refresh_cpu_vm_stats(int cpu) is no longer referenced by !SMP kernel
since Linux 3.12.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With x86_64 (config http://ozlabs.org/~akpm/config-akpm2.txt) and old gcc
(4.4.4), drivers/base/node.c:node_read_meminfo() is using 2344 bytes of
stack. Uninlining node_page_state() reduces this to 440 bytes.
The stack consumption issue is fixed by newer gcc (4.8.4) however with
that compiler this patch reduces the node.o text size from 7314 bytes to
4578.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a CONFIG_DEBUG_VM_VMACACHE option to enable counting the cache
hit rate -- exported in /proc/vmstat.
Any updates to the caching scheme needs this kind of data, thus it can
save some work re-implementing the counting all the time.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vm counters are allowed to be racy. Use raw_cpu_ops to avoid the
local_irq_disable overhead and to avoid preemption checks which will be
added to the __this_cpu operations.
[akpm@linux-foundation.org: Add comment. Again.]
Signed-off-by: Christoph Lameter <cl@linux.com>
Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Summary:
The VM maintains cached filesystem pages on two types of lists. One
list holds the pages recently faulted into the cache, the other list
holds pages that have been referenced repeatedly on that first list.
The idea is to prefer reclaiming young pages over those that have shown
to benefit from caching in the past. We call the recently used list
"inactive list" and the frequently used list "active list".
Currently, the VM aims for a 1:1 ratio between the lists, which is the
"perfect" trade-off between the ability to *protect* frequently used
pages and the ability to *detect* frequently used pages. This means
that working set changes bigger than half of cache memory go undetected
and thrash indefinitely, whereas working sets bigger than half of cache
memory are unprotected against used-once streams that don't even need
caching.
This happens on file servers and media streaming servers, where the
popular files and file sections change over time. Even though the
individual files might be smaller than half of memory, concurrent access
to many of them may still result in their inter-reference distance being
greater than half of memory. It's also been reported as a problem on
database workloads that switch back and forth between tables that are
bigger than half of memory. In these cases the VM never recognizes the
new working set and will for the remainder of the workload thrash disk
data which could easily live in memory.
Historically, every reclaim scan of the inactive list also took a
smaller number of pages from the tail of the active list and moved them
to the head of the inactive list. This model gave established working
sets more gracetime in the face of temporary use-once streams, but
ultimately was not significantly better than a FIFO policy and still
thrashed cache based on eviction speed, rather than actual demand for
cache.
This series solves the problem by maintaining a history of pages evicted
from the inactive list, enabling the VM to detect frequently used pages
regardless of inactive list size and facilitate working set transitions.
Tests:
The reported database workload is easily demonstrated on a 8G machine
with two filesets a 6G. This fio workload operates on one set first,
then switches to the other. The VM should obviously always cache the
set that the workload is currently using.
This test is based on a problem encountered by Citus Data customers:
http://citusdata.com/blog/72-linux-memory-manager-and-your-big-data
unpatched:
db1: READ: io=98304MB, aggrb=885559KB/s, minb=885559KB/s, maxb=885559KB/s, mint= 113672msec, maxt= 113672msec
db2: READ: io=98304MB, aggrb= 66169KB/s, minb= 66169KB/s, maxb= 66169KB/s, mint=1521302msec, maxt=1521302msec
sdb: ios=835750/4, merge=2/1, ticks=4659739/60016, in_queue=4719203, util=98.92%
real 27m15.541s
user 0m19.059s
sys 0m51.459s
patched:
db1: READ: io=98304MB, aggrb=877783KB/s, minb=877783KB/s, maxb=877783KB/s, mint=114679msec, maxt=114679msec
db2: READ: io=98304MB, aggrb=397449KB/s, minb=397449KB/s, maxb=397449KB/s, mint=253273msec, maxt=253273msec
sdb: ios=170587/4, merge=2/1, ticks=954910/61123, in_queue=1015923, util=90.40%
real 6m8.630s
user 0m14.714s
sys 0m31.233s
As can be seen, the unpatched kernel simply never adapts to the
workingset change and db2 is stuck indefinitely with secondary storage
speed. The patched kernel needs 2-3 iterations over db2 before it
replaces db1 and reaches full memory speed. Given the unbounded
negative affect of the existing VM behavior, these patches should be
considered correctness fixes rather than performance optimizations.
