->invalidatepage() aop now accepts range to invalidate so we can make
use of it in xfs_vm_invalidatepage()
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Cc: xfs@oss.sgi.com
Add a tracepoint to provide some feedback on preallocation size
calculation.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When the new inode verify in xfs_iread() fails, the create
transaction is aborted and a shutdown occurs. The subsequent unmount
then hangs in xfs_wait_buftarg() on a buffer that has an elevated
hold count. Debug showed that it was an AGI buffer getting stuck:
[ 22.576147] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 22.976213] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.376206] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.776325] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
The trace of this buffer leading up to the shutdown (trimmed for
brevity) looks like:
xfs_buf_init: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 1 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 1 caller xfs_trans_read_buf_map
xfs_buf_iorequest: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_iorequest
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_iorequest
xfs_buf_iowait: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_ioerror: bno 0x2 len 0x200 hold 1 caller xfs_buf_bio_end_io
xfs_buf_iodone: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_ioend
xfs_buf_iowait_done: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_trans_brelse: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_buf_item_relse: bno 0x2 nblks 0x1 hold 2 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_relse
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_trylock: bno 0x2 nblks 0x1 hold 2 caller _xfs_buf_find
xfs_buf_find: bno 0x2 len 0x200 hold 2 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 2 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 2 caller xfs_trans_read_buf_map
xfs_buf_hold: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_trans_log_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_buf_item_unlock: bno 0x2 len 0x200 hold 3 flags DIRTY liflags ABORTED
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock
xfs_buf_rele: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock
And that is the AGI buffer from cold cache read into memory to
transaction abort. You can see at transaction abort the bli is dirty
and only has a single reference. The item is not pinned, and it's
not in the AIL. Hence the only reference to it is this transaction.
The problem is that the xfs_buf_item_unlock() call is dropping the
last reference to the xfs_buf_log_item attached to the buffer (which
holds a reference to the buffer), but it is not freeing the
xfs_buf_log_item. Hence nothing will ever release the buffer, and
the unmount hangs waiting for this reference to go away.
The fix is simple - xfs_buf_item_unlock needs to detect the last
reference going away in this case and free the xfs_buf_log_item to
release the reference it holds on the buffer.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Added when debugging recent attribute tree problems to more finely
trace code execution through the maze of twisty passages that makes
up the attr code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_inodes_free_eofblocks() implements scanning functionality for
EOFBLOCKS inodes. It uses the AG iterator to walk the tagged inodes
and free post-EOF blocks via the xfs_inode_free_eofblocks() execute
function. The scan can be invoked in best-effort mode or wait
(force) mode.
A best-effort scan (default) handles all inodes that do not have a
dirty cache and we successfully acquire the io lock via trylock. In
wait mode, we continue to cycle through an AG until all inodes are
handled.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add the XFS_ICI_EOFBLOCKS_TAG inode tag to identify inodes with
speculatively preallocated blocks beyond EOF. An inode is tagged
when speculative preallocation occurs and untagged either via
truncate down or when post-EOF blocks are freed via release or
reclaim.
The tag management is intentionally not aggressive to prefer
simplicity over the complexity of handling all the corner cases
under which post-EOF blocks could be freed (i.e., forward
truncation, fallocate, write error conditions, etc.). This means
that a tagged inode may or may not have post-EOF blocks after a
period of time. The tag is eventually cleared when the inode is
released or reclaimed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
I noticed that "struct xfs_mount_args" was still declared in
"fs/xfs/xfs_mount.h". That struct doesn't even exist any more (and
is obviously not referenced elsewhere in that header file). While
in there, delete four other unneeded struct declarations in that
file.
Doing so highlights that "fs/xfs/xfs_trace.h" was relying indirectly
on "xfs_mount.h" to be #included in order to declare "struct
xfs_bmbt_irec", so add that declaration to resolve that issue.
Signed-off-by: Alex Elder <elder@inktank.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Use this new method to replace our hacky use of ->dirty_inode. An additional
benefit is that we can now propagate errors up the stack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Rename the XFS log structure to xlog to help crash distinquish it from the
other logs in Linux.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
To enable easy tracing of the location of log forces and the
frequency of them via perf, add a pair of trace points to the log
force functions. This will help debug where excessive log forces
are being issued from by simple perf commands like:
# ~/perf/perf top -e xfs:xfs_log_force -G -U
Which gives this sort of output:
Events: 141 xfs:xfs_log_force
- 100.00% [kernel] [k] xfs_log_force
- xfs_log_force
87.04% xfsaild
kthread
kernel_thread_helper
- 12.87% xfs_buf_lock
_xfs_buf_find
xfs_buf_get
xfs_trans_get_buf
xfs_da_do_buf
xfs_da_get_buf
xfs_dir2_data_init
xfs_dir2_leaf_addname
xfs_dir_createname
xfs_create
xfs_vn_mknod
xfs_vn_create
vfs_create
do_last.isra.41
path_openat
do_filp_open
do_sys_open
sys_open
system_call_fastpath
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sig.com>
Now that the busy extent tracking has been moved out of the
allocation files, clean up the namespace it uses to
"xfs_extent_busy" rather than a mix of "xfs_busy" and
"xfs_alloc_busy".
