Commit Graph

20 Commits

Author SHA1 Message Date
Linus Torvalds c23112e039 Merge tag 'md/4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
Pull MD updates from Shaohua Li:
 "This update includes:

   - new AVX512 instruction based raid6 gen/recovery algorithm

   - a couple of md-cluster related bug fixes

   - fix a potential deadlock

   - set nonrotational bit for raid array with SSD

   - set correct max_hw_sectors for raid5/6, which hopefuly can improve
     performance a little bit

   - other minor fixes"

* tag 'md/4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md:
  md: set rotational bit
  raid6/test/test.c: bug fix: Specify aligned(alignment) attributes to the char arrays
  raid5: handle register_shrinker failure
  raid5: fix to detect failure of register_shrinker
  md: fix a potential deadlock
  md/bitmap: fix wrong cleanup
  raid5: allow arbitrary max_hw_sectors
  lib/raid6: Add AVX512 optimized xor_syndrome functions
  lib/raid6/test/Makefile: Add avx512 gen_syndrome and recovery functions
  lib/raid6: Add AVX512 optimized recovery functions
  lib/raid6: Add AVX512 optimized gen_syndrome functions
  md-cluster: make resync lock also could be interruptted
  md-cluster: introduce dlm_lock_sync_interruptible to fix tasks hang
  md-cluster: convert the completion to wait queue
  md-cluster: protect md_find_rdev_nr_rcu with rcu lock
  md-cluster: clean related infos of cluster
  md: changes for MD_STILL_CLOSED flag
  md-cluster: remove some unnecessary dlm_unlock_sync
  md-cluster: use FORCEUNLOCK in lockres_free
  md-cluster: call md_kick_rdev_from_array once ack failed
2016-10-07 09:45:43 -07:00
Gayatri Kammela 13c520b299 lib/raid6: Add AVX512 optimized recovery functions
Optimize RAID6 recovery functions to take advantage of
the 512-bit ZMM integer instructions introduced in AVX512.

AVX512 optimized recovery functions, which is simply based
on recov_avx2.c written by Jim Kukunas

This patch was tested and benchmarked before submission on
a hardware that has AVX512 flags to support such instructions

Cc: Jim Kukunas <james.t.kukunas@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
2016-09-21 09:09:44 -07:00
Gayatri Kammela e0a491c129 lib/raid6: Add AVX512 optimized gen_syndrome functions
Optimize RAID6 gen_syndrom functions to take advantage of
the 512-bit ZMM integer instructions introduced in AVX512.

AVX512 optimized gen_syndrom functions, which is simply based
on avx2.c written by Yuanhan Liu and sse2.c written by hpa.

The patch was tested and benchmarked before submission on
a hardware that has AVX512 flags to support such instructions

Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jim Kukunas <james.t.kukunas@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
2016-09-21 09:09:44 -07:00
Martin Schwidefsky f5b55fa1f8 RAID/s390: provide raid6 recovery optimization
The XC instruction can be used to improve the speed of the raid6
recovery. The loops now operate on blocks of 256 bytes.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-09-01 16:13:25 +02:00
Martin Schwidefsky 474fd6e80f RAID/s390: add SIMD implementation for raid6 gen/xor
Using vector registers is slightly faster:

raid6: vx128x8  gen() 19705 MB/s
raid6: vx128x8  xor() 11886 MB/s
raid6: using algorithm vx128x8 gen() 19705 MB/s
raid6: .... xor() 11886 MB/s, rmw enabled

vs the software algorithms:

raid6: int64x1  gen()  3018 MB/s
raid6: int64x1  xor()  1429 MB/s
raid6: int64x2  gen()  4661 MB/s
raid6: int64x2  xor()  3143 MB/s
raid6: int64x4  gen()  5392 MB/s
raid6: int64x4  xor()  3509 MB/s
raid6: int64x8  gen()  4441 MB/s
raid6: int64x8  xor()  3207 MB/s
raid6: using algorithm int64x4 gen() 5392 MB/s
raid6: .... xor() 3509 MB/s, rmw enabled

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-08-29 11:05:04 +02:00
Markus Stockhausen fe5cbc6e06 md/raid6 algorithms: delta syndrome functions
v3: s-o-b comment, explanation of performance and descision for
the start/stop implementation

Implementing rmw functionality for RAID6 requires optimized syndrome
calculation. Up to now we can only generate a complete syndrome. The
target P/Q pages are always overwritten. With this patch we provide
a framework for inplace P/Q modification. In the first place simply
fill those functions with NULL values.

xor_syndrome() has two additional parameters: start & stop. These
will indicate the first and last page that are changing during a
rmw run. That makes it possible to avoid several unneccessary loops
and speed up calculation. The caller needs to implement the following
logic to make the functions work.

