If ACPI is selectable it is enabled by default. This is a good choice
for architectures where the overwhelming majority of systems use ACPI
like x86 and IA-64 but is less clear for architectures where it's less
common like ARM64. Change the default selection so that it's only done
explicitly on those architectures where ACPI is universally used.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch converts AML debugger into a loadable module.
Note that, it implements driver unloading at the level dependent on the
module reference count. Which means if ACPI debugger is being used by a
userspace program, "rmmod acpi_dbg" should result in failure.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds /sys/kernel/debug/acpi/acpidbg, which can be used by
userspace programs to access ACPICA debugger functionalities.
Known issue:
1. IO flush support
acpi_os_notify_command_complete() and acpi_os_wait_command_ready() can
be used by acpi_dbg module to implement .flush() filesystem operation.
While this patch doesn't go that far. It then becomes userspace tool's
duty now to flush old commands before executing new batch mode commands.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Hi,
For a brief moment I was tricked into thinking that:
In-kernel debugger (EXPERIMENTAL) (ACPI_DEBUGGER) [N/y/?] (NEW)
might be something useful. Better describe the feature to reduce
such confusion.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* acpi-processor:
ACPI / CPPC: Fix potential memory leak
ACPI / CPPC: signedness bug in register_pcc_channel()
ACPI: Allow selection of the ACPI processor driver for ARM64
CPPC: Probe for CPPC tables for each ACPI Processor object
ACPI: Add weak routines for ACPI CPU Hotplug
ACPI / CPPC: Add a CPUFreq driver for use with CPPC
ACPI: Introduce CPU performance controls using CPPC
This patch enables ACPICA debugger files using a configurable
CONFIG_ACPI_DEBUGGER configuration item. Those debugger related code that
was originally masked as ACPI_FUTURE_USAGE now gets unmasked.
Necessary OSL stubs are also added in this patch:
1. acpi_os_readable(): This should be arch specific in Linux, while this
patch doesn't introduce real implementation and a complex mechanism to
allow architecture specific acpi_os_readable() to be implemented to
validate the address. It may be done by future commits.
2. acpi_os_get_line(): This is used to obtain debugger command input. This
patch only introduces a simple KDB concept example in it and the
example should be co-working with the code implemented in
acpi_os_printf(). Since this KDB example won't be compiled unless
ENABLE_DEBUGGER is defined and it seems Linux has already stopped to
use ENABLE_DEBUGGER, thus do not expect it can work properly.
This patch also cleans up all other ACPI_FUTURE_USAGE surroundings
accordingly.
1. Since linkage error can be automatically detected, declaration in the
headers needn't be surrounded by ACPI_FUTURE_USAGE.
So only the following separate exported fuction bodies are masked by
this macro (other exported fucntions may have already been masked at
entire module level via drivers/acpi/acpica/Makefile):
acpi_install_exception_handler()
acpi_subsystem_status()
acpi_get_system_info()
acpi_get_statistics()
acpi_install_initialization_handler()
2. Since strip can automatically zap the no-user functions, functions that
are not marked with ACPI_EXPORT_SYMBOL() needn't get surrounded by
ACPI_FUTURE_USAGE.
So the following function which is not used by Linux kernel now won't
get surrounded by this macro:
acpi_ps_get_name()
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Now that the ACPI processor driver has been decoupled from
the C states and P states functionality, make it selectable on
ARM64 so that it can be used by others e.g. CPPC.
The C states and P states code is selected only on X86 or
IA64 until the relevant support is added on ARM64.
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
CPPC stands for Collaborative Processor Performance Controls
and is defined in the ACPI v5.0+ spec. It describes CPU
performance controls on an abstract and continuous scale
allowing the platform (e.g. remote power processor) to flexibly
optimize CPU performance with its knowledge of power budgets
and other architecture specific knowledge.
This patch adds a shim which exports commonly used functions
to get and set CPPC specific controls for each CPU. This enables
CPUFreq drivers to gather per CPU performance data and use
with exisiting governors or even allows for customized governors
which are implemented inside CPUFreq drivers.
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Reviewed-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map. This facility is used by the pmem driver to
enable pfn_to_page() operations on the page frames returned by DAX
('direct_access' in 'struct block_device_operations'). For now, the
'memmap' allocation for these "device" pages comes from "System
RAM". Support for allocating the memmap from device memory will
arrive in a later kernel.
2/ Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3. Completion of
the conversion is targeted for v4.4.
3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
5/ Miscellaneous updates and fixes to libnvdimm including support
for issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
slsw6DkrWT60CRE42nbK
=o57/
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
This should result in a pretty sizeable performance gain for reads. For
rough comparison I did some simple read testing using PMEM to compare
reads of write combining (WC) mappings vs write-back (WB). This was
done on a random lab machine.
PMEM reads from a write combining mapping:
# dd of=/dev/null if=/dev/pmem0 bs=4096 count=100000
100000+0 records in
100000+0 records out
409600000 bytes (410 MB) copied, 9.2855 s, 44.1 MB/s
PMEM reads from a write-back mapping:
# dd of=/dev/null if=/dev/pmem0 bs=4096 count=1000000
1000000+0 records in
1000000+0 records out
4096000000 bytes (4.1 GB) copied, 3.44034 s, 1.2 GB/s
To be able to safely support a write-back aperture I needed to add
support for the "read flush" _DSM flag, as outlined in the DSM spec:
http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
This flag tells the ND BLK driver that it needs to flush the cache lines
associated with the aperture after the aperture is moved but before any
new data is read. This ensures that any stale cache lines from the
previous contents of the aperture will be discarded from the processor
cache, and the new data will be read properly from the DIMM. We know
that the cache lines are clean and will be discarded without any
writeback because either a) the previous aperture operation was a read,
and we never modified the contents of the aperture, or b) the previous
aperture operation was a write and we must have written back the dirtied
contents of the aperture to the DIMM before the I/O was completed.
In order to add support for the "read flush" flag I needed to add a
generic routine to invalidate cache lines, mmio_flush_range(). This is
protected by the ARCH_HAS_MMIO_FLUSH Kconfig variable, and is currently
only supported on x86.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This patch introduces a new Kconfig symbol, ACPI_PROCESSOR_IDLE,
which is auto selected by architectures which support the ACPI
based C states for CPU Idle management.