Another test resembles a fileserver or streaming server workload, where
data in excess of memory size is accessed at different frequencies.
There is very hot data accessed at a high frequency. Machines should be
fitted so that the hot set of such a workload can be fully cached or all
bets are off. Then there is a very big (compared to available memory)
set of data that is used-once or at a very low frequency; this is what
drives the inactive list and does not really benefit from caching.
Lastly, there is a big set of warm data in between that is accessed at
medium frequencies and benefits from caching the pages between the first
and last streamer of each burst.
unpatched:
hot: READ: io=128000MB, aggrb=160693KB/s, minb=160693KB/s, maxb=160693KB/s, mint=815665msec, maxt=815665msec
warm: READ: io= 81920MB, aggrb=109853KB/s, minb= 27463KB/s, maxb= 29244KB/s, mint=717110msec, maxt=763617msec
cold: READ: io= 30720MB, aggrb= 35245KB/s, minb= 35245KB/s, maxb= 35245KB/s, mint=892530msec, maxt=892530msec
sdb: ios=797960/4, merge=11763/1, ticks=4307910/796, in_queue=4308380, util=100.00%
patched:
hot: READ: io=128000MB, aggrb=160678KB/s, minb=160678KB/s, maxb=160678KB/s, mint=815740msec, maxt=815740msec
warm: READ: io= 81920MB, aggrb=147747KB/s, minb= 36936KB/s, maxb= 40960KB/s, mint=512000msec, maxt=567767msec
cold: READ: io= 30720MB, aggrb= 40960KB/s, minb= 40960KB/s, maxb= 40960KB/s, mint=768000msec, maxt=768000msec
sdb: ios=596514/4, merge=9341/1, ticks=2395362/997, in_queue=2396484, util=79.18%
In both kernels, the hot set is propagated to the active list and then
served from cache.
In both kernels, the beginning of the warm set is propagated to the
active list as well, but in the unpatched case the active list
eventually takes up half of memory and no new pages from the warm set
get activated, despite repeated access, and despite most of the active
list soon being stale. The patched kernel on the other hand detects the
thrashing and manages to keep this cache window rolling through the data
set. This frees up enough IO bandwidth that the cold set is served at
full speed as well and disk utilization even drops by 20%.
For reference, this same test was performed with the traditional
demotion mechanism, where deactivation is coupled to inactive list
reclaim. However, this had the same outcome as the unpatched kernel:
while the warm set does indeed get activated continuously, it is forced
out of the active list by inactive list pressure, which is dictated
primarily by the unrelated cold set. The warm set is evicted before
subsequent streamers can benefit from it, even though there would be
enough space available to cache the pages of interest.
Costs:
Page reclaim used to shrink the radix trees but now the tree nodes are
reused for shadow entries, where the cost depends heavily on the page
cache access patterns. However, with workloads that maintain spatial or
temporal locality, the shadow entries are either refaulted quickly or
reclaimed along with the inode object itself. Workloads that will
experience a memory cost increase are those that don't really benefit
from caching in the first place.
A more predictable alternative would be a fixed-cost separate pool of
shadow entries, but this would incur relatively higher memory cost for
well-behaved workloads at the benefit of cornercases. It would also
make the shadow entry lookup more costly compared to storing them
directly in the cache structure.
Future:
To simplify the merging process, this patch set is implementing thrash
detection on a global per-zone level only for now, but the design is
such that it can be extended to memory cgroups as well. All we need to
do is store the unique cgroup ID along the node and zone identifier
inside the eviction cookie to identify the lruvec.
Right now we have a fixed ratio (50:50) between inactive and active list
but we already have complaints about working sets exceeding half of
memory being pushed out of the cache by simple streaming in the
background. Ultimately, we want to adjust this ratio and allow for a
much smaller inactive list. These patches are an essential step in this
direction because they decouple the VMs ability to detect working set
changes from the inactive list size. This would allow us to base the
inactive list size on the combined readahead window size for example and
potentially protect a much bigger working set.