1) xor_syndrome(disks, start, stop, ...): "Remove" all data of source
blocks inside P/Q between (and including) start and end.

2) modify any block with start <= block <= stop

3) xor_syndrome(disks, start, stop, ...): "Reinsert" all data of
source blocks into P/Q between (and including) start and end.

Pages between start and stop that won't be changed should be filled
with a pointer to the kernel zero page. The reasons for not taking NULL
pages are:

1) Algorithms cross the whole source data line by line. Thus avoid
additional branches.

2) Having a NULL page avoids calculating the XOR P parity but still
need calulation steps for the Q parity. Depending on the algorithm
unrolling that might be only a difference of 2 instructions per loop.

The benchmark numbers of the gen_syndrome() functions are displayed in
the kernel log. Do the same for the xor_syndrome() functions. This
will help to analyze performance problems and give an rough estimate
how well the algorithm works. The choice of the fastest algorithm will
still depend on the gen_syndrome() performance.

With the start/stop page implementation the speed can vary a lot in real
life. E.g. a change of page 0 & page 15 on a stripe will be harder to
compute than the case where page 0 & page 1 are XOR candidates. To be not
to enthusiatic about the expected speeds we will run a worse case test
that simulates a change on the upper half of the stripe. So we do:

1) calculation of P/Q for the upper pages

2) continuation of Q for the lower (empty) pages

Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
2015-04-22 08:00:41 +10:00
Jan Beulich 75aaf4c3e6 x86/raid6: correctly check for assembler capabilities
Just like for AVX2 (which simply needs an #if -> #ifdef conversion),
SSSE3 assembler support should be checked for before using it.

Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Jim Kukunas <james.t.kukunas@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: NeilBrown <neilb@suse.de>
2015-02-04 08:35:51 +11:00
Anton Blanchard b395f75eab lib/raid6: Add log level to printks
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-10-14 13:08:29 +11:00
Linus Torvalds 4d7696f1b0 md update for v3.12
Headline item is multithreading for RAID5 so that more
 IO/sec can be supported on fast (SSD) devices.
 Also TILE-Gx SIMD suppor for RAID6 calculations and an
 assortment of bug fixes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIVAwUAUi6dRTnsnt1WYoG5AQIqMBAAm/XUEqfyBNUiTPHmIU/OyReOlfsp8A2o
 xtcmSzaCtIUz4btPszUrw3PShqnk+lXXX2AB0rp3PzfOgyNYXBRKbzOf3eGr2VEp
 L/Cm0iSWHqQ7V7MoV5ZrqtvuyJV1a7FK3a3VaoKaUk424o4sZ7P67t/YZAnTCP/i
 9wQoPeIOJ8YjZsaAQjzI3q7yRMRE8ytyBnF4NdgeMyr2p17w2e9pnmNfCTo4wnWs
 Nu2wPr2QCPQXr/FoIhdIVEy3kVatqH8qXG8Fw+5n07HJYxGCvQZLDuoOVDYyFeoW
 gnNq2MMgLZm/7Nzqd1bN+QQZuBCd5JL4VJ2G4vLfYrn3ZSdSysrVKQXFKYG3Gkua
 1KP4Pv0hndAl4DtGbUk8CiZp6b+c5qeWvq+sO2NuhUGmumFMK2q4DJhITNexjmrs
 Eg4opnR8JMLDkYD6o52Ziu5KQR/q1PKRLj80eoVuqB2QQM5+NPb4s3k2WN+53lQD
 L9fH2alUxxSK+5R8ykk923QQ/XErMUwXaka+O/gGFAlYvaaW/GKTxFnKn/GIXAkc
 tKW88zB+zA5EZEFec+K43z1UjtGxMWsryvDN55ON2iV+LIZBISm7krroBeR55cyO
 +3tHlPsga0pO+9DdSm7hvZeWRrq5ZJTiZmL/e2FYygrC5tFAY0p+z49fK3e9Th13
 C85G7fg3yDY=
 =zLxh
 -----END PGP SIGNATURE-----

Merge tag 'md/3.12' of git://neil.brown.name/md

Pull md update from Neil Brown:
 "Headline item is multithreading for RAID5 so that more IO/sec can be
  supported on fast (SSD) devices.  Also TILE-Gx SIMD suppor for RAID6
  calculations and an assortment of bug fixes"