Signed-off-by: Dave Chinner<dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now that we pass block counts everywhere, and index buffers by block
number, track the length of the buffer in units of blocks rather
than bytes. Convert the code to use block counts, and those that
need byte counts get converted at the time of use.
Also, remove the XFS_BUF_{SET_}SIZE() macros that are just wrappers
around the buffer length. They only serve to make the code shouty
loud and don't actually add any real value.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
and write back the buffers per-process instead of by waking up xfsbufd.
This is now easily doable given that we have very few places left that write
delwri buffers:
- log recovery:
Only done at mount time, and already forcing out the buffers
synchronously using xfs_flush_buftarg
- quotacheck:
Same story.
- dquot reclaim:
Writes out dirty dquots on the LRU under memory pressure. We might
want to look into doing more of this via xfsaild, but it's already
more optimal than the synchronous inode reclaim that writes each
buffer synchronously.
- xfsaild:
This is the main beneficiary of the change. By keeping a local list
of buffers to write we reduce latency of writing out buffers, and
more importably we can remove all the delwri list promotions which
were hitting the buffer cache hard under sustained metadata loads.
The implementation is very straight forward - xfs_buf_delwri_queue now gets
a new list_head pointer that it adds the delwri buffers to, and all callers
need to eventually submit the list using xfs_buf_delwi_submit or
xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are
skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
list. The biggest change to pass down the buffer list was done to the AIL
pushing. Now that we operate on buffers the trylock, push and pushbuf log
item methods are merged into a single push routine, which tries to lock the
item, and if possible add the buffer that needs writeback to the buffer list.
This leads to much simpler code than the previous split but requires the
individual IOP_PUSH instances to unlock and reacquire the AIL around calls
to blocking routines.
Given that xfsailds now also handle writing out buffers, the conditions for
log forcing and the sleep times needed some small changes. The most
important one is that we consider an AIL busy as long we still have buffers
to push, and the other one is that we do increment the pushed LSN for
buffers that are under flushing at this moment, but still count them towards
the stuck items for restart purposes. Without this we could hammer on stuck
items without ever forcing the log and not make progress under heavy random
delete workloads on fast flash storage devices.
[ Dave Chinner:
- rebase on previous patches.
- improved comments for XBF_DELWRI_Q handling
- fix XBF_ASYNC handling in queue submission (test 106 failure)
- rename delwri submit function buffer list parameters for clarity
- xfs_efd_item_push() should return XFS_ITEM_PINNED ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Strings store in an xfs_name structure are often not NUL terminated,
print them using the correct printf specifiers that make use of the
string length store in the xfs_name structure.
Reported-by: Brian Candler <B.Candler@pobox.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Replace the global hash tables for looking up in-memory dquot structures
with per-filesystem radix trees to allow scaling to a large number of
in-memory dquot structures.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Timestamps on regular files are the last metadata that XFS does not update
transactionally. Now that we use the delaylog mode exclusively and made
the log scode scale extremly well there is no need to bypass that code for
timestamp updates. Logging all updates allows to drop a lot of code, and
will allow for further performance improvements later on.
Note that this patch drops optimized handling of fdatasync - it will be
added back in a separate commit.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Split the log regrant case out of xfs_log_reserve into a separate function,
and merge xlog_grant_log_space and xlog_regrant_write_log_space into their
respective callers. Also replace the XFS_LOG_PERM_RESERV flag, which easily
got misused before the previous cleanups with a simple boolean parameter.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a new data structure to allow sharing code between the log grant and
regrant code.
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Stop reusing dquots from the freelist when allocating new ones directly, and
implement a shrinker that actually follows the specifications for the
interface. The shrinker implementation is still highly suboptimal at this
point, but we can gradually work on it.
This also fixes an bug in the previous lock ordering, where we would take
the hash and dqlist locks inside of the freelist lock against the normal
lock ordering. This is only solvable by introducing the dispose list,
and thus not when using direct reclaim of unused dquots for new allocations.
As a side-effect the quota upper bound and used to free ratio values in
/proc/fs/xfs/xqm are set to 0 as these values don't make any sense in the
new world order.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 04da0c8196)
Now that we use the VFS i_size field throughout XFS there is no need for the
i_new_size field any more given that the VFS i_size field gets updated
in ->write_end before unlocking the page, and thus is always uptodate when
writeback could see a page. Removing i_new_size also has the advantage that
we will never have to trim back di_size during a failed buffered write,
given that it never gets updated past i_size.
Note that currently the generic direct I/O code only updates i_size after
calling our end_io handler, which requires a small workaround to make
sure di_size actually makes it to disk. I hope to fix this properly in
the generic code.