It's also a big step towards activating pages with a reuse distance
larger than memory, as long as they are the most frequently used pages
in the workload. This will require knowing more about the access
frequency of active pages than what we measure right now, so it's also
deferred in this series.
Another possibility of having thrashing information would be to revisit
the idea of local reclaim in the form of zero-config memory control
groups. Instead of having allocating tasks go straight to global
reclaim, they could try to reclaim the pages in the memcg they are part
of first as long as the group is not thrashing. This would allow a user
to drop e.g. a back-up job in an otherwise unconfigured memcg and it
would only inflate (and possibly do global reclaim) until it has enough
memory to do proper readahead. But once it reaches that point and stops
thrashing it would just recycle its own used-once pages without kicking
out the cache of any other tasks in the system more than necessary.
This patch (of 10):
Fengguang Wu's build testing spotted problems with inc_zone_state() and
dec_zone_state() on UP configurations in out-of-tree patches.
inc_zone_state() is declared but not defined, dec_zone_state() is
missing entirely.
Just like with *_zone_page_state(), they can be defined like their
preemption-unsafe counterparts on UP.
[akpm@linux-foundation.org: make it build]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM is currently heavily tuned to avoid swapping. Whether that is
good or bad is a separate discussion, but as long as the VM won't swap
to make room for dirty cache, we can not consider anonymous pages when
calculating the amount of dirtyable memory, the baseline to which
dirty_background_ratio and dirty_ratio are applied.
A simple workload that occupies a significant size (40+%, depending on
memory layout, storage speeds etc.) of memory with anon/tmpfs pages and
uses the remainder for a streaming writer demonstrates this problem. In
that case, the actual cache pages are a small fraction of what is
considered dirtyable overall, which results in an relatively large
portion of the cache pages to be dirtied. As kswapd starts rotating
these, random tasks enter direct reclaim and stall on IO.
Only consider free pages and file pages dirtyable.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Tested-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bisection between 3.11 and 3.12 fingered commit 9824cf97 ("mm:
vmstats: tlb flush counters") to cause overhead problems.
The counters are undeniably useful but how often do we really
need to debug TLB flush related issues? It does not justify
taking the penalty everywhere so make it a debugging option.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-XzxjntugxuwpxXhcrxqqh53b@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch is based on KOSAKI's work and I add a little more description,
please refer https://lkml.org/lkml/2012/6/14/74.
Currently, I found system can enter a state that there are lots of free
pages in a zone but only order-0 and order-1 pages which means the zone is
heavily fragmented, then high order allocation could make direct reclaim
path's long stall(ex, 60 seconds) especially in no swap and no compaciton
enviroment. This problem happened on v3.4, but it seems issue still lives
in current tree, the reason is do_try_to_free_pages enter live lock:
kswapd will go to sleep if the zones have been fully scanned and are still
not balanced. As kswapd thinks there's little point trying all over again
to avoid infinite loop. Instead it changes order from high-order to
0-order because kswapd think order-0 is the most important. Look at
73ce02e9 in detail. If watermarks are ok, kswapd will go back to sleep
and may leave zone->all_unreclaimable =3D 0. It assume high-order users
can still perform direct reclaim if they wish.
Direct reclaim continue to reclaim for a high order which is not a
COSTLY_ORDER without oom-killer until kswapd turn on
zone->all_unreclaimble= . This is because to avoid too early oom-kill.
So it means direct_reclaim depends on kswapd to break this loop.
In worst case, direct-reclaim may continue to page reclaim forever when
kswapd sleeps forever until someone like watchdog detect and finally kill
the process. As described in:
http://thread.gmane.org/gmane.linux.kernel.mm/103737
We can't turn on zone->all_unreclaimable from direct reclaim path because
direct reclaim path don't take any lock and this way is racy. Thus this
patch removes zone->all_unreclaimable field completely and recalculates
zone reclaimable state every time.
Note: we can't take the idea that direct-reclaim see zone->pages_scanned
directly and kswapd continue to use zone->all_unreclaimable. Because, it
is racy. commit 929bea7c71 (vmscan: all_unreclaimable() use
zone->all_unreclaimable as a name) describes the detail.
