff810429e5>] warn_slowpath_fmt+0x48/0x50
      [112065.261922]  [<ffffffffa032949e>] ? btrfs_free_path+0x26/0x29 [btrfs]
      [112065.262211]  [<ffffffffa0325990>] __btrfs_abort_transaction+0x50/0x10b [btrfs]
      [112065.262545]  [<ffffffffa036b1d6>] btrfs_remove_chunk+0x537/0x58b [btrfs]
      [112065.262771]  [<ffffffffa033840f>] btrfs_delete_unused_bgs+0x1de/0x21b [btrfs]
      [112065.263105]  [<ffffffffa0343106>] cleaner_kthread+0x100/0x12f [btrfs]
      (...)
      [112065.264493] ---[ end trace dd7903a975a31a08 ]---
      [112065.264673] BTRFS: error (device sdc) in btrfs_remove_chunk:2625: errno=-28 No space left
      [112065.264997] BTRFS info (device sdc): forced readonly

   9) The clear kthread sees that the BTRFS_FS_STATE_ERROR bit is set in
      fs_info->fs_state and calls btrfs_cleanup_transaction(), which in
      turn calls btrfs_destroy_pinned_extent();

   10) Then btrfs_destroy_pinned_extent() iterates over all the ranges
       marked as dirty in fs_info->freed_extents[], and for each one
       it calls discard, if the fs was mounted with "-o discard", and
       adds the range to the free space cache of the respective block
       group;

   11) btrfs_trim_block_group(), invoked from the fitrim ioctl code path,
       sees the free space entries and performs a discard;

   12) After an umount and mount (or fsck), our eb's location on disk was full
       of zeroes, and it should have been untouched, because it was marked as
       dirty in the fs_info->pinned_extents tree, and therefore used by the
       trees that the last committed superblock points to.

Fix this by not performing a discard and not adding the ranges to the free space
caches - it's useless from this point since the fs is now in readonly mode and
we won't write free space caches to disk anymore (otherwise we would leak space)
nor any new superblock. By not adding the ranges to the free space caches, it
prevents other code paths from allocating that space and write to it as well,
therefore being safer and simpler.

This isn't a new problem, as it's been present since 2011 (git commit
acce952b02).

Cc: stable@vger.kernel.org  # any kernel released after 2011-01-06
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-10 12:22:31 -08:00
Filipe Manana 01eacb2779 Btrfs: always clear a block group node when removing it from the tree
Always clear a block group's rbnode after removing it from the rbtree to
ensure that any tasks that might be holding a reference on the block group
don't end up accessing stale rbnode left and right child pointers through
next_block_group().

This is a leftover from the change titled:
"Btrfs: fix invalid block group rbtree access after bg is removed"

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-10 12:22:29 -08:00
Filipe Manana a1e7e16ed3 Btrfs: ensure deletion from pinned_chunks list is protected
The call to remove_extent_mapping() actually deletes the extent map
from the list it's included in - fs_info->pinned_chunks - and that
list is protected by the chunk mutex. Therefore make that call
while holding the chunk mutex and remove the redundant list delete
call because it's a noop.

This fixes an overlook of the patch titled
"Btrfs: fix race between fs trimming and block group remove/allocation"
following the same obvervation from the patch titled
"Btrfs: fix unprotected deletion from pending_chunks list".

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-10 12:22:28 -08:00
Al Viro ba00410b81 Merge branch 'iov_iter' into for-next 2014-12-08 20:39:29 -05:00
Chris Mason 9627aeee3e Merge branch 'raid56-scrub-replace' of git://github.com/miaoxie/linux-btrfs into for-linus 2014-12-02 18:42:03 -08:00
Josef Bacik cb83b7b816 Btrfs: make get_caching_control unconditionally return the ctl
This was written when we didn't do a caching control for the fast free space
cache loading.  However we started doing that a long time ago, and there is
still a small window of time that we could be caching the block group the fast
way, so if there is a caching_ctl at all on the block group just return it, the
callers all wait properly for what they want.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:10 -08:00
Filipe Manana 8dbcd10f69 Btrfs: fix unprotected deletion from pending_chunks list
On block group remove if the corresponding extent map was on the
transaction->pending_chunks list, we were deleting the extent map
from that list, through remove_extent_mapping(), without any
synchronization with chunk allocation (which iterates that list
and adds new elements to it). Fix this by ensure that this is done
while the chunk mutex is held, since that's the mutex that protects
the list in the chunk allocation code path.

This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"

But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:10 -08:00
Filipe Manana 495e64f4fe Btrfs: fix fs mapping extent map leak
On chunk allocation error (label "error_del_extent"), after adding the
extent map to the tree and to the pending chunks list, we would leave
decrementing the extent map's refcount by 2 instead of 3 (our allocation
+ tree reference + list reference).

Also, on chunk/block group removal, if the block group was on the list
pending_chunks we weren't decrementing the respective list reference.

Detected by 'rmmod btrfs':

[20770.105881] kmem_cache_destroy btrfs_extent_map: Slab cache still has objects
[20770.106127] CPU: 2 PID: 11093 Comm: rmmod Tainted: G        W    L 3.17.0-rc5-btrfs-next-1+ #1
[20770.106128] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[20770.106130]  0000000000000000 ffff8800ba867eb8 ffffffff813e7a13 ffff8800a2e11040
[20770.106132]  ffff8800ba867ed0 ffffffff81105d0c 0000000000000000 ffff8800ba867ee0
[20770.106134]  ffffffffa035d65e ffff8800ba867ef0 ffffffffa03b0654 ffff8800ba867f78
[20770.106136] Call Trace:
[20770.106142]  [<ffffffff813e7a13>] dump_stack+0x45/0x56
[20770.106145]  [<ffffffff81105d0c>] kmem_cache_destroy+0x4b/0x90
[20770.106164]  [<ffffffffa035d65e>] extent_map_exit+0x1a/0x1c [btrfs]
[20770.106176]  [<ffffffffa03b0654>] exit_btrfs_fs+0x27/0x9d3 [btrfs]
[20770.106179]  [<ffffffff8109dc97>] SyS_delete_module+0x153/0x1c4
[20770.106182]  [<ffffffff8121261b>] ? trace_hardirqs_on_thunk+0x3a/0x3c
[20770.106184]  [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b

This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"