The processor_idle driver in its present form contains declarations
specific to X86 and IA64. Since there are no reasonable defaults
for other architectures e.g. ARM64, the driver is selected only for
X86 or IA64.
This helps in decoupling the ACPI processor_driver from the ACPI
processor_idle driver which is useful for the upcoming alternative
patchwork for controlling CPU Performance (CPPC) and CPU Idle (LPI).
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI processor driver is currently tied too closely
to the ACPI P-states (PSS) and other related constructs
for controlling CPU performance.
The newer ACPI specification (v5.1 onwards) introduces
alternative methods to PSS. These new mechanisms are
described within each ACPI Processor object and so they
need to be scanned whenever a new Processor object is detected.
This patch introduces a new Kconfig symbol to allow for
finer configurability among the two options for controlling
performance states. There is no change in functionality and
the option is auto-selected by the architectures which support it.
A future commit will introduce support for CPPC: A newer method of
controlling CPU performance. The OS is not expected to support
CPPC and PSS at the same time, so the Kconfig option lets us make
the two mutually exclusive at compile time.
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Fix system resume problems related to 32-bit and 64-bit versions
of the Firmware ACPI Control Structure (FACS) in the firmare (Lv
Zheng).
- Fix double initialization of the FACS (Lv Zheng).
- Add _CLS object processing code to ACPICA (Suravee Suthikulpanit).
- Add support for the (currently missing) new GIC version field in
the Multiple APIC Description Table (MADT) (Hanjun Guo).
- Add support for overriding objects in the ACPI namespace to
ACPICA and OSDT support (Lv Zheng, Bob Moore, Zhang Rui).
- Updates related to the TCPA and TPM2 ACPI tables (Bob Moore).
- Restore the commit modifying _REV to always return "2" (as
required by ACPI 6) and add a blacklisting mechanism for
systems that may be affected by that change (Rafael J Wysocki).
- Assorted fixes and cleanups (Bob Moore, Lv Zheng, Sascha Wildner).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJVlcwtAAoJEILEb/54YlRx/IwQAKMZaZZni2HhJ/ASBVAtF4zp
RNaS+XiTzLg2HIIR0QjRE9LT2CH3Zw2l99XzU91SqS2UfvTr+YJjnSNq3PllAgrT
SsFv5fVJZr7VfJw7gbARhOXp926INfDRqKp5WvpQ3XCFclCQRNbqzn0PD1ouooVQ
x4IhhFlxyCIOHwbINS//CsJ8H+PT7aUc2kSgEKGbVWFfKE9jfTCx1Nekh2GoEqf+
wutzaMmCoQsf0kVNldgEnF2vxIxwgcXkhYxBBdnGBl2afJz+THsPaJP6Bx6JNA+S
iaFh+iyo70jeJ4ouBxJc0E46g+pDOJdP71VQhexFu3c7OU+wmhyv30/f4SwxXLOD
+H8OhOMXFLff9PS+BVU4iR7t5SikZzbXc/AjuM6es1UT+k8zOlo+fRL1I8dXDF6V
t4GiT6hz/MX30cP3aumXtQ2dl9TksWPtfoerSjo1EowY6wPZ+WpJ2bmp5uecIDGV
TNdC4pKjDVgbFP889mZF4pG198uR4UV1gRCf4gvwEyiNMFd3xRbFhs4r7AkiSQLn
fy+V7MlgFiFaB6Ej/AU01fjarOPPSiv8uFWAZL4e9R/88UgfVVq0aFonw/r5l4jj
3rJBOH7YxNxGBhRjTL+d7cwruED6G/K2S0QbD2kZBOSHrouz1fuLFdvgKj8ahqyJ
VfQZs9A3PSv/v1wssUr/
=MlWS
-----END PGP SIGNATURE-----
Merge tag 'acpica-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPICA updates from Rafael Wysocki:
"Additional ACPICA material for v4.2-rc1
This will update the ACPICA code in the kernel to upstream revision
20150619 (a bug-fix release mostly including stable-candidate fixes)
and restore an earlier ACPICA commit that had to be reverted due to a
regression introduced by it (the regression is addressed by
blacklisting the only known system affected by it to date).
The only new feature added by this update is the support for
overriding objects in the ACPI namespace and a new ACPI table that can
be used for that called the Override System Definition Table (OSDT).
That should allow us to "patch" the ACPI namespace built from
incomplete or incorrect ACPI System Definition tables (DSDT, SSDT)
during system startup without the need to provide replacements for all
of those tables in the future.
Specifics:
- Fix system resume problems related to 32-bit and 64-bit versions of
the Firmware ACPI Control Structure (FACS) in the firmare (Lv
Zheng)
- Fix double initialization of the FACS (Lv Zheng)
- Add _CLS object processing code to ACPICA (Suravee Suthikulpanit)
- Add support for the (currently missing) new GIC version field in
the Multiple APIC Description Table (MADT) (Hanjun Guo)
- Add support for overriding objects in the ACPI namespace to ACPICA
and OSDT support (Lv Zheng, Bob Moore, Zhang Rui)
- Updates related to the TCPA and TPM2 ACPI tables (Bob Moore)
- Restore the commit modifying _REV to always return "2" (as required
by ACPI 6) and add a blacklisting mechanism for systems that may be
affected by that change (Rafael J Wysocki)
- Assorted fixes and cleanups (Bob Moore, Lv Zheng, Sascha Wildner)"
* tag 'acpica-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (28 commits)
Revert 'Revert "ACPICA: Permanently set _REV to the value '2'."'
ACPI / init: Make it possible to override _REV
ACPICA: Update version to 20150619
ACPICA: Comment update, no functional change
ACPICA: Update TPM2 ACPI table
ACPICA: Update definitions for the TCPA and TPM2 ACPI tables
ACPICA: Split C library prototypes to new header
ACPICA: De-macroize calls to standard C library functions
ACPI / acpidump: Update acpidump manual
ACPICA: acpidump: Convert the default behavior to dump from /sys/firmware/acpi/tables
ACPICA: acpidump: Allow customized tables to be dumped without accessing /dev/mem
ACPICA: Cleanup output for the ASL Debug object
ACPICA: Update for acpi_install_table memory types
ACPICA: Namespace: Change namespace override to avoid node deletion
ACPICA: Namespace: Add support of OSDT table
ACPICA: Namespace: Add support to allow overriding objects
ACPICA: ACPI 6.0: Add values for MADT GIC version field
ACPICA: Utilities: Add _CLS processing
ACPICA: Add dragon_fly support to unix file mapping file
ACPICA: EFI: Add EFI interface definitions to eliminate dependency of GNU EFI
...