A downside is that we lose the support for parallel non-overlapping O_DIRECT
appending writes that recently was added. I don't think keeping the complex
and fragile i_new_size infrastructure for this is a good tradeoff - if we
really care about parallel appending writers we should investigate turning
the iolock into a range lock, which would also allow for parallel
non-overlapping buffered writers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is no fundamental need to keep an in-memory inode size copy in the XFS
inode. We already have the on-disk value in the dinode, and the separate
in-memory copy that we need for regular files only in the XFS inode.
Remove the xfs_inode i_size field and change the XFS_ISIZE macro to use the
VFS inode i_size field for regular files. Switch code that was directly
accessing the i_size field in the xfs_inode to XFS_ISIZE, or in cases where
we are limited to regular files direct access of the VFS inode i_size field.
This also allows dropping some fairly complicated code in the write path
which dealt with keeping the xfs_inode i_size uptodate with the VFS i_size
that is getting updated inside ->write_end.
Note that we do not bother resetting the VFS i_size when truncating a file
that gets freed to zero as there is no point in doing so because the VFS inode
is no longer in use at this point. Just relax the assert in xfs_ifree to
only check the on-disk size instead.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
We spent a lot of effort to maintain this field, but it always equals to the
fork size divided by the constant size of an extent. The prime use of it is
to assert that the two stay in sync. Just divide the fork size by the extent
size in the few places that we actually use it and remove the overhead
of maintaining it. Also introduce a few helpers to consolidate the places
where we actually care about the value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This wrapper isn't overly useful, not to say rather confusing.
Around the call to xfs_itruncate_extents it does:
- add tracing
- add a few asserts in debug builds
- conditionally update the inode size in two places
- log the inode
Both the tracing and the inode logging can be moved to xfs_itruncate_extents
as they are useful for the attribute fork as well - in fact the attr code
already does an equivalent xfs_trans_log_inode call just after calling
xfs_itruncate_extents. The conditional size updates are a mess, and there
was no reason to do them in two places anyway, as the first one was
conditional on the inode having extents - but without extents we
xfs_itruncate_extents would be a no-op and the placement wouldn't matter
anyway. Instead move the size assignments and the asserts that make sense
to the callers that want it.
As a side effect of this clean up xfs_setattr_size by introducing variables
for the old and new inode size, and moving the size updates into a common
place.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Do not remove dquots from the freelist when we grab a reference to them in
xfs_qm_dqlookup, but leave them on the freelist util scanning notices that
they have a reference. This speeds up the lookup fastpath, and greatly
simplifies the lock ordering constraints. Note that the same scheme is
used by the VFS inode and dentry caches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Apply the scheme used in log_regrant_write_log_space to wake up any other
threads waiting for log space before the newly added one to
log_regrant_write_log_space as well, and factor the code into readable
helpers. For each of the queues we have add two helpers:
- one to try to wake up all waiting threads. This helper will also be
usable by xfs_log_move_tail once we remove the current opportunistic
wakeups in it.
- one to sleep on t_wait until enough log space is available, loosely
modelled after Linux waitqueues.
And use them to reimplement the guts of log_regrant_write_log_space and
log_regrant_write_log_space. These two function now use one and the same
algorithm for waiting on log space instead of subtly different ones before,
with an option to completely unify them in the near future.
Also move the filesystem shutdown handling to the common caller given
that we had to touch it anyway.
Based on hard debugging and an earlier patch from
Chandra Seetharaman <sekharan@us.ibm.com>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandra Seetharaman <sekharan@us.ibm.com>
Tested-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Directories are only updated transactionally, which means fsync only
needs to flush the log the inode is currently dirty, but not bother
with checking for dirty data, non-transactional updates, and most
importanly doesn't have to flush disk caches except as part of a
transaction commit.
While the first two optimizations can't easily be measured, the
latter actually makes a difference when doing lots of fsync that do
not actually have to commit the inode, e.g. because an earlier fsync
already pushed the log far enough.
The new xfs_dir_fsync is identical to xfs_nfs_commit_metadata except
for the prototype, but I'm not sure creating a common helper for the
two is worth it given how simple the functions are.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Unify the ways we add buffers to the delwri queue by always calling
xfs_buf_delwri_queue directly. The xfs_bdwrite functions is removed and
opencoded in its callers, and the two places setting XBF_DELWRI while a
buffer is locked and expecting xfs_buf_unlock to pick it up are converted
to call xfs_buf_delwri_queue directly, too. Also replace the
XFS_BUF_UNDELAYWRITE macro with direct calls to xfs_buf_delwri_dequeue
to make the explicit queuing/dequeuing more obvious.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the
annoying subdirectories in the XFS source code. Besides the large
amount of file rename the only changes are to the Makefile, a few
files including headers with the subdirectory prefix, and the binary
sysctl compat code that includes a header under fs/xfs/ from
kernel/.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>