But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:10 -08:00
Filipe Manana 946ddbe805 Btrfs: fix memory leak after block remove + trimming
There was a free space entry structure memeory leak if a block
group is remove while a free space entry is being trimmed, which
the following diagram explains:

           CPU 1                                          CPU 2

  btrfs_trim_block_group()
      trim_no_bitmap()
          remove free space entry from
          block group cache's rbtree
          do_trimming()

                                                btrfs_remove_block_group()
                                                    btrfs_remove_free_space_cache()

              add back free space entry to
              block group's cache rbtree
  btrfs_put_block_group()

                                                    (...)
                                                    btrfs_put_block_group()
                                                        kfree(bg->free_space_ctl)
                                                        kfree(bg)

The free space entry added after doing the discard of its respective
range ends up never being freed.
Detected after doing an "rmmod btrfs" after running the stress test
recently submitted for fstests:

[ 8234.642212] kmem_cache_destroy btrfs_free_space: Slab cache still has objects
[ 8234.642657] CPU: 1 PID: 32276 Comm: rmmod Tainted: G        W    L 3.17.0-rc5-btrfs-next-2+ #1
[ 8234.642660] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 8234.642664]  0000000000000000 ffff8801af1b3eb8 ffffffff8140c7b6 ffff8801dbedd0c0
[ 8234.642670]  ffff8801af1b3ed0 ffffffff811149ce 0000000000000000 ffff8801af1b3ee0
[ 8234.642676]  ffffffffa042dbe7 ffff8801af1b3ef0 ffffffffa0487422 ffff8801af1b3f78
[ 8234.642682] Call Trace:
[ 8234.642692]  [<ffffffff8140c7b6>] dump_stack+0x4d/0x66
[ 8234.642699]  [<ffffffff811149ce>] kmem_cache_destroy+0x4d/0x92
[ 8234.642731]  [<ffffffffa042dbe7>] btrfs_destroy_cachep+0x63/0x76 [btrfs]
[ 8234.642757]  [<ffffffffa0487422>] exit_btrfs_fs+0x9/0xbe7 [btrfs]
[ 8234.642762]  [<ffffffff810a76a5>] SyS_delete_module+0x155/0x1c6
[ 8234.642768]  [<ffffffff8122a7eb>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 8234.642773]  [<ffffffff814122d2>] system_call_fastpath+0x16/0x1b

This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:09 -08:00
Filipe Manana c92f6be34c Btrfs: make btrfs_abort_transaction consider existence of new block groups
If the transaction handle doesn't have used blocks but has created new block
groups make sure we turn the fs into readonly mode too. This is because the
new block groups didn't get all their metadata persisted into the chunk and
device trees, and therefore if a subsequent transaction starts, allocates
space from the new block groups, writes data or metadata into that space,
commits successfully and then after we unmount and mount the filesystem
again, the same space can be allocated again for a new block group,
resulting in file data or metadata corruption.

Example where we don't abort the transaction when we fail to finish the
chunk allocation (add items to the chunk and device trees) and later a
future transaction where the block group is removed fails because it can't
find the chunk item in the chunk tree:

[25230.404300] WARNING: CPU: 0 PID: 7721 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x50/0xfc [btrfs]()
[25230.404301] BTRFS: Transaction aborted (error -28)
[25230.404302] Modules linked in: btrfs dm_flakey nls_utf8 fuse xor raid6_pq ntfs vfat msdos fat xfs crc32c_generic libcrc32c ext3 jbd ext2 dm_mod nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse i2c_piix4 i2ccore parport_pc parport processor button pcspkr serio_raw thermal_sys evdev microcode ext4 crc16 jbd2 mbcache sr_mod cdrom ata_generic sg sd_mod crc_t10dif crct10dif_generic crct10dif_common virtio_scsi floppy e1000 ata_piix libata virtio_pci virtio_ring scsi_mod virtio [last unloaded: btrfs]
[25230.404325] CPU: 0 PID: 7721 Comm: xfs_io Not tainted 3.17.0-rc5-btrfs-next-1+ #1
[25230.404326] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[25230.404328]  0000000000000000 ffff88004581bb08 ffffffff813e7a13 ffff88004581bb50
[25230.404330]  ffff88004581bb40 ffffffff810423aa ffffffffa049386a 00000000ffffffe4
[25230.404332]  ffffffffa05214c0 000000000000240c ffff88010fc8f800 ffff88004581bba8
[25230.404334] Call Trace:
[25230.404338]  [<ffffffff813e7a13>] dump_stack+0x45/0x56
[25230.404342]  [<ffffffff810423aa>] warn_slowpath_common+0x7f/0x98
[25230.404351]  [<ffffffffa049386a>] ? __btrfs_abort_transaction+0x50/0xfc [btrfs]
[25230.404353]  [<ffffffff8104240b>] warn_slowpath_fmt+0x48/0x50
[25230.404362]  [<ffffffffa049386a>] __btrfs_abort_transaction+0x50/0xfc [btrfs]
[25230.404374]  [<ffffffffa04a8c43>] btrfs_create_pending_block_groups+0x10c/0x135 [btrfs]
[25230.404387]  [<ffffffffa04b77fd>] __btrfs_end_transaction+0x7e/0x2de [btrfs]
[25230.404398]  [<ffffffffa04b7a6d>] btrfs_end_transaction+0x10/0x12 [btrfs]
[25230.404408]  [<ffffffffa04a3d64>] btrfs_check_data_free_space+0x111/0x1f0 [btrfs]
[25230.404421]  [<ffffffffa04c53bd>] __btrfs_buffered_write+0x160/0x48d [btrfs]
[25230.404425]  [<ffffffff811a9268>] ? cap_inode_need_killpriv+0x2d/0x37
[25230.404429]  [<ffffffff810f6501>] ? get_page+0x1a/0x2b
[25230.404441]  [<ffffffffa04c7c95>] btrfs_file_write_iter+0x321/0x42f [btrfs]
[25230.404443]  [<ffffffff8110f5d9>] ? handle_mm_fault+0x7f3/0x846
[25230.404446]  [<ffffffff813e98c5>] ? mutex_unlock+0x16/0x18
[25230.404449]  [<ffffffff81138d68>] new_sync_write+0x7c/0xa0
[25230.404450]  [<ffffffff81139401>] vfs_write+0xb0/0x112
[25230.404452]  [<ffffffff81139c9d>] SyS_pwrite64+0x66/0x84
[25230.404454]  [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b
[25230.404455] ---[ end trace 5aa5684fdf47ab38 ]---
[25230.404458] BTRFS warning (device sdc): btrfs_create_pending_block_groups:9228: Aborting unused transaction(No space left).
[25288.084814] BTRFS: error (device sdc) in btrfs_free_chunk:2509: errno=-2 No such entry (Failed lookup while freeing chunk.)