The platform firmware on some systems expects Linux to return "5" as
the supported ACPI revision which makes it expose system configuration
information in a special way.
For example, based on what ACPI exports as the supported revision,
Dell XPS 13 (2015) configures its audio device to either work in HDA
mode or in I2S mode, where the former is supposed to be used on Linux
until the latter is fully supported (in the kernel as well as in user
space).
Since ACPI 6 mandates that _REV should return "2" if ACPI 2 or later
is supported by the OS, a subsequent change will make that happen, so
make it possible to override that on systems where "5" is expected to
be returned for Linux to work correctly one them (such as the Dell
machine mentioned above).
Original-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory devices
(NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware Interface
table). After registering NVDIMMs the NFIT driver then registers
"region" devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block device
(disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of persistent
memory address ranges is re-worked to drive PMEM-namespaces emitted by
the libnvdimm-core. In this update the PMEM driver, on x86, gains the
ability to assert that writes to persistent memory have been flushed all
the way through the caches and buffers in the platform to persistent
media. See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through "Block
Data Windows" as defined by the NFIT. The primary difference of this
driver to PMEM is that only a small window of persistent memory is
mapped into system address space at any given point in time. Per-NVDIMM
windows are reprogrammed at run time, per-I/O, to access different
portions of the media. BLK-mode, by definition, does not support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss). The
sinister aspect of sector tearing is that most applications do not know
they have a atomic sector dependency. At least today's disk's rarely
ever tear sectors and if they do one almost certainly gets a CRC error
on access. NVDIMMs will always tear and always silently. Until an
application is audited to be robust in the presence of sector-tearing
the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVjZGBAAoJEB7SkWpmfYgC4fkP/j+k6HmSRNU/yRYPyo7CAWvj
3P5P1i6R6nMZZbjQrQArAXaIyLlFk4sEQDYsciR6dmslhhFZAkR2eFwVO5rBOyx3
QN0yxEpyjJbroRFUrV/BLaFK4cq2oyJAFFHs0u7/pLHBJ4MDMqfRKAMtlnBxEkTE
LFcqXapSlvWitSbjMdIBWKFEvncaiJ2mdsFqT4aZqclBBTj00eWQvEG9WxleJLdv
+tj7qR/vGcwOb12X5UrbQXgwtMYos7A6IzhHbqwQL8IrOcJ6YB8NopJUpLDd7ZVq
KAzX6ZYMzNueN4uvv6aDfqDRLyVL7qoxM9XIjGF5R8SV9sF2LMspm1FBpfowo1GT
h2QMr0ky1nHVT32yspBCpE9zW/mubRIDtXxEmZZ53DIc4N6Dy9jFaNVmhoWtTAqG
b9pndFnjUzzieCjX5pCvo2M5U6N0AQwsnq76/CasiWyhSa9DNKOg8MVDRg0rbxb0
UvK0v8JwOCIRcfO3qiKcx+02nKPtjCtHSPqGkFKPySRvAdb+3g6YR26CxTb3VmnF
etowLiKU7HHalLvqGFOlDoQG6viWes9Zl+ZeANBOCVa6rL2O7ZnXJtYgXf1wDQee
fzgKB78BcDjXH4jHobbp/WBANQGN/GF34lse8yHa7Ym+28uEihDvSD1wyNLnefmo
7PJBbN5M5qP5tD0aO7SZ
=VtWG
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm
Pull libnvdimm subsystem from Dan Williams:
"The libnvdimm sub-system introduces, in addition to the
libnvdimm-core, 4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory
devices (NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware
Interface table).
After registering NVDIMMs the NFIT driver then registers "region"
devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block
device (disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of
persistent memory address ranges is re-worked to drive
PMEM-namespaces emitted by the libnvdimm-core.
In this update the PMEM driver, on x86, gains the ability to assert
that writes to persistent memory have been flushed all the way
through the caches and buffers in the platform to persistent media.
See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through
"Block Data Windows" as defined by the NFIT. The primary difference
of this driver to PMEM is that only a small window of persistent
memory is mapped into system address space at any given point in
time.
Per-NVDIMM windows are reprogrammed at run time, per-I/O, to access
different portions of the media. BLK-mode, by definition, does not
support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss).
The sinister aspect of sector tearing is that most applications do
not know they have a atomic sector dependency. At least today's
disk's rarely ever tear sectors and if they do one almost certainly
gets a CRC error on access. NVDIMMs will always tear and always
silently. Until an application is audited to be robust in the
presence of sector-tearing the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore"
* tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm: (33 commits)
arch, x86: pmem api for ensuring durability of persistent memory updates
libnvdimm: Add sysfs numa_node to NVDIMM devices
libnvdimm: Set numa_node to NVDIMM devices
acpi: Add acpi_map_pxm_to_online_node()
libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only
pmem: flag pmem block devices as non-rotational
libnvdimm: enable iostat
pmem: make_request cleanups
libnvdimm, pmem: fix up max_hw_sectors
libnvdimm, blk: add support for blk integrity
libnvdimm, btt: add support for blk integrity
fs/block_dev.c: skip rw_page if bdev has integrity
libnvdimm: Non-Volatile Devices
tools/testing/nvdimm: libnvdimm unit test infrastructure
libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory
nd_btt: atomic sector updates
libnvdimm: infrastructure for btt devices
libnvdimm: write blk label set
libnvdimm: write pmem label set
libnvdimm: blk labels and namespace instantiation
...
Most discovery/configuration of the nvdimm-subsystem is done via sysfs
attributes. However, some nvdimm_bus instances, particularly the
ACPI.NFIT bus, define a small set of messages that can be passed to the
platform. For convenience we derive the initial libnvdimm-ioctl command
formats directly from the NFIT DSM Interface Example formats.
ND_CMD_SMART: media health and diagnostics
ND_CMD_GET_CONFIG_SIZE: size of the label space
ND_CMD_GET_CONFIG_DATA: read label space
ND_CMD_SET_CONFIG_DATA: write label space
ND_CMD_VENDOR: vendor-specific command passthrough
ND_CMD_ARS_CAP: report address-range-scrubbing capabilities
ND_CMD_ARS_START: initiate scrubbing
ND_CMD_ARS_STATUS: report on scrubbing state
ND_CMD_SMART_THRESHOLD: configure alarm thresholds for smart events
If a platform later defines different commands than this set it is
straightforward to extend support to those formats.