[akpm@linux-foundation.org: uninline zone_reclaimable_pages() and zone_reclaimable()]
Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Nick Piggin <npiggin@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: Neil Zhang <zhangwm@marvell.com>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Lisa Du <cldu@marvell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The main idea behind this patchset is to reduce the vmstat update overhead
by avoiding interrupt enable/disable and the use of per cpu atomics.
This patch (of 3):
It is better to have a separate folding function because
refresh_cpu_vm_stats() also does other things like expire pages in the
page allocator caches.
If we have a separate function then refresh_cpu_vm_stats() is only called
from the local cpu which allows additional optimizations.
The folding function is only called when a cpu is being downed and
therefore no other processor will be accessing the counters. Also
simplifies synchronization.
[akpm@linux-foundation.org: fix UP build]
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
CC: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_HOTPLUG is going away as an option, cleanup CONFIG_HOTPLUG
ifdefs in mm files.
Signed-off-by: Yijing Wang <wangyijing@huawei.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current definitions for count_vm_numa_events() is wrong for
!CONFIG_NUMA_BALANCING as the following would miss the side-effect.
count_vm_numa_events(NUMA_FOO, bar++);
There are no such users of count_vm_numa_events() but this patch fixes
it as it is a potential pitfall. Ideally both would be converted to
static inline but NUMA_PTE_UPDATES is not defined if
!CONFIG_NUMA_BALANCING and creating dummy constants just to have a
static inline would be similarly clumsy.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Simon Jeons <simon.jeons@gmail.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is tricky to quantify the basic cost of automatic NUMA placement in a
meaningful manner. This patch adds some vmstats that can be used as part
of a basic costing model.
u = basic unit = sizeof(void *)
Ca = cost of struct page access = sizeof(struct page) / u
Cpte = Cost PTE access = Ca
Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock)
where Cpte is incurred twice for a read and a write and Wlock
is a constant representing the cost of taking or releasing a
lock
Cnumahint = Cost of a minor page fault = some high constant e.g. 1000
Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u
Ci = Cost of page isolation = Ca + Wi
where Wi is a constant that should reflect the approximate cost
of the locking operation
Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma)
where Wnuma is the approximate NUMA factor. 1 is local. 1.2
would imply that remote accesses are 20% more expensive
Balancing cost = Cpte * numa_pte_updates +
Cnumahint * numa_hint_faults +
Ci * numa_pages_migrated +
Cpagecopy * numa_pages_migrated
Note that numa_pages_migrated is used as a measure of how many pages
were isolated even though it would miss pages that failed to migrate. A
vmstat counter could have been added for it but the isolation cost is
pretty marginal in comparison to the overall cost so it seemed overkill.
The ideal way to measure automatic placement benefit would be to count
the number of remote accesses versus local accesses and do something like
benefit = (remote_accesses_before - remove_access_after) * Wnuma
but the information is not readily available. As a workload converges, the
expection would be that the number of remote numa hints would reduce to 0.
convergence = numa_hint_faults_local / numa_hint_faults
where this is measured for the last N number of
numa hints recorded. When the workload is fully
converged the value is 1.
This can measure if the placement policy is converging and how fast it is
doing it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
During memory-hotplug, I found NR_ISOLATED_[ANON|FILE] are increasing,
causing the kernel to hang. When the system doesn't have enough free
pages, it enters reclaim but never reclaim any pages due to
too_many_isolated()==true and loops forever.
The cause is that when we do memory-hotadd after memory-remove,
__zone_pcp_update() clears a zone's ZONE_STAT_ITEMS in setup_pageset()
although the vm_stat_diff of all CPUs still have values.
In addtion, when we offline all pages of the zone, we reset them in
zone_pcp_reset without draining so we loss some zone stat item.
Reviewed-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add NR_FREE_CMA_PAGES counter to be later used for checking watermark in
__zone_watermark_ok(). For simplicity and to avoid #ifdef hell make this
counter always available (not only when CONFIG_CMA=y).
[akpm@linux-foundation.org: use conventional migratetype naming]
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pg_data_t is zeroed before reaching free_area_init_core(), so remove the
now unnecessary initializations.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
enums are problematic because they cannot be forward-declared:
akpm2:/home/akpm> cat t.c
enum foo;
static inline void bar(enum foo f)
{
}
akpm2:/home/akpm> gcc -c t.c
t.c:4: error: parameter 1 ('f') has incomplete type
So move the enum's definition into a standalone header file which can be used
wherever its definition is needed.