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:09 -08:00
Filipe Manana 55507ce361 Btrfs: fix race between writing free space cache and trimming
Trimming is completely transactionless, and the way it operates consists
of hiding free space entries from a block group, perform the trim/discard
and then make the free space entries visible again.
Therefore while a free space entry is being trimmed, we can have free space
cache writing running in parallel (as part of a transaction commit) which
will miss the free space entry. This means that an unmount (or crash/reboot)
after that transaction commit and mount again before another transaction
starts/commits after the discard finishes, we will have some free space
that won't be used again unless the free space cache is rebuilt. After the
unmount, fsck (btrfsck, btrfs check) reports the issue like the following
example:

        *** fsck.btrfs output ***
        checking extents
        checking free space cache
        There is no free space entry for 521764864-521781248
        There is no free space entry for 521764864-1103101952
        cache appears valid but isnt 29360128
        Checking filesystem on /dev/sdc
        UUID: b4789e27-4774-4626-98e9-ae8dfbfb0fb5
        found 1235681286 bytes used err is -22
        (...)

Another issue caused by this race is a crash while writing bitmap entries
to the cache, because while the cache writeout task accesses the bitmaps,
the trim task can be concurrently modifying the bitmap or worse might
be freeing the bitmap. The later case results in the following crash:

[55650.804460] general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC
[55650.804835] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop parport_pc parport i2c_piix4 psmouse evdev pcspkr microcode processor i2ccore serio_raw thermal_sys button ext4 crc16 jbd2 mbcache sg sd_mod crc_t10dif sr_mod cdrom crct10dif_generic crct10dif_common ata_generic virtio_scsi floppy ata_piix libata virtio_pci virtio_ring virtio scsi_mod e1000 [last unloaded: btrfs]
[55650.806169] CPU: 1 PID: 31002 Comm: btrfs-transacti Tainted: G        W      3.17.0-rc5-btrfs-next-1+ #1
[55650.806493] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[55650.806867] task: ffff8800b12f6410 ti: ffff880071538000 task.ti: ffff880071538000
[55650.807166] RIP: 0010:[<ffffffffa037cf45>]  [<ffffffffa037cf45>] write_bitmap_entries+0x65/0xbb [btrfs]
[55650.807514] RSP: 0018:ffff88007153bc30  EFLAGS: 00010246
[55650.807687] RAX: 000000005d1ec000 RBX: ffff8800a665df08 RCX: 0000000000000400
[55650.807885] RDX: ffff88005d1ec000 RSI: 6b6b6b6b6b6b6b6b RDI: ffff88005d1ec000
[55650.808017] RBP: ffff88007153bc58 R08: 00000000ddd51536 R09: 00000000000001e0
[55650.808017] R10: 0000000000000000 R11: 0000000000000037 R12: 6b6b6b6b6b6b6b6b
[55650.808017] R13: ffff88007153bca8 R14: 6b6b6b6b6b6b6b6b R15: ffff88007153bc98
[55650.808017] FS:  0000000000000000(0000) GS:ffff88023ec80000(0000) knlGS:0000000000000000
[55650.808017] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[55650.808017] CR2: 0000000002273b88 CR3: 00000000b18f6000 CR4: 00000000000006e0
[55650.808017] Stack:
[55650.808017]  ffff88020e834e00 ffff880172d68db0 0000000000000000 ffff88019257c800
[55650.808017]  ffff8801d42ea720 ffff88007153bd10 ffffffffa037d2fa ffff880224e99180
[55650.808017]  ffff8801469a6188 ffff880224e99140 ffff880172d68c50 00000003000000b7
[55650.808017] Call Trace:
[55650.808017]  [<ffffffffa037d2fa>] __btrfs_write_out_cache+0x1ea/0x37f [btrfs]
[55650.808017]  [<ffffffffa037d959>] btrfs_write_out_cache+0xa1/0xd8 [btrfs]
[55650.808017]  [<ffffffffa033936b>] btrfs_write_dirty_block_groups+0x4b5/0x505 [btrfs]
[55650.808017]  [<ffffffffa03aa98e>] commit_cowonly_roots+0x15e/0x1f7 [btrfs]
[55650.808017]  [<ffffffff813eb9c7>] ? _raw_spin_lock+0xe/0x10
[55650.808017]  [<ffffffffa0346e46>] btrfs_commit_transaction+0x411/0x882 [btrfs]
[55650.808017]  [<ffffffffa03432a4>] transaction_kthread+0xf2/0x1a4 [btrfs]
[55650.808017]  [<ffffffffa03431b2>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[55650.808017]  [<ffffffff8105966b>] kthread+0xb7/0xbf
[55650.808017]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[55650.808017]  [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[55650.808017]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[55650.808017] Code: 4c 89 ef 8d 70 ff e8 d4 fc ff ff 41 8b 45 34 41 39 45 30 7d 5c 31 f6 4c 89 ef e8 80 f6 ff ff 49 8b 7d 00 4c 89 f6 b9 00 04 00 00 <f3> a5 4c 89 ef 41 8b 45 30 8d 70 ff e8 a3 fc ff ff 41 8b 45 34
[55650.808017] RIP  [<ffffffffa037cf45>] write_bitmap_entries+0x65/0xbb [btrfs]
[55650.808017]  RSP <ffff88007153bc30>
[55650.815725] ---[ end trace 1c032e96b149ff86 ]---

Fix this by serializing both tasks in such a way that cache writeout
doesn't wait for the trim/discard of free space entries to finish and
doesn't miss any free space entry.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:09 -08:00
Filipe Manana 04216820fe Btrfs: fix race between fs trimming and block group remove/allocation
Our fs trim operation, which is completely transactionless (doesn't start
or joins an existing transaction) consists of visiting all block groups
and then for each one to iterate its free space entries and perform a
discard operation against the space range represented by the free space
entries. However before performing a discard, the corresponding free space
entry is removed from the free space rbtree, and when the discard completes
it is added back to the free space rbtree.