Most of the commands target a specific dimm. However, the
address-range-scrubbing commands target the bus. The 'commands'
attribute in sysfs of an nvdimm_bus, or nvdimm, enumerate the supported
commands for that object.
Cc: <linux-acpi@vger.kernel.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A struct nvdimm_bus is the anchor device for registering nvdimm
resources and interfaces, for example, a character control device,
nvdimm devices, and I/O region devices. The ACPI NFIT (NVDIMM Firmware
Interface Table) is one possible platform description for such
non-volatile memory resources in a system. The nfit.ko driver attaches
to the "ACPI0012" device that indicates the presence of the NFIT and
parses the table to register a struct nvdimm_bus instance.
Cc: <linux-acpi@vger.kernel.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This patch implements support for ACPI _CCA object, which is introduced in
ACPIv5.1, can be used for specifying device DMA coherency attribute.
The parsing logic traverses device namespace to parse coherency
information, and stores it in acpi_device_flags. Then uses it to call
arch_setup_dma_ops() when creating each device enumerated in DSDT
during ACPI scan.
This patch also introduces acpi_dma_is_coherent(), which provides
an interface for device drivers to check the coherency information
similarly to the of_dma_is_coherent().
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI procfs power interface is initialized by compilation units
that are only selectable on X86 platforms. Since its usage is
deprecated and it cannot even be used on platforms other than X86
it should be compiled in only on X86 platforms.
This patch makes CONFIG_ACPI_PROCFS_POWER dependent on X86, so
that other architectures are prevented from compiling it in for
no purpose.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The code deployed to implement GSI linux IRQ numbers mapping on arm64 turns
out to be generic enough so that it can be moved to ACPI core code along
with its respective config option ACPI_GENERIC_GSI selectable on
architectures that can reuse the same code.
Current ACPI IRQ mapping code is not integrated in the kernel IRQ domain
infrastructure, in particular there is no way to look-up the
IRQ domain associated with a particular interrupt controller, so this
first version of GSI generic code carries out the GSI<->IRQ mapping relying
on the IRQ default domain which is supposed to be always set on a
specific architecture in case the domain structure passed to
irq_create/find_mapping() functions is missing.
This patch moves the arm64 acpi functions that implement the gsi mappings:
acpi_gsi_to_irq()
acpi_register_gsi()
acpi_unregister_gsi()
to ACPI core code. Since the generic GSI<->domain mapping is based on IRQ
domains, it can be extended as soon as a way to map an interrupt
controller to an IRQ domain is implemented for ACPI in the IRQ domain
layer.
x86 and ia64 code for GSI mappings cannot rely on the generic GSI
layer at present for legacy reasons, so they do not select the
ACPI_GENERIC_GSI config options and keep relying on their arch
specific GSI mapping layer.
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add Kconfigs to build ACPI on ARM64, and make ACPI available on ARM64.
acpi_idle driver is x86/IA64 dependent now, so make CONFIG_ACPI_PROCESSOR
depend on X86 || IA64, and implement it on ARM64 in the future.
CC: Rafael J. Wysocki <rjw@rjwysocki.net>
CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Tested-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Tested-by: Yijing Wang <wangyijing@huawei.com>
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Tested-by: Timur Tabi <timur@codeaurora.org>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Robert Richter <rrichter@cavium.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ACPI 5.1 does not currently support S states for ARM64 hardware but
ACPI code will call acpi_target_system_state() and acpi_sleep_init()
for device power management, so introduce
CONFIG_ACPI_SYSTEM_POWER_STATES_SUPPORT and select it for x86 and
ia64 only to make sleep functions available, and also introduce stub
function to allow other drivers to function until S states are defined
for ARM64.
It will be no functional change for x86 and IA64.
Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Enable support of IOAPIC hotplug by:
1) reintroducing ACPI based IOAPIC driver
2) enhance pci_root driver to hook hotplug events
The ACPI IOAPIC driver is always enabled if all of ACPI, PCI and IOAPIC
are enabled.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Len Brown <lenb@kernel.org>
Link: http://lkml.kernel.org/r/1414387308-27148-19-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* acpi-video:
ACPI / video: Run _BCL before deciding registering backlight
* acpi-pmic:
ACPI / PMIC: AXP288: support virtual GPIO in ACPI table
ACPI / PMIC: support PMIC operation region for XPower AXP288
ACPI / PMIC: support PMIC operation region for CrystalCove
iio/axp288_adc: remove THIS_MODULE owner
mfd/axp20x: avoid irq numbering collision
iio: adc: Add module device table for autoloading
iio: adc: Add support for axp288 adc
mfd: axp20x: Extend axp20x to support axp288 pmic
The Baytrail-T-CR platform firmware has defined two customized operation
regions for PMIC chip Dollar Cove XPower - one is for power resource
handling and one is for thermal just like the CrystalCove one. This patch
adds support for them on top of the common PMIC opregion region code.
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Lee Jones <lee.jones@linaro.org> for the MFD part
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Baytrail-T platform firmware has defined two customized operation
regions for PMIC chip Crystal Cove - one is for power resource handling
and one is for thermal: sensor temperature reporting, trip point setting,
etc. This patch adds support for them on top of the existing Crystal Cove
PMIC driver.
The reason to split code into a separate file intel_pmic.c is that there
are more PMIC drivers with ACPI operation region support coming and we can
re-use those code. The intel_pmic_opregion_data structure is created also
for this purpose: when we need to support a new PMIC's operation region,
we just need to fill those callbacks and the two register mapping tables.
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Lee Jones <lee.jones@linaro.org> for the MFD part
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since config ACPI_REDUCED_HARDWARE_ONLY is already depended
on ACPI (inside if ACPI / endif), so depdens on ACPI is redundant,
remove it and fix the minor syntax problem also.
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
we share the same driver for both ACPI predefined Fan device
and INT3404 Fan device, thus we should select the ACPI Fan
driver when int340x thermal drivers are enabeld.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
- ACPICA update to upstream version 20140724. That includes
ACPI 5.1 material (support for the _CCA and _DSD predefined names,
changes related to the DMAR and PCCT tables and ARM support among
other things) and cleanups related to using ACPICA's header files.