Cc: Ying Han <yinghan@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I found it difficult to make sense of transparent huge pages without
having any counters for its actions. Add some counters to vmstat for
allocation of transparent hugepages and fallback to smaller pages.
Optional patch, but useful for development and understanding the system.
Contains improvements from Andrea Arcangeli and Johannes Weiner
[akpm@linux-foundation.org: coding-style fixes]
[hannes@cmpxchg.org: fix vmstat_text[] entries]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new __GFP_OTHER_NODE flag to tell the low level numa statistics in
zone_statistics() that an allocation is on behalf of another thread. This
way the local and remote counters can be still correct, even when
background daemons like khugepaged are changing memory mappings.
This only affects the accounting, but I think it's worth doing that right
to avoid confusing users.
I first tried to just pass down the right node, but this required a lot of
changes to pass down this parameter and at least one addition of a 10th
argument to a 9 argument function. Using the flag is a lot less
intrusive.
Open: should be also used for migration?
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
reduce_pgdat_percpu_threshold() and restore_pgdat_percpu_threshold() exist
to adjust the per-cpu vmstat thresholds while kswapd is awake to avoid
errors due to counter drift. The functions duplicate some code so this
patch replaces them with a single set_pgdat_percpu_threshold() that takes
a callback function to calculate the desired threshold as a parameter.
[akpm@linux-foundation.org: readability tweak]
[kosaki.motohiro@jp.fujitsu.com: set_pgdat_percpu_threshold(): don't use for_each_online_cpu]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ordinarily watermark checks are based on the vmstat NR_FREE_PAGES as it is
cheaper than scanning a number of lists. To avoid synchronization
overhead, counter deltas are maintained on a per-cpu basis and drained
both periodically and when the delta is above a threshold. On large CPU
systems, the difference between the estimated and real value of
NR_FREE_PAGES can be very high. If NR_FREE_PAGES is much higher than
number of real free page in buddy, the VM can allocate pages below min
watermark, at worst reducing the real number of pages to zero. Even if
the OOM killer kills some victim for freeing memory, it may not free
memory if the exit path requires a new page resulting in livelock.
This patch introduces a zone_page_state_snapshot() function (courtesy of
Christoph) that takes a slightly more accurate view of an arbitrary vmstat
counter. It is used to read NR_FREE_PAGES while kswapd is awake to avoid
the watermark being accidentally broken. The estimate is not perfect and
may result in cache line bounces but is expected to be lighter than the
IPI calls necessary to continually drain the per-cpu counters while kswapd
is awake.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ordinarily when a high-order allocation fails, direct reclaim is entered
to free pages to satisfy the allocation. With this patch, it is
determined if an allocation failed due to external fragmentation instead
of low memory and if so, the calling process will compact until a suitable
page is freed. Compaction by moving pages in memory is considerably
cheaper than paging out to disk and works where there are locked pages or
no swap. If compaction fails to free a page of a suitable size, then
reclaim will still occur.
Direct compaction returns as soon as possible. As each block is
compacted, it is checked if a suitable page has been freed and if so, it
returns.
[akpm@linux-foundation.org: Fix build errors]
[aarcange@redhat.com: fix count_vm_event preempt in memory compaction direct reclaim]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is the core of a mechanism which compacts memory in a zone by
relocating movable pages towards the end of the zone.
A single compaction run involves a migration scanner and a free scanner.
Both scanners operate on pageblock-sized areas in the zone. The migration
scanner starts at the bottom of the zone and searches for all movable
pages within each area, isolating them onto a private list called
migratelist. The free scanner starts at the top of the zone and searches
for suitable areas and consumes the free pages within making them
available for the migration scanner. The pages isolated for migration are
then migrated to the newly isolated free pages.
[aarcange@redhat.com: Fix unsafe optimisation]
[mel@csn.ul.ie: do not schedule work on other CPUs for compaction]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If reclaim fails to make sufficient progress, the priority is raised.
Once the priority is higher, kswapd starts waiting on congestion.