If a block group remove operation happens while the discard is ongoing (or
before it starts and after a free space entry is hidden), we end up not
waiting for the discard to complete, remove the extent map that maps
logical address to physical addresses and the corresponding chunk metadata
from the the chunk and device trees. After that and before the discard
completes, the current running transaction can finish and a new one start,
allowing for new block groups that map to the same physical addresses to
be allocated and written to.

So fix this by keeping the extent map in memory until the discard completes
so that the same physical addresses aren't reused before it completes.

If the physical locations that are under a discard operation end up being
used for a new metadata block group for example, and dirty metadata extents
are written before the discard finishes (the VM might call writepages() of
our btree inode's i_mapping for example, or an fsync log commit happens) we
end up overwriting metadata with zeroes, which leads to errors from fsck
like the following:

        checking extents
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        read block failed check_tree_block
        owner ref check failed [833912832 16384]
        Errors found in extent allocation tree or chunk allocation
        checking free space cache
        checking fs roots
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        Check tree block failed, want=833912832, have=0
        read block failed check_tree_block
        root 5 root dir 256 error
        root 5 inode 260 errors 2001, no inode item, link count wrong
                unresolved ref dir 256 index 0 namelen 8 name foobar_3 filetype 1 errors 6, no dir index, no inode ref
        root 5 inode 262 errors 2001, no inode item, link count wrong
                unresolved ref dir 256 index 0 namelen 8 name foobar_5 filetype 1 errors 6, no dir index, no inode ref
        root 5 inode 263 errors 2001, no inode item, link count wrong
        (...)

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:35:09 -08:00
Zhao Lei 5d3edd8f44 Btrfs, replace: enable dev-replace for raid56
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:20:48 +08:00
Filipe Manana ae0ab003f2 Btrfs: fix freeing used extents after removing empty block group
There's a race between adding a block group to the list of the unused
block groups and removing an unused block group (cleaner kthread) that
leads to freeing extents that are in use or a crash during transaction
commmit. Basically the cleaner kthread, when executing
btrfs_delete_unused_bgs(), might catch the newly added block group to
the list fs_info->unused_bgs and clear the range representing the whole
group from fs_info->freed_extents[] before the task that added the block
group to the list (running update_block_group()) marked the last freed
extent as dirty in fs_info->freed_extents (pinned_extents).

That is:

     CPU 1                                CPU 2

                                  btrfs_delete_unused_bgs()
update_block_group()
   add block group to
   fs_info->unused_bgs
                                    got block group from the list
                                    clear_extent_bits for the whole
                                    block group range in freed_extents[]
   set_extent_dirty for the
   range covering the freed
   extent in freed_extents[]
   (fs_info->pinned_extents)

                                  block group deleted, and a new block
                                  group with the same logical address is
                                  created

                                  reserve space from the new block group
                                  for new data or metadata - the reserved
                                  space overlaps the range specified by
                                  CPU 1 for set_extent_dirty()

                                  commit transaction
                                    find all ranges marked as dirty in
                                    fs_info->pinned_extents, clear them
                                    and add them to the free space cache

Alternatively, if CPU 2 doesn't create a new block group with the same
logical address, we get a crash/BUG_ON at transaction commit when unpining
extent ranges because we can't find a block group for the range marked as
dirty by CPU 1. Sample trace:

[ 2163.426462] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
[ 2163.426640] Modules linked in: btrfs xor raid6_pq dm_thin_pool dm_persistent_data dm_bio_prison dm_bufio crc32c_generic libcrc32c dm_mod nfsd auth_rpc
gss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse parport_pc parport i2c_piix4 processor thermal_sys i2ccore evdev button pcspkr microcode serio_raw ext4 crc16 jbd2 mbcache
 sg sr_mod cdrom sd_mod crc_t10dif crct10dif_generic crct10dif_common ata_generic virtio_scsi floppy ata_piix libata e1000 scsi_mod virtio_pci virtio_ring virtio
[ 2163.428209] CPU: 0 PID: 11858 Comm: btrfs-transacti Tainted: G        W      3.17.0-rc5-btrfs-next-1+ #1
[ 2163.428519] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 2163.428875] task: ffff88009f2c0650 ti: ffff8801356bc000 task.ti: ffff8801356bc000
[ 2163.429157] RIP: 0010:[<ffffffffa037728e>]  [<ffffffffa037728e>] unpin_extent_range.isra.58+0x62/0x192 [btrfs]
[ 2163.429562] RSP: 0018:ffff8801356bfda8  EFLAGS: 00010246
[ 2163.429802] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 2163.429990] RDX: 0000000041bfffff RSI: 0000000001c00000 RDI: ffff880024307080
[ 2163.430042] RBP: ffff8801356bfde8 R08: 0000000000000068 R09: ffff88003734f118
[ 2163.430042] R10: ffff8801356bfcb8 R11: fffffffffffffb69 R12: ffff8800243070d0
[ 2163.430042] R13: 0000000083c04000 R14: ffff8800751b0f00 R15: ffff880024307000
[ 2163.430042] FS:  0000000000000000(0000) GS:ffff88013f400000(0000) knlGS:0000000000000000
[ 2163.430042] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 2163.430042] CR2: 00007ff10eb43fc0 CR3: 0000000004cb8000 CR4: 00000000000006f0
[ 2163.430042] Stack:
[ 2163.430042]  ffff8800243070d0 0000000083c08000 0000000083c07fff ffff88012d6bc800
[ 2163.430042]  ffff8800243070d0 ffff8800751b0f18 ffff8800751b0f00 0000000000000000
[ 2163.430042]  ffff8801356bfe18 ffffffffa037a481 0000000083c04000 0000000083c07fff
[ 2163.430042] Call Trace:
[ 2163.430042]  [<ffffffffa037a481>] btrfs_finish_extent_commit+0xac/0xbf [btrfs]
[ 2163.430042]  [<ffffffffa038c06d>] btrfs_commit_transaction+0x6ee/0x882 [btrfs]
[ 2163.430042]  [<ffffffffa03881f1>] transaction_kthread+0xf2/0x1a4 [btrfs]
[ 2163.430042]  [<ffffffffa03880ff>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[ 2163.430042]  [<ffffffff8105966b>] kthread+0xb7/0xbf
[ 2163.430042]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[ 2163.430042]  [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[ 2163.430042]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67

So fix this by making update_block_group() first set the range as dirty
in pinned_extents before adding the block group to the unused_bgs list.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:19:17 -08:00
Filipe Manana 4f69cb987e Btrfs: fix crash caused by block group removal
If we remove a block group (because it became empty), we might have left
a caching_ctl structure in fs_info->caching_block_groups that points to
the block group and is accessed at transaction commit time. This results
in accessing an invalid or incorrect block group. This issue became visible
after Josef's patch "Btrfs: remove empty block groups automatically".