A major part of it is related to acpidump and the core code used
by that utility. Changes from Bob Moore, David E Box, Lv Zheng,
Sascha Wildner, Tomasz Nowicki, Hanjun Guo.
- Radix trees for memory bitmaps used by the hibernation core from
Joerg Roedel.
- Support for waking up the system from suspend-to-idle (also known
as the "freeze" sleep state) using ACPI-based PCI wakeup signaling
(Rafael J Wysocki).
- Fixes for issues related to ACPI button events (Rafael J Wysocki).
- New device ID for an ACPI-enumerated device included into the
Wildcat Point PCH from Jie Yang.
- ACPI video updates related to backlight handling from Hans de Goede
and Linus Torvalds.
- Preliminary changes needed to support ACPI on ARM from Hanjun Guo
and Graeme Gregory.
- ACPI PNP core cleanups from Arjun Sreedharan and Zhang Rui.
- Cleanups related to ACPI_COMPANION() and ACPI_HANDLE() macros
(Rafael J Wysocki).
- ACPI-based device hotplug cleanups from Wei Yongjun and
Rafael J Wysocki.
- Cleanups and improvements related to system suspend from
Lan Tianyu, Randy Dunlap and Rafael J Wysocki.
- ACPI battery cleanup from Wei Yongjun.
- cpufreq core fixes from Viresh Kumar.
- Elimination of a deadband effect from the cpufreq ondemand
governor and intel_pstate driver cleanups from Stratos Karafotis.
- 350MHz CPU support for the powernow-k6 cpufreq driver from
Mikulas Patocka.
- Fix for the imx6 cpufreq driver from Anson Huang.
- cpuidle core and governor cleanups from Daniel Lezcano,
Sandeep Tripathy and Mohammad Merajul Islam Molla.
- Build fix for the big_little cpuidle driver from Sachin Kamat.
- Configuration fix for the Operation Performance Points (OPP)
framework from Mark Brown.
- APM cleanup from Jean Delvare.
- cpupower utility fixes and cleanups from Peter Senna Tschudin,
Andrey Utkin, Himangi Saraogi, Rickard Strandqvist, Thomas Renninger.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJT4nhtAAoJEILEb/54YlRxtZEP/2rtVQFSFdAW8l0Xm1SeSsl4
EnZpSNT1TFn+NdG23vSIot5Jzdz1/dLfeoJEbXpoVt4DPC9/PK4HPlv5FEDQYfh5
srftvvGcAva969sXzSBRNUeR+M8Yd2RdoYCfmqTEUjzf8GJLL4jC0VAIwMtsQklt
EbiQX8JaHQS7RIql7MDg1N2vaTo+zxkf39Kkcl56usmO/uATP7cAPjFreF/xQ3d8
OyBhz1cOXIhPw7bd9Dv9AgpJzA8WFpktDYEgy2sluBWMv+mLYjdZRCFkfpIRzmea
pt+hJDeAy8ZL6/bjWCzz2x6wG7uJdDLblreI28sgnJx/VHR3Co6u4H1BqUBj18ct
CHV6zQ55WFmx9/uJqBtwFy333HS2ysJziC5ucwmg8QjkvAn4RK8S0qHMfRvSSaHj
F9ejnHGxyrc3zzfsngUf/VXIp67FReaavyKX3LYxjHjMPZDMw2xCtCWEpUs52l2o
fAbkv8YFBbUalIv0RtELH5XnKQ2ggMP8UgvT74KyfXU6LaliH8lEV20FFjMgwrPI
sMr2xk04eS8mNRNAXL8OMMwvh6DY/Qsmb7BVg58RIw6CdHeFJl834yztzcf7+j56
4oUmA16QYBCFA3udGQ3Tb07mi8XTfrMdTOGA0koQG9tjswKXuLUXUk9WAXZe4vml
ItRpZKE86BCs3mLJMYre
=ZODv
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"Again, ACPICA leads the pack (47 commits), followed by cpufreq (18
commits) and system suspend/hibernation (9 commits).
From the new code perspective, the ACPICA update brings ACPI 5.1 to
the table, including a new device configuration object called _DSD
(Device Specific Data) that will hopefully help us to operate device
properties like Device Trees do (at least to some extent) and changes
related to supporting ACPI on ARM.
Apart from that we have hibernation changes making it use radix trees
to store memory bitmaps which should speed up some operations carried
out by it quite significantly. We also have some power management
changes related to suspend-to-idle (the "freeze" sleep state) support
and more preliminary changes needed to support ACPI on ARM (outside of
ACPICA).
The rest is fixes and cleanups pretty much everywhere.
Specifics:
- ACPICA update to upstream version 20140724. That includes ACPI 5.1
material (support for the _CCA and _DSD predefined names, changes
related to the DMAR and PCCT tables and ARM support among other
things) and cleanups related to using ACPICA's header files. A
major part of it is related to acpidump and the core code used by
that utility. Changes from Bob Moore, David E Box, Lv Zheng,
Sascha Wildner, Tomasz Nowicki, Hanjun Guo.
- Radix trees for memory bitmaps used by the hibernation core from
Joerg Roedel.
- Support for waking up the system from suspend-to-idle (also known
as the "freeze" sleep state) using ACPI-based PCI wakeup signaling
(Rafael J Wysocki).
- Fixes for issues related to ACPI button events (Rafael J Wysocki).
- New device ID for an ACPI-enumerated device included into the
Wildcat Point PCH from Jie Yang.
- ACPI video updates related to backlight handling from Hans de Goede
and Linus Torvalds.
- Preliminary changes needed to support ACPI on ARM from Hanjun Guo
and Graeme Gregory.
- ACPI PNP core cleanups from Arjun Sreedharan and Zhang Rui.
- Cleanups related to ACPI_COMPANION() and ACPI_HANDLE() macros
(Rafael J Wysocki).
- ACPI-based device hotplug cleanups from Wei Yongjun and Rafael J
Wysocki.
- Cleanups and improvements related to system suspend from Lan
Tianyu, Randy Dunlap and Rafael J Wysocki.
- ACPI battery cleanup from Wei Yongjun.
- cpufreq core fixes from Viresh Kumar.
- Elimination of a deadband effect from the cpufreq ondemand governor
and intel_pstate driver cleanups from Stratos Karafotis.