However, if the zone is below the min watermark then kswapd needs to
continue working without delay as there is a danger of an increased rate
of GFP_ATOMIC allocation failure.
This patch changes the conditions under which kswapd waits on congestion
by only going to sleep if the min watermarks are being met.
[mel@csn.ul.ie: add stats to track how relevant the logic is]
[mel@csn.ul.ie: make kswapd only check its own zones and rename the relevant counters]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After kswapd balances all zones in a pgdat, it goes to sleep. In the
event of no IO congestion, kswapd can go to sleep very shortly after the
high watermark was reached. If there are a constant stream of allocations
from parallel processes, it can mean that kswapd went to sleep too quickly
and the high watermark is not being maintained for sufficient length time.
This patch makes kswapd go to sleep as a two-stage process. It first
tries to sleep for HZ/10. If it is woken up by another process or the
high watermark is no longer met, it's considered a premature sleep and
kswapd continues work. Otherwise it goes fully to sleep.
This adds more counters to distinguish between fast and slow breaches of
watermarks. A "fast" premature sleep is one where the low watermark was
hit in a very short time after kswapd going to sleep. A "slow" premature
sleep indicates that the high watermark was breached after a very short
interval.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Frans Pop <elendil@planet.nl>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the return from alloc_percpu is compatible with the address
of per-cpu vars, it makes sense to hand around the address of per-cpu
variables. To make this sane, we remove the per_cpu__ prefix we used
created to stop people accidentally using these vars directly.
Now we have sparse, we can use that (next patch).
tj: * Updated to convert stuff which were missed by or added after the
original patch.
* Kill per_cpu_var() macro.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Using per cpu atomics for the vm statistics reduces their overhead.
And in the case of x86 we are guaranteed that they will never race even
in the lax form used for vm statistics.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
global_lru_pages() / zone_lru_pages() can be used in two ways:
- to estimate max reclaimable pages in determine_dirtyable_memory()
- to calculate the slab scan ratio
When swap is full or not present, the anon lru lists are not reclaimable
and also won't be scanned. So the anon pages shall not be counted in both
usage scenarios. Also rename to _reclaimable_pages: now they are counting
the possibly reclaimable lru pages.
It can greatly (and correctly) increase the slab scan rate under high
memory pressure (when most file pages have been reclaimed and swap is
full/absent), thus reduce false OOM kills.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Howells <dhowells@redhat.com>
Cc: "Li, Ming Chun" <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On NUMA machines, the administrator can configure zone_reclaim_mode that
is a more targetted form of direct reclaim. On machines with large NUMA
distances for example, a zone_reclaim_mode defaults to 1 meaning that
clean unmapped pages will be reclaimed if the zone watermarks are not
being met.
There is a heuristic that determines if the scan is worthwhile but it is
possible that the heuristic will fail and the CPU gets tied up scanning
uselessly. Detecting the situation requires some guesswork and
experimentation so this patch adds a counter "zreclaim_failed" to
/proc/vmstat. If during high CPU utilisation this counter is increasing
rapidly, then the resolution to the problem may be to set
/proc/sys/vm/zone_reclaim_mode to 0.
[akpm@linux-foundation.org: name things consistently]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow free of mlock()ed pages. This shouldn't happen, but during
developement, it occasionally did.
This patch allows us to survive that condition, while keeping the
statistics and events correct for debug.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add NR_MLOCK zone page state, which provides a (conservative) count of
mlocked pages (actually, the number of mlocked pages moved off the LRU).
Reworked by lts to fit in with the modified mlock page support in the
Reclaim Scalability series.
[kosaki.motohiro@jp.fujitsu.com: fix incorrect Mlocked field of /proc/meminfo]
[lee.schermerhorn@hp.com: mlocked-pages: add event counting with statistics]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix to unevictable-lru-page-statistics.patch
Add unevictable lru infrastructure vm events to the statistics patch.
Rename the "NORECL_" and "noreclaim_" symbols and text strings to
"UNEVICTABLE_" and "unevictable_", respectively.
Currently, both the infrastructure and the mlocked pages event are
added by a single patch later in the series. This makes it difficult
to add or rework the incremental patches. The events actually "belong"
with the stats, so pull them up to here.