So if the block group is removed make sure we don't leave a dangling
caching_ctl in caching_block_groups.

Sample crash trace:

[58380.439449] BUG: unable to handle kernel paging request at ffff8801446eaeb8
[58380.439707] IP: [<ffffffffa03f6d05>] block_group_cache_done.isra.21+0xc/0x1c [btrfs]
[58380.440879] PGD 1acb067 PUD 23f5ff067 PMD 23f5db067 PTE 80000001446ea060
[58380.441220] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC
[58380.441486] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse processor i2c_piix4 parport_pc parport pcspkr serio_raw evdev i2ccore thermal_sys microcode button ext4 crc16 jbd2 mbcache sr_mod cdrom ata_generic sg sd_mod crc_t10dif crct10dif_generic crct10dif_common virtio_scsi floppy ata_piix e1000 libata virtio_pci scsi_mod virtio_ring virtio [last unloaded: btrfs]
[58380.443238] CPU: 3 PID: 25728 Comm: btrfs-transacti Tainted: G        W      3.17.0-rc5-btrfs-next-1+ #1
[58380.443238] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[58380.443238] task: ffff88013ac82090 ti: ffff88013896c000 task.ti: ffff88013896c000
[58380.443238] RIP: 0010:[<ffffffffa03f6d05>]  [<ffffffffa03f6d05>] block_group_cache_done.isra.21+0xc/0x1c [btrfs]
[58380.443238] RSP: 0018:ffff88013896fdd8  EFLAGS: 00010283
[58380.443238] RAX: ffff880222cae850 RBX: ffff880119ba74c0 RCX: 0000000000000000
[58380.443238] RDX: 0000000000000000 RSI: ffff880185e16800 RDI: ffff8801446eaeb8
[58380.443238] RBP: ffff88013896fdd8 R08: ffff8801a9ca9fa8 R09: ffff88013896fc60
[58380.443238] R10: ffff88013896fd28 R11: 0000000000000000 R12: ffff880222cae000
[58380.443238] R13: ffff880222cae850 R14: ffff880222cae6b0 R15: ffff8801446eae00
[58380.443238] FS:  0000000000000000(0000) GS:ffff88023ed80000(0000) knlGS:0000000000000000
[58380.443238] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[58380.443238] CR2: ffff8801446eaeb8 CR3: 0000000001811000 CR4: 00000000000006e0
[58380.443238] Stack:
[58380.443238]  ffff88013896fe18 ffffffffa03fe2d5 ffff880222cae850 ffff880185e16800
[58380.443238]  ffff88000dc41c20 0000000000000000 ffff8801a9ca9f00 0000000000000000
[58380.443238]  ffff88013896fe80 ffffffffa040fbcf ffff88018b0dcdb0 ffff88013ac82090
[58380.443238] Call Trace:
[58380.443238]  [<ffffffffa03fe2d5>] btrfs_prepare_extent_commit+0x5a/0xd7 [btrfs]
[58380.443238]  [<ffffffffa040fbcf>] btrfs_commit_transaction+0x45c/0x882 [btrfs]
[58380.443238]  [<ffffffffa040c058>] transaction_kthread+0xf2/0x1a4 [btrfs]
[58380.443238]  [<ffffffffa040bf66>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[58380.443238]  [<ffffffff8105966b>] kthread+0xb7/0xbf
[58380.443238]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[58380.443238]  [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[58380.443238]  [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:19:17 -08:00
Filipe Manana 292cbd51ec Btrfs: fix invalid block group rbtree access after bg is removed
If we grab a block group, for example in btrfs_trim_fs(), we will be holding
a reference on it but the block group can be removed after we got it (via
btrfs_remove_block_group), which means it will no longer be part of the
rbtree.

However, btrfs_remove_block_group() was only calling rb_erase() which leaves
the block group's rb_node left and right child pointers with the same content
they had before calling rb_erase. This was dangerous because a call to
next_block_group() would access the node's left and right child pointers (via
rb_next), which can be no longer valid.

Fix this by clearing a block group's node after removing it from the tree,
and have next_block_group() do a tree search to get the next block group
instead of using rb_next() if our block group was removed.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-12-02 18:19:17 -08:00
Miao Xie 4245215d6a Btrfs, raid56: fix use-after-free problem in the final device replace procedure on raid56
The commit c404e0dc (Btrfs: fix use-after-free in the finishing
procedure of the device replace) fixed a use-after-free problem
which happened when removing the source device at the end of device
replace, but at that time, btrfs didn't support device replace
on raid56, so we didn't fix the problem on the raid56 profile.
Currently, we implemented device replace for raid56, so we need
kick that problem out before we enable that function for raid56.

The fix method is very simple, we just increase the bio per-cpu
counter before we submit a raid56 io, and decrease the counter
when the raid56 io ends.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:47 +08:00
Miao Xie 7603597690 Btrfs, replace: write raid56 parity into the replace target device
This function reused the code of parity scrub, and we just write
the right parity or corrected parity into the target device before
the parity scrub end.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:46 +08:00
Miao Xie 2c8cdd6ee4 Btrfs, replace: write dirty pages into the replace target device
The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
  RAID56, we add the stripes of the replace target devices at the
  end of the stripe array in btrfs bio, and we sort those target
  device stripes in the array. And we keep the number of the target
  device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
  take the target device stripes into account.
- When we do write operation, we read the data from the common devices
  and calculate the parity. Then write the dirty data and new parity
  out, at this time, we will find the relative replace target stripes
  and wirte the relative data into it.

Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:46 +08:00
Miao Xie 5a6ac9eacb Btrfs, raid56: support parity scrub on raid56
The implementation is:
- Read and check all the data with checksum in the same stripe.
  All the data which has checksum is COW data, and we are sure
  that it is not changed though we don't lock the stripe. because
  the space of that data just can be reclaimed after the current
  transction is committed, and then the fs can use it to store the
  other data, but when doing scrub, we hold the current transaction,
  that is that data can not be recovered, it is safe that read and check
  it out of the stripe lock.
- Lock the stripe
- Read out all the data without checksum and parity
  The data without checksum and the parity may be changed if we don't
  lock the stripe, so we need read it in the stripe lock context.
- Check the parity
- Re-calculate the new parity and write back it if the old parity
  is not right
- Unlock the stripe

If we can not read out the data or the data we read is corrupted,
we will try to repair it. If the repair fails. we will mark the
horizontal sub-stripe(pages on the same horizontal) as corrupted
sub-stripe, and we will skip the parity check and repair of that
horizontal sub-stripe.

And in order to skip the horizontal sub-stripe that has no data, we
introduce a bitmap. If there is some data on the horizontal sub-stripe,
we will the relative bit to 1, and when we check and repair the
parity, we will skip those horizontal sub-stripes that the relative
bits is 0.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:45 +08:00
Miao Xie 1b94b5567e Btrfs, raid56: use a variant to record the operation type
We will introduce new operation type later, if we still use integer
variant as bool variant to record the operation type, we would add new
variant and increase the size of raid bio structure. It is not good,
by this patch, we define different number for different operation,
and we can just use a variant to record the operation type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:45 +08:00
Miao Xie af8e2d1df9 Btrfs, scrub: repair the common data on RAID5/6 if it is corrupted
This patch implement the RAID5/6 common data repair function, the
implementation is similar to the scrub on the other RAID such as
RAID1, the differentia is that we don't read the data from the
mirror, we use the data repair function of RAID5/6.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:45 +08:00
Miao Xie b89e1b012c Btrfs, raid56: don't change bbio and raid_map
Because we will reuse bbio and raid_map during the scrub later, it is
better that we don't change any variant of bbio and don't free it at
the end of IO request. So we introduced similar variants into the raid
bio, and don't access those bbio's variants any more.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2014-12-03 10:18:44 +08:00
Zhao Lei 6de6565075 Btrfs: remove unnecessary code of stripe_index assignment in __btrfs_map_block
stripe_index's value was set again in latter line:
stripe_index = 0;

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
2014-12-03 10:18:44 +08:00
Zhao Lei f90523d1aa Btrfs: remove noused bbio_ret in __btrfs_map_block in condition
bbio_ret in this condition is always !NULL because previous code
already have a check-and-skip:
4908 if (!bbio_ret)
4909     goto out;

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
2014-12-03 10:18:44 +08:00
Chris Mason 2f19cad94c btrfs: zero out left over bytes after processing compression streams
Don Bailey noticed that our page zeroing for compression at end-io time
isn't complete.  This reworks a patch from Linus to push the zeroing
into the zlib and lzo specific functions instead of trying to handle the
corners inside btrfs_decompress_buf2page

Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reported-by: Don A. Bailey <donb@securitymouse.com>
cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-30 09:33:51 -08:00
Filipe Manana 9ea24bbe17 Btrfs: fix snapshot inconsistency after a file write followed by truncate
If right after starting the snapshot creation ioctl we perform a write against a
file followed by a truncate, with both operations increasing the file's size, we
can get a snapshot tree that reflects a state of the source subvolume's tree where
the file truncation happened but the write operation didn't. This leaves a gap
between 2 file extent items of the inode, which makes btrfs' fsck complain about it.

For example, if we perform the following file operations:

    $ mkfs.btrfs -f /dev/vdd
    $ mount /dev/vdd /mnt
    $ xfs_io -f \
          -c "pwrite -S 0xaa -b 32K 0 32K" \
          -c "fsync" \
          -c "pwrite -S 0xbb -b 32770 16K 32770" \
          -c "truncate 90123" \
          /mnt/foobar

and the snapshot creation ioctl was just called before the second write, we often
can get the following inode items in the snapshot's btree:

        item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160
                inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0
        item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20
                inode ref index 282 namelen 10 name: foobar
        item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53
                extent data disk byte 1104855040 nr 32768
                extent data offset 0 nr 32768 ram 32768
                extent compression 0
        item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53
                extent data disk byte 0 nr 0
                extent data offset 0 nr 40960 ram 40960
                extent compression 0

There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[
for which there's no file extent item covering it. This is because the file write
and file truncate operations happened both right after the snapshot creation ioctl
called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the
ordered extent that matches the write and, in btrfs_setsize(), we were able to call
btrfs_cont_expand() before being able to commit the current transaction in the
snapshot creation ioctl. So this made it possibe to insert the hole file extent
item in the source subvolume (which represents the region added by the truncate)
right before the transaction commit from the snapshot creation ioctl.

Btrfs' fsck tool complains about such cases with a message like the following:

    "root 331 inode 257 errors 100, file extent discount"

>From a user perspective, the expectation when a snapshot is created while those
file operations are being performed is that the snapshot will have a file that
either:

1) is empty
2) only the first write was captured
3) only the 2 writes were captured
4) both writes and the truncation were captured

But never capture a state where only the first write and the truncation were
captured (since the second write was performed before the truncation).

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-25 07:41:23 -08:00
Filipe Manana e5fa8f865b Btrfs: ensure send always works on roots without orphans
Move the logic from the snapshot creation ioctl into send. This avoids
doing the transaction commit if send isn't used, and ensures that if
a crash/reboot happens after the transaction commit that created the
snapshot and before the transaction commit that switched the commit
root, send will not get a commit root that differs from the main root
(that has orphan items).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-25 07:41:23 -08:00
Filipe Manana 758eb51e71 Btrfs: fix freeing used extent after removing empty block group
Due to ignoring errors returned by clear_extent_bits (at the moment only
-ENOMEM is possible), we can end up freeing an extent that is actually in
use (i.e. return the extent to the free space cache).

The sequence of steps that lead to this:

1) Cleaner thread starts execution and calls btrfs_delete_unused_bgs(), with
   the goal of freeing empty block groups;

2) btrfs_delete_unused_bgs() finds an empty block group, joins the current
   transaction (or starts a new one if none is running) and attempts to
   clear the EXTENT_DIRTY bit for the block group's range from freed_extents[0]
   and freed_extents[1] (of which one corresponds to fs_info->pinned_extents);

3) Clearing the EXTENT_DIRTY bit (via clear_extent_bits()) fails with
   -ENOMEM, but such error is ignored and btrfs_delete_unused_bgs() proceeds
   to delete the block group and the respective chunk, while pinned_extents
   remains with that bit set for the whole (or a part of the) range covered
   by the block group;

4) Later while the transaction is still running, the chunk ends up being reused
   for a new block group (maybe for different purpose, data or metadata), and
   extents belonging to the new block group are allocated for file data or btree
   nodes/leafs;

5) The current transaction is committed, meaning that we unpinned one or more
   extents from the new block group (through btrfs_finish_extent_commit() and
   unpin_extent_range()) which are now being used for new file data or new
   metadata (through btrfs_finish_extent_commit() and unpin_extent_range()).
   And unpinning means we returned the extents to the free space cache of the
   new block group, which implies those extents can be used for future allocations
   while they're still in use.