- 350MHz CPU support for the powernow-k6 cpufreq driver from Mikulas
Patocka.
- Fix for the imx6 cpufreq driver from Anson Huang.
- cpuidle core and governor cleanups from Daniel Lezcano, Sandeep
Tripathy and Mohammad Merajul Islam Molla.
- Build fix for the big_little cpuidle driver from Sachin Kamat.
- Configuration fix for the Operation Performance Points (OPP)
framework from Mark Brown.
- APM cleanup from Jean Delvare.
- cpupower utility fixes and cleanups from Peter Senna Tschudin,
Andrey Utkin, Himangi Saraogi, Rickard Strandqvist, Thomas
Renninger"
* tag 'pm+acpi-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (118 commits)
ACPI / LPSS: add LPSS device for Wildcat Point PCH
ACPI / PNP: Replace faulty is_hex_digit() by isxdigit()
ACPICA: Update version to 20140724.
ACPICA: ACPI 5.1: Update for PCCT table changes.
ACPICA/ARM: ACPI 5.1: Update for GTDT table changes.
ACPICA/ARM: ACPI 5.1: Update for MADT changes.
ACPICA/ARM: ACPI 5.1: Update for FADT changes.
ACPICA: ACPI 5.1: Support for the _CCA predifined name.
ACPICA: ACPI 5.1: New notify value for System Affinity Update.
ACPICA: ACPI 5.1: Support for the _DSD predefined name.
ACPICA: Debug object: Add current value of Timer() to debug line prefix.
ACPICA: acpihelp: Add UUID support, restructure some existing files.
ACPICA: Utilities: Fix local printf issue.
ACPICA: Tables: Update for DMAR table changes.
ACPICA: Remove some extraneous printf arguments.
ACPICA: Update for comments/formatting. No functional changes.
ACPICA: Disassembler: Add support for the ToUUID opererator (macro).
ACPICA: Remove a redundant cast to acpi_size for ACPI_OFFSET() macro.
ACPICA: Work around an ancient GCC bug.
ACPI / processor: Make it possible to get local x2apic id via _MAT
...
The use of _PDC is deprecated in ACPI 3.0 in favor of _OSC,
as ARM platform is supported only in ACPI 5.0 or higher version,
_PDC will not be used in ARM platform, so make Make _PDC only for
platforms with Intel CPUs.
Introduce ARCH_MIGHT_HAVE_ACPI_PDC and move _PDC related code in
ACPI processor driver into a single file processor_pdc.c, make x86
and ia64 select it when ACPI is enabled.
This patch also use pr_* to replace printk to fix the checkpatch
warning and factor acpi_processor_alloc_pdc() a little bit to
avoid duplicate pr_err() code.
Suggested-by: Robert Richter <rric@kernel.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
With the addition of ARM64 that does not have a traditional BIOS to
scan, add a config option which is selected on x86 (ia64 doesn't need
it either, it is EFI/UEFI based system) to do the traditional BIOS
scanning for tables.
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add trace interface to elaborate all H/W error related information.
Signed-off-by: Chen, Gong <gong.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Do not tell people in the Kconfig help when exactly we are going to
remove the deprecated ACPI interfaces in /proc, because, honestly,
we don't know. We will remove them when they are not used any more.
In particular, do not tell them that the interfaces will be removed
in a kernel release that already happened long ago.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The commit 1e2d9cd and 7d7ee95 remove ACPI Proc Battery
directory and breaks some old userspace tools. This patch
is to revert 7d7ee95.
Fixes: 7d7ee95886 (ACPI: Remove CONFIG_ACPI_PROCFS_POWER and cm_sbsc.c)
Cc: 3.13+ <stable@vger.kernel.org> # 3.13+
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The UEFI Forum included the ACPI spec in its portfolio in October 2013
and will host future spec iterations, following the ACPI v5.0a release.
A UEFI Forum working group named ACPI Specification Working Group (ASWG)
has been established to handle future ACPI developments, any UEFI member
can join the group and contribute to ACPI specification.
So update the ownership and developers for ACPI in Kconfig accordingly,
and add another website link to ACPI specification too.
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPI_VIDEO stopped depending on VIDEO_OUTPUT_CONTROL over 3 years ago
(see commit 677bd810, "ACPI video: remove output switching control".)
So it's about time to remove the Kconfig dependency between these two
options.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Nothing cares about ACPI_PROCFS. This has been the case since v2.6.38.
This Kconfig symbol serves no purpose and its help text is now
misleading. It can safely be removed. If this symbol would be needed
again in the future it can be readded in a commit that adds code that
actually uses it.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPI hardware reduced mode exists to allow newer platforms to use a
simpler form of ACPI that does not require supporting legacy versions
of the specification and their associated hardware. This mode was
introduced in the ACPI 5.0 specification.
The ACPI hardware reduced mode is supposed to be used on systems
having the HW_REDUCED_ACPI flag set in the FADT. ACPICA checks
that flag to determine whether or not it should work in the HW
reduced mode and there are pieces of code in it that will never
be used in that case.
Since some architecutres will always use the ACPI HW reduced mode,
it doesn't make sense for them to ever compile support for anything
else. Thus, they should set the flag ACPI_REDUCED_HARDWARE to TRUE
in the ACPICA source. To enable them to do that, introduce a new
kernel configuration option, CONFIG_ACPI_REDUCED_HARDWARE_ONLY, that
will cause the ACPICA's ACPI_REDUCED_HARDWARE flag to be TRUE when
set.
Introducing this configuration item is based on suggestions from Lv
Zheng saying that this does not belong in ACPICA, but rather to the
Linux kernel itself.
References: http://www.spinics.net/lists/linux-acpi/msg46369.html
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Al Stone <al.stone@linaro.org>
[rjw: Subject and changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 7ea6c6c1 ("Move cper.c from drivers/acpi/apei to
drivers/firmware/efi") results in CONFIG_EFI being enabled even
when the user doesn't want this. Since ACPI APEI used to build
fine without UEFI (and as far as I know also has no functional
depency on it), at least in that case using a reverse dependency
is wrong (and a straight one isn't needed).
Whether the same is true for ACPI_EXTLOG I don't know - if there
is a functional dependency, it should depend on EFI rather than
selecting it. It certainly has (currently) no build dependency.