* tag 'md/3.12' of git://neil.brown.name/md:
  raid5: only wakeup necessary threads
  md/raid5: flush out all pending requests before proceeding with reshape.
  md/raid5: use seqcount to protect access to shape in make_request.
  raid5: sysfs entry to control worker thread number
  raid5: offload stripe handle to workqueue
  raid5: fix stripe release order
  raid5: make release_stripe lockless
  md: avoid deadlock when dirty buffers during md_stop.
  md: Don't test all of mddev->flags at once.
  md: Fix apparent cut-and-paste error in super_90_validate
  raid6/test: replace echo -e with printf
  RAID: add tilegx SIMD implementation of raid6
  md: fix safe_mode buglet.
  md: don't call md_allow_write in get_bitmap_file.
2013-09-10 13:03:41 -07:00
Ken Steele ae77cbc1e7 RAID: add tilegx SIMD implementation of raid6
This change adds TILE-Gx SIMD instructions to the software raid
(md), modeling the Altivec implementation. This is only for Syndrome
generation; there is more that could be done to improve recovery,
as in the recent Intel SSE3 recovery implementation.

The code unrolls 8 times; this turns out to be the best on tilegx
hardware among the set 1, 2, 4, 8 or 16.  The code reads one
cache-line of data from each disk, stores P and Q then goes to the
next cache-line.

The test code in sys/linux/lib/raid6/test reports 2008 MB/s data
read rate for syndrome generation using 18 disks (16 data and 2
parity). It was 1512 MB/s before this SIMD optimizations. This is
running on 1 core with all the data in cache.

This is based on the paper The Mathematics of RAID-6.
(http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf).

Signed-off-by: Ken Steele <ken@tilera.com>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2013-08-27 16:05:50 +10:00
Ard Biesheuvel 7d11965ddb lib/raid6: add ARM-NEON accelerated syndrome calculation
Rebased/reworked a patch contributed by Rob Herring that uses
NEON intrinsics to perform the RAID-6 syndrome calculations.
It uses the existing unroll.awk code to generate several
unrolled versions of which the best performing one is selected
at boot time.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Cc: hpa@linux.intel.com
2013-07-08 22:09:18 +01:00
Yuanhan Liu 2c935842bd lib/raid6: Add AVX2 optimized gen_syndrome functions
Add AVX2 optimized gen_syndrom functions, which is simply based on
sse2.c written by hpa.

Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2012-12-13 19:51:03 +11:00
Jim Kukunas 7056741fd9 lib/raid6: Add AVX2 optimized recovery functions
Optimize RAID6 recovery functions to take advantage of
the 256-bit YMM integer instructions introduced in AVX2.

The patch was tested and benchmarked before submission.
However hardware is not yet released so benchmark numbers
cannot be reported.

Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2012-12-13 16:42:01 +11:00
Jim Kukunas 96e67703e7 lib/raid6: cleanup gen_syndrome function selection
Reorders functions in raid6_algos as well as the preference check
to reduce the number of functions tested on initialization.

Also, creates symmetry between choosing the gen_syndrome functions
and choosing the recovery functions.

Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2012-05-22 13:54:24 +10:00
Jim Kukunas 048a8b8c89 lib/raid6: Add SSSE3 optimized recovery functions
Add SSSE3 optimized recovery functions, as well as a system
for selecting the most appropriate recovery functions to use.

Originally-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2012-05-22 13:54:18 +10:00
Jim Kukunas f674ef7b43 lib/raid6: fix test program build
<linux/module.h> drags in headers which are not visible to userspace,
thus breaking the build for the test program.

Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
2012-05-22 13:54:16 +10:00
Paul Gortmaker 056075c764 md: Add module.h to all files using it implicitly
A pending cleanup will mean that module.h won't be implicitly
everywhere anymore.  Make sure the modular drivers in md dir
are actually calling out for <module.h> explicitly in advance.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 19:31:18 -04:00
NeilBrown a8e026c785 Further tidyup of raid6 naming in lib/raid6
Rename raid6/raid6x86.h to raid6/x86.h
and modify some comments.

Signed-off-by: NeilBrown <neilb@suse.de>
2010-08-12 06:44:54 +10:00
NeilBrown d5302fe41f Make lib/raid6/test build correctly.
Some bit-rot needs to be cleaned out.

Signed-off-by: NeilBrown <neilb@suse.de>
2010-08-12 06:38:24 +10:00
David Woodhouse cc4589ebfa Rename raid6 files now they're in a 'raid6' directory.
Linus asks 'why "raid6" twice?'. No reason.

Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2010-08-11 00:19:05 +01:00