Alternatively, we can hit a BUG_ON() when doing a lookup for a block group's cache
object in unpin_extent_range() if a new block group didn't end up being allocated for
the same chunk (step 4 above).

Fix this by not freeing the block group and chunk if we fail to clear the dirty bit.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-25 07:41:23 -08:00
Chris Mason 8f608de699 Btrfs: include vmalloc.h in check-integrity.c
Fengguang's build monster reported warnings on some arches because we
don't have vmalloc.h included

Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: fengguang.wu@intel.com
2014-11-25 06:01:11 -08:00
Qu Wenruo 084b6e7c76 btrfs: Fix a lockdep warning when running xfstest.
The following lockdep warning is triggered during xfstests:

[ 1702.980872] =========================================================
[ 1702.981181] [ INFO: possible irq lock inversion dependency detected ]
[ 1702.981482] 3.18.0-rc1 #27 Not tainted
[ 1702.981781] ---------------------------------------------------------
[ 1702.982095] kswapd0/77 just changed the state of lock:
[ 1702.982415]  (&delayed_node->mutex){+.+.-.}, at: [<ffffffffa03b0b51>] __btrfs_release_delayed_node+0x41/0x1f0 [btrfs]
[ 1702.982794] but this lock took another, RECLAIM_FS-unsafe lock in the past:
[ 1702.983160]  (&fs_info->dev_replace.lock){+.+.+.}

and interrupts could create inverse lock ordering between them.

[ 1702.984675]
other info that might help us debug this:
[ 1702.985524] Chain exists of:
  &delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock

[ 1702.986799]  Possible interrupt unsafe locking scenario:

[ 1702.987681]        CPU0                    CPU1
[ 1702.988137]        ----                    ----
[ 1702.988598]   lock(&fs_info->dev_replace.lock);
[ 1702.989069]                                local_irq_disable();
[ 1702.989534]                                lock(&delayed_node->mutex);
[ 1702.990038]                                lock(&found->groups_sem);
[ 1702.990494]   <Interrupt>
[ 1702.990938]     lock(&delayed_node->mutex);
[ 1702.991407]
 *** DEADLOCK ***

It is because the btrfs_kobj_{add/rm}_device() will call memory
allocation with GFP_KERNEL,
which may flush fs page cache to free space, waiting for it self to do
the commit, causing the deadlock.

To solve the problem, move btrfs_kobj_{add/rm}_device() out of the
dev_replace lock range, also involing split the
btrfs_rm_dev_replace_srcdev() function into remove and free parts.

Now only btrfs_rm_dev_replace_remove_srcdev() is called in dev_replace
lock range, and kobj_{add/rm} and btrfs_rm_dev_replace_free_srcdev() are
called out of the lock range.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-25 05:55:38 -08:00
Chris Mason ad27c0dab7 Merge branch 'dev/pending-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus 2014-11-25 05:45:30 -08:00
Linus Torvalds d038a63ace Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs deadlock fix from Chris Mason:
 "This has a fix for a long standing deadlock that we've been trying to
  nail down for a while.  It ended up being a bad interaction with the
  fair reader/writer locks and the order btrfs reacquires locks in the
  btree"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix lockups from btrfs_clear_path_blocking
2014-11-23 11:16:36 -08:00
Filipe Manana b38ef71cb1 Btrfs: ensure ordered extent errors aren't missed on fsync
When doing a fsync with a fast path we have a time window where we can miss
the fact that writeback of some file data failed, and therefore we endup
returning success (0) from fsync when we should return an error.
The steps that lead to this are the following:

1) We start all ordered extents by calling filemap_fdatawrite_range();

2) We do some other work like locking the inode's i_mutex, start a transaction,
   start a log transaction, etc;

3) We enter btrfs_log_inode(), acquire the inode's log_mutex and collect all the
   ordered extents from inode's ordered tree into a list;

4) But by the time we do ordered extent collection, some ordered extents we started
   at step 1) might have already completed with an error, and therefore we didn't
   found them in the ordered tree and had no idea they finished with an error. This
   makes our fsync return success (0) to userspace, but has no bad effects on the log
   like for example insertion of file extent items into the log that point to unwritten
   extents, because the invalid extent maps were removed before the ordered extent
   completed (in inode.c:btrfs_finish_ordered_io).

So after collecting the ordered extents just check if the inode's i_mapping has any
error flags set (AS_EIO or AS_ENOSPC) and leave with an error if it does. Whenever
writeback fails for a page of an ordered extent, we call mapping_set_error (done in
extent_io.c:end_extent_writepage, called by extent_io.c:end_bio_extent_writepage)
that sets one of those error flags in the inode's i_mapping flags.

This change also has the side effect of fixing the issue where for fast fsyncs we
never checked/cleared the error flags from the inode's i_mapping flags, which means
that a full fsync performed after a fast fsync could get such errors that belonged
to the fast fsync - because the full fsync calls btrfs_wait_ordered_range() which
calls filemap_fdatawait_range(), and the later checks for and clears those flags,
while for fast fsyncs we never call filemap_fdatawait_range() or anything else
that checks for and clears the error flags from the inode's i_mapping.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:57 -08:00
Filipe Manana 0870295b23 Btrfs: collect only the necessary ordered extents on ranged fsync
Instead of collecting all ordered extents from the inode's ordered tree
and then wait for all of them to complete, just collect the ones that
overlap the fsync range.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:56 -08:00
Filipe Manana 5ab5e44a36 Btrfs: don't ignore log btree writeback errors
If an error happens during writeback of log btree extents, make sure the
error is returned to the caller (fsync), so that it takes proper action
(commit current transaction) instead of writing a superblock that points
to log btrees with all or some nodes that weren't durably persisted.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:55 -08:00
Josef Bacik a28046956c Btrfs: do not move em to modified list when unpinning
We use the modified list to keep track of which extents have been modified so we
know which ones are candidates for logging at fsync() time.  Newly modified
extents are added to the list at modification time, around the same time the
ordered extent is created.  We do this so that we don't have to wait for ordered
extents to complete before we know what we need to log.  The problem is when
something like this happens

log extent 0-4k on inode 1
copy csum for 0-4k from ordered extent into log
sync log
commit transaction
log some other extent on inode 1
ordered extent for 0-4k completes and adds itself onto modified list again
log changed extents
see ordered extent for 0-4k has already been logged
	at this point we assume the csum has been copied
sync log
crash