Adjust Kconfig and build logic so that the bad dependency gets
avoided.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/52AF1EBC020000780010DBF9@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- New power capping framework and the the Intel Running Average Power
Limit (RAPL) driver using it from Srinivas Pandruvada and Jacob Pan.
- Addition of the in-kernel switching feature to the arm_big_little
cpufreq driver from Viresh Kumar and Nicolas Pitre.
- cpufreq support for iMac G5 from Aaro Koskinen.
- Baytrail processors support for intel_pstate from Dirk Brandewie.
- cpufreq support for Midway/ECX-2000 from Mark Langsdorf.
- ARM vexpress/TC2 cpufreq support from Sudeep KarkadaNagesha.
- ACPI power management support for the I2C and SPI bus types from
Mika Westerberg and Lv Zheng.
- cpufreq core fixes and cleanups from Viresh Kumar, Srivatsa S Bhat,
Stratos Karafotis, Xiaoguang Chen, Lan Tianyu.
- cpufreq drivers updates (mostly fixes and cleanups) from Viresh Kumar,
Aaro Koskinen, Jungseok Lee, Sudeep KarkadaNagesha, Lukasz Majewski,
Manish Badarkhe, Hans-Christian Egtvedt, Evgeny Kapaev.
- intel_pstate updates from Dirk Brandewie and Adrian Huang.
- ACPICA update to version 20130927 includig fixes and cleanups and
some reduction of divergences between the ACPICA code in the kernel
and ACPICA upstream in order to improve the automatic ACPICA patch
generation process. From Bob Moore, Lv Zheng, Tomasz Nowicki,
Naresh Bhat, Bjorn Helgaas, David E Box.
- ACPI IPMI driver fixes and cleanups from Lv Zheng.
- ACPI hotplug fixes and cleanups from Bjorn Helgaas, Toshi Kani,
Zhang Yanfei, Rafael J Wysocki.
- Conversion of the ACPI AC driver to the platform bus type and
multiple driver fixes and cleanups related to ACPI from Zhang Rui.
- ACPI processor driver fixes and cleanups from Hanjun Guo, Jiang Liu,
Bartlomiej Zolnierkiewicz, Mathieu Rhéaume, Rafael J Wysocki.
- Fixes and cleanups and new blacklist entries related to the ACPI
video support from Aaron Lu, Felipe Contreras, Lennart Poettering,
Kirill Tkhai.
- cpuidle core cleanups from Viresh Kumar and Lorenzo Pieralisi.
- cpuidle drivers fixes and cleanups from Daniel Lezcano, Jingoo Han,
Bartlomiej Zolnierkiewicz, Prarit Bhargava.
- devfreq updates from Sachin Kamat, Dan Carpenter, Manish Badarkhe.
- Operation Performance Points (OPP) core updates from Nishanth Menon.
- Runtime power management core fix from Rafael J Wysocki and update
from Ulf Hansson.
- Hibernation fixes from Aaron Lu and Rafael J Wysocki.
- Device suspend/resume lockup detection mechanism from Benoit Goby.
- Removal of unused proc directories created for various ACPI drivers
from Lan Tianyu.
- ACPI LPSS driver fix and new device IDs for the ACPI platform scan
handler from Heikki Krogerus and Jarkko Nikula.
- New ACPI _OSI blacklist entry for Toshiba NB100 from Levente Kurusa.
- Assorted fixes and cleanups related to ACPI from Andy Shevchenko,
Al Stone, Bartlomiej Zolnierkiewicz, Colin Ian King, Dan Carpenter,
Felipe Contreras, Jianguo Wu, Lan Tianyu, Yinghai Lu, Mathias Krause,
Liu Chuansheng.
- Assorted PM fixes and cleanups from Andy Shevchenko, Thierry Reding,
Jean-Christophe Plagniol-Villard.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABCAAGBQJSfPKLAAoJEILEb/54YlRxH6YQAJwDKi25RCZziFSIenXuqzC/
c6JxoH/tSnDHJHhcTgqh7H7Raa+zmatMDf0m2oEv2Wjfx4Lt4BQK4iefhe/zY4lX
yJ8uXDg+U8DYhDX2XwbwnFpd1M1k/A+s2gIHDTHHGnE0kDngXdd8RAFFktBmooTZ
l5LBQvOrTlgX/ZfqI/MNmQ6lfY6kbCABGSHV1tUUsDA6Kkvk/LAUTOMSmptv1q22
hcs6k55vR34qADPkUX5GghjmcYJv+gNtvbDEJUjcmCwVoPWouF415m7R5lJ8w3/M
49Q8Tbu5HELWLwca64OorS8qh/P7sgUOf1BX5IDzHnJT+TGeDfvcYbMv2Z275/WZ
/bqhuLuKBpsHQ2wvEeT+lYV3FlifKeTf1FBxER3ApjzI3GfpmVVQ+dpEu8e9hcTh
ZTPGzziGtoIsHQ0unxb+zQOyt1PmIk+cU4IsKazs5U20zsVDMcKzPrb19Od49vMX
gCHvRzNyOTqKWpE83Ss4NGOVPAG02AXiXi/BpuYBHKDy6fTH/liKiCw5xlCDEtmt
lQrEbupKpc/dhCLo5ws6w7MZzjWJs2eSEQcNR4DlR++pxIpYOOeoPTXXrghgZt2X
mmxZI2qsJ7GAvPzII8OBeF3CRO3fabZ6Nez+M+oEZjGe05ZtpB3ccw410HwieqBn
dYpJFt/BHK189odhV9CM
=JCxk
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael J Wysocki:
- New power capping framework and the the Intel Running Average Power
Limit (RAPL) driver using it from Srinivas Pandruvada and Jacob Pan.
- Addition of the in-kernel switching feature to the arm_big_little
cpufreq driver from Viresh Kumar and Nicolas Pitre.
- cpufreq support for iMac G5 from Aaro Koskinen.
- Baytrail processors support for intel_pstate from Dirk Brandewie.
- cpufreq support for Midway/ECX-2000 from Mark Langsdorf.
- ARM vexpress/TC2 cpufreq support from Sudeep KarkadaNagesha.
- ACPI power management support for the I2C and SPI bus types from Mika
Westerberg and Lv Zheng.
- cpufreq core fixes and cleanups from Viresh Kumar, Srivatsa S Bhat,
Stratos Karafotis, Xiaoguang Chen, Lan Tianyu.