Also, restore the event counting to putback_lru_page(). This was removed
from previous patch in series where it was "misplaced". The actual events
weren't defined that early.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon"). The latter includes tmpfs.
The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.
This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists. The big
policy changes are in separate patches.
[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds proper extern declarations for five variables in
include/linux/vmstat.h
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allocating huge pages directly from the buddy allocator is not guaranteed to
succeed. Success depends on several factors (such as the amount of physical
memory available and the level of fragmentation). With the addition of
dynamic hugetlb pool resizing, allocations can occur much more frequently.
For these reasons it is desirable to keep track of huge page allocation
successes and failures.
Add two new vmstat entries to track huge page allocations that succeed and
fail. The presence of the two entries is contingent upon CONFIG_HUGETLB_PAGE
being enabled.
[akpm@linux-foundation.org: reduced ifdeffery]
Signed-off-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Eric Munson <ebmunson@us.ibm.com>
Tested-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andy Whitcroft <apw@shadowen.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On NUMA, zone_statistics() is used to record events like numa hit, miss and
foreign. It assumes that the first zone in a zonelist is the preferred zone.
When multiple zonelists are replaced by one that is filtered, this is no
longer the case.
This patch records what the preferred zone is rather than assuming the first
zone in the zonelist is it. This simplifies the reading of later patches in
this set.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes code duplication and makes __dec_zone_page_state look like
__inc_zone_page_state.
Signed-off-by: Uwe Kleine-König <Uwe.Kleine-Koenig@digi.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE
that is only usable by allocations that specify both __GFP_HIGHMEM and
__GFP_MOVABLE. This has the effect of keeping all non-movable pages within a
single memory partition while allowing movable allocations to be satisfied
from either partition. The patches may be applied with the list-based
anti-fragmentation patches that groups pages together based on mobility.
The size of the zone is determined by a kernelcore= parameter specified at
boot-time. This specifies how much memory is usable by non-movable
allocations and the remainder is used for ZONE_MOVABLE. Any range of pages
within ZONE_MOVABLE can be released by migrating the pages or by reclaiming.
When selecting a zone to take pages from for ZONE_MOVABLE, there are two
things to consider. First, only memory from the highest populated zone is
used for ZONE_MOVABLE. On the x86, this is probably going to be ZONE_HIGHMEM
but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64. Second,
the amount of memory usable by the kernel will be spread evenly throughout
NUMA nodes where possible. If the nodes are not of equal size, the amount of
memory usable by the kernel on some nodes may be greater than others.
By default, the zone is not as useful for hugetlb allocations because they are
pinned and non-migratable (currently at least). A sysctl is provided that
allows huge pages to be allocated from that zone. This means that the huge
page pool can be resized to the size of ZONE_MOVABLE during the lifetime of
the system assuming that pages are not mlocked. Despite huge pages being
non-movable, we do not introduce additional external fragmentation of note as
huge pages are always the largest contiguous block we care about.
Credit goes to Andy Whitcroft for catching a large variety of problems during
review of the patches.
This patch creates an additional zone, ZONE_MOVABLE. This zone is only usable
by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE. Hot-added
memory continues to be placed in their existing destination as there is no
mechanism to redirect them to a specific zone.
[y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code]
[akpm@linux-foundation.org: various fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vmstat is currently using the cache reaper to periodically bring the
statistics up to date. The cache reaper does only exists in SLUB as a way to
provide compatibility with SLAB. This patch removes the vmstat calls from the
slab allocators and provides its own handling.
The advantage is also that we can use a different frequency for the updates.
Refreshing vm stats is a pretty fast job so we can run this every second and
stagger this by only one tick. This will lead to some overlap in large
systems. F.e a system running at 250 HZ with 1024 processors will have 4 vm
updates occurring at once.
However, the vm stats update only accesses per node information. It is only
necessary to stagger the vm statistics updates per processor in each node. Vm
counter updates occurring on distant nodes will not cause cacheline
contention.
We could implement an alternate approach that runs the first processor on each
node at the second and then each of the other processor on a node on a
subsequent tick. That may be useful to keep a large amount of the second free
of timer activity. Maybe the timer folks will have some feedback on this one?
[jirislaby@gmail.com: add missing break]
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>