On replay we will see the extent 0-4k in the log, drop the original 0-4k extent
which is the same one that we are replaying which also drops the csum, and then
we won't find the csum in the log for that bytenr.  This of course causes us to
have errors about not having csums for certain ranges of our inode.  So remove
the modified list manipulation in unpin_extent_cache, any modified extents
should have been added well before now, and we don't want them re-logged.  This
fixes my test that I could reliably reproduce this problem with.  Thanks,

cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:54 -08:00
Josef Bacik 50d9aa99bd Btrfs: make sure logged extents complete in the current transaction V3
Liu Bo pointed out that my previous fix would lose the generation update in the
scenario I described.  It is actually much worse than that, we could lose the
entire extent if we lose power right after the transaction commits.  Consider
the following

write extent 0-4k
log extent in log tree
commit transaction
	< power fail happens here
ordered extent completes

We would lose the 0-4k extent because it hasn't updated the actual fs tree, and
the transaction commit will reset the log so it isn't replayed.  If we lose
power before the transaction commit we are save, otherwise we are not.

Fix this by keeping track of all extents we logged in this transaction.  Then
when we go to commit the transaction make sure we wait for all of those ordered
extents to complete before proceeding.  This will make sure that if we lose
power after the transaction commit we still have our data.  This also fixes the
problem of the improperly updated extent generation.  Thanks,

cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:58:32 -08:00
Josef Bacik 9dba8cf128 Btrfs: make sure we wait on logged extents when fsycning two subvols
If we have two fsync()'s race on different subvols one will do all of its work
to get into the log_tree, wait on it's outstanding IO, and then allow the
log_tree to finish it's commit.  The problem is we were just free'ing that
subvols logged extents instead of waiting on them, so whoever lost the race
wouldn't really have their data on disk.  Fix this by waiting properly instead
of freeing the logged extents.  Thanks,

cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-20 17:20:10 -08:00
David Sterba 0d95c1bec9 btrfs: fix wrong accounting of raid1 data profile in statfs
The sizes that are obtained from space infos are in raw units and have
to be adjusted according to the raid factor. This was missing for
f_bavail and df reported doubled size for raid1.

Reported-by: Martin Steigerwald <Martin@lichtvoll.de>
Fixes: ba7b6e62f4 ("btrfs: adjust statfs calculations according to raid profiles")
CC: stable@vger.kernel.org
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-20 17:20:09 -08:00
Gui Hecheng 321592427c btrfs: fix dead lock while running replace and defrag concurrently
This can be reproduced by fstests: btrfs/070

The scenario is like the following:

replace worker thread		defrag thread
---------------------		-------------
copy_nocow_pages_worker		btrfs_defrag_file
  copy_nocow_pages_for_inode	    ...
				  btrfs_writepages
  |A| lock_extent_bits		    extent_write_cache_pages
				|B|   lock_page
					__extent_writepage
		...			  writepage_delalloc
					    find_lock_delalloc_range
				|B| 	      lock_extent_bits
  find_or_create_page
    pagecache_get_page
  |A| lock_page

This leads to an ABBA pattern deadlock. To fix it,
o we just change it to an AABB pattern which means to @unlock_extent_bits()
  before we @lock_page(), and in this way the @extent_read_full_page_nolock()
  is no longer in an locked context, so change it back to @extent_read_full_page()
  to regain protection.

o Since we @unlock_extent_bits() earlier, then before @write_page_nocow(),
  the extent may not really point at the physical block we want, so we
  have to check it before write.

Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-20 17:20:08 -08:00
Filipe Manana 5f5bc6b1e2 Btrfs: make xattr replace operations atomic
Replacing a xattr consists of doing a lookup for its existing value, delete
the current value from the respective leaf, release the search path and then
finally insert the new value. This leaves a time window where readers (getxattr,
listxattrs) won't see any value for the xattr. Xattrs are used to store ACLs,
so this has security implications.

This change also fixes 2 other existing issues which were:

*) Deleting the old xattr value without verifying first if the new xattr will
   fit in the existing leaf item (in case multiple xattrs are packed in the
   same item due to name hash collision);

*) Returning -EEXIST when the flag XATTR_CREATE is given and the xattr doesn't
   exist but we have have an existing item that packs muliple xattrs with
   the same name hash as the input xattr. In this case we should return ENOSPC.

A test case for xfstests follows soon.

Thanks to Alexandre Oliva for reporting the non-atomicity of the xattr replace
implementation.

Reported-by: Alexandre Oliva <oliva@gnu.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-20 17:20:07 -08:00
Filipe Manana c7bc6319c5 Btrfs: avoid premature -ENOMEM in clear_extent_bit()
We try to allocate an extent state structure before acquiring the extent
state tree's spinlock as we might need a new one later and therefore avoid
doing later an atomic allocation while holding the tree's spinlock. However
we returned -ENOMEM if that initial non-atomic allocation failed, which is
a bit excessive since we might end up not needing the pre-allocated extent
state at all - for the case where the tree doesn't have any extent states
that cover the input range and cover too any other range. Therefore don't
return -ENOMEM if that pre-allocation fails.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-20 17:20:06 -08:00
Josef Bacik 7e33fd993a Btrfs: don't take the chunk_mutex/dev_list mutex in statfs V2
Our gluster boxes get several thousand statfs() calls per second, which begins
to suck hardcore with all of the lock contention on the chunk mutex and dev list
mutex.  We don't really need to hold these things, if we have transient
weirdness with statfs() because of the chunk allocator we don't care, so remove
this locking.

We still need the dev_list lock if you mount with -o alloc_start however, which
is a good argument for nuking that thing from orbit, but that's a patch for
another day.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-20 17:20:05 -08:00