- cpufreq drivers updates (mostly fixes and cleanups) from Viresh
Kumar, Aaro Koskinen, Jungseok Lee, Sudeep KarkadaNagesha, Lukasz
Majewski, Manish Badarkhe, Hans-Christian Egtvedt, Evgeny Kapaev.
- intel_pstate updates from Dirk Brandewie and Adrian Huang.
- ACPICA update to version 20130927 includig fixes and cleanups and
some reduction of divergences between the ACPICA code in the kernel
and ACPICA upstream in order to improve the automatic ACPICA patch
generation process. From Bob Moore, Lv Zheng, Tomasz Nowicki, Naresh
Bhat, Bjorn Helgaas, David E Box.
- ACPI IPMI driver fixes and cleanups from Lv Zheng.
- ACPI hotplug fixes and cleanups from Bjorn Helgaas, Toshi Kani, Zhang
Yanfei, Rafael J Wysocki.
- Conversion of the ACPI AC driver to the platform bus type and
multiple driver fixes and cleanups related to ACPI from Zhang Rui.
- ACPI processor driver fixes and cleanups from Hanjun Guo, Jiang Liu,
Bartlomiej Zolnierkiewicz, Mathieu Rhéaume, Rafael J Wysocki.
- Fixes and cleanups and new blacklist entries related to the ACPI
video support from Aaron Lu, Felipe Contreras, Lennart Poettering,
Kirill Tkhai.
- cpuidle core cleanups from Viresh Kumar and Lorenzo Pieralisi.
- cpuidle drivers fixes and cleanups from Daniel Lezcano, Jingoo Han,
Bartlomiej Zolnierkiewicz, Prarit Bhargava.
- devfreq updates from Sachin Kamat, Dan Carpenter, Manish Badarkhe.
- Operation Performance Points (OPP) core updates from Nishanth Menon.
- Runtime power management core fix from Rafael J Wysocki and update
from Ulf Hansson.
- Hibernation fixes from Aaron Lu and Rafael J Wysocki.
- Device suspend/resume lockup detection mechanism from Benoit Goby.
- Removal of unused proc directories created for various ACPI drivers
from Lan Tianyu.
- ACPI LPSS driver fix and new device IDs for the ACPI platform scan
handler from Heikki Krogerus and Jarkko Nikula.
- New ACPI _OSI blacklist entry for Toshiba NB100 from Levente Kurusa.
- Assorted fixes and cleanups related to ACPI from Andy Shevchenko, Al
Stone, Bartlomiej Zolnierkiewicz, Colin Ian King, Dan Carpenter,
Felipe Contreras, Jianguo Wu, Lan Tianyu, Yinghai Lu, Mathias Krause,
Liu Chuansheng.
- Assorted PM fixes and cleanups from Andy Shevchenko, Thierry Reding,
Jean-Christophe Plagniol-Villard.
* tag 'pm+acpi-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (386 commits)
cpufreq: conservative: fix requested_freq reduction issue
ACPI / hotplug: Consolidate deferred execution of ACPI hotplug routines
PM / runtime: Use pm_runtime_put_sync() in __device_release_driver()
ACPI / event: remove unneeded NULL pointer check
Revert "ACPI / video: Ignore BIOS initial backlight value for HP 250 G1"
ACPI / video: Quirk initial backlight level 0
ACPI / video: Fix initial level validity test
intel_pstate: skip the driver if ACPI has power mgmt option
PM / hibernate: Avoid overflow in hibernate_preallocate_memory()
ACPI / hotplug: Do not execute "insert in progress" _OST
ACPI / hotplug: Carry out PCI root eject directly
ACPI / hotplug: Merge device hot-removal routines
ACPI / hotplug: Make acpi_bus_hot_remove_device() internal
ACPI / hotplug: Simplify device ejection routines
ACPI / hotplug: Fix handle_root_bridge_removal()
ACPI / hotplug: Refuse to hot-remove all objects with disabled hotplug
ACPI / scan: Start matching drivers after trying scan handlers
ACPI: Remove acpi_pci_slot_init() headers from internal.h
ACPI / blacklist: fix name of ThinkPad Edge E530
PowerCap: Fix build error with option -Werror=format-security
...
Conflicts:
arch/arm/mach-omap2/opp.c
drivers/Kconfig
drivers/spi/spi.c
About 10 years ago, this option was created to help
distros enable ACPI and not get distracted by ACPI
BIOS issues in machines which were deemed old
at that time, eg 1999 and earlier.
After a couple of years, the high volume distros
stopped bothering to set this option, and instead
simply ran in ACPI mode on all systems with an
ACPI BIOS -- regardless of BIOS DMI year.
Recently there have been some ACPI-enabled systems
with no DMI, mandating that CONFIG_ACPI_BLACKLIST_YEAR=0.
So it seems vanishingly unlikely that this option
is helping anybody run a 2013 kernel on a 1998 system,
and now more systems mandate this option be disabled,
so we simplify by deleting it entirely.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Randconfig build by Fengguang's robot army reported:
drivers/built-in.o: In function `extlog_print':
>> acpi_extlog.c:(.text+0xcc719): undefined reference to `boot_cpu_physical_apicid'
The config had CONFIG_SMP=n so we picked up this definition from:
<asm/cpu.h>: #define cpu_physical_id(cpu) boot_cpu_physical_apicid
But boot_cpu_physical_apicid is defined in arch/x86/kernel/apic/apic.c
which is only built if CONFIG_X86_LOCAL_APIC=y.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Link: http://lkml.kernel.org/r/6be3afdcad7968f7fb7c0b681e547b3e872e44dd.1383947368.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cper.c contains code to decode and print "Common Platform Error Records".
Originally added under drivers/acpi/apei because the only user was in that
same directory - but now we have another consumer, and we shouldn't have
to force CONFIG_ACPI_APEI get access to this code.
Since CPER is defined in the UEFI specification - the logical home for
this code is under drivers/firmware/efi/
Acked-by: Matt Fleming <matt.fleming@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
This H/W error log driver (a.k.a eMCA driver) is implemented based on
http://www.intel.com/content/www/us/en/architecture-and-technology/enhanced-mca-logging-xeon-paper.html
After errors are captured, more detailed platform specific information
can be got via this new enhanced H/W error log driver. Most notably we
can track memory errors back to the DIMM slot silk screen label.
Signed-off-by: Chen, Gong <gong.chen@linux.intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>