Commit Graph

21 Commits

Author SHA1 Message Date
Linus Torvalds e46b4e2b46 Nothing major this round. Mostly small clean ups and fixes.
Some visible changes:
 
  A new flag was added to distinguish traces done in NMI context.
 
  Preempt tracer now shows functions where preemption is disabled but
  interrupts are still enabled.
 
 Other notes:
 
  Updates were done to function tracing to allow better performance
  with perf.
 
  Infrastructure code has been added to allow for a new histogram
  feature for recording live trace event histograms that can be
  configured by simple user commands. The feature itself was just
  finished, but needs a round in linux-next before being pulled.
  This only includes some infrastructure changes that will be needed.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJW8/WPAAoJEKKk/i67LK/8wrAH/j2gU9ZfjVxTu8068TBGWRJP
 yvvzq0cK5evB3dsVuUmKKRfU52nSv4J1WcFF569X0RulSLylR0dHlcxFJMn4kkgR
 bm0AHRrqOf87ub3VimcpG146iVQij37l5A0SRoFbvSPLQx1KUW18v99x41Ji8dv6
 oWXRc6/YhdzEE7l0nUsVjmScQ4b2emsems3cxZzXOY+nRJsiim6i+VaDeatdyey1
 csLVqtRCs+x62TVtxG3+GhcLdRoPRbnHAGzrKDFIn1SrQaRXCc54wN5d2hWxjgNI
 1laOwaj070lnJiWfBLIP/K+lx+VKRx5/O0rKZX35foLUTqJJKSyjAbKXuMCcSAM=
 =2h2K
 -----END PGP SIGNATURE-----

Merge tag 'trace-v4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing updates from Steven Rostedt:
 "Nothing major this round.  Mostly small clean ups and fixes.

  Some visible changes:

   - A new flag was added to distinguish traces done in NMI context.

   - Preempt tracer now shows functions where preemption is disabled but
     interrupts are still enabled.

  Other notes:

   - Updates were done to function tracing to allow better performance
     with perf.

   - Infrastructure code has been added to allow for a new histogram
     feature for recording live trace event histograms that can be
     configured by simple user commands.  The feature itself was just
     finished, but needs a round in linux-next before being pulled.

     This only includes some infrastructure changes that will be needed"

* tag 'trace-v4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (22 commits)
  tracing: Record and show NMI state
  tracing: Fix trace_printk() to print when not using bprintk()
  tracing: Remove redundant reset per-CPU buff in irqsoff tracer
  x86: ftrace: Fix the misleading comment for arch/x86/kernel/ftrace.c
  tracing: Fix crash from reading trace_pipe with sendfile
  tracing: Have preempt(irqs)off trace preempt disabled functions
  tracing: Fix return while holding a lock in register_tracer()
  ftrace: Use kasprintf() in ftrace_profile_tracefs()
  ftrace: Update dynamic ftrace calls only if necessary
  ftrace: Make ftrace_hash_rec_enable return update bool
  tracing: Fix typoes in code comment and printk in trace_nop.c
  tracing, writeback: Replace cgroup path to cgroup ino
  tracing: Use flags instead of bool in trigger structure
  tracing: Add an unreg_all() callback to trigger commands
  tracing: Add needs_rec flag to event triggers
  tracing: Add a per-event-trigger 'paused' field
  tracing: Add get_syscall_name()
  tracing: Add event record param to trigger_ops.func()
  tracing: Make event trigger functions available
  tracing: Make ftrace_event_field checking functions available
  ...
2016-03-24 10:52:25 -07:00
Vlastimil Babka 420adbe9fc mm, tracing: unify mm flags handling in tracepoints and printk
In tracepoints, it's possible to print gfp flags in a human-friendly
format through a macro show_gfp_flags(), which defines a translation
array and passes is to __print_flags().  Since the following patch will
introduce support for gfp flags printing in printk(), it would be nice
to reuse the array.  This is not straightforward, since __print_flags()
can't simply reference an array defined in a .c file such as mm/debug.c
- it has to be a macro to allow the macro magic to communicate the
format to userspace tools such as trace-cmd.

The solution is to create a macro __def_gfpflag_names which is used both
in show_gfp_flags(), and to define the gfpflag_names[] array in
mm/debug.c.

On the other hand, mm/debug.c also defines translation tables for page
flags and vma flags, and desire was expressed (but not implemented in
this series) to use these also from tracepoints.  Thus, this patch also
renames the events/gfpflags.h file to events/mmflags.h and moves the
table definitions there, using the same macro approach as for gfpflags.
This allows translating all three kinds of mm-specific flags both in
tracepoints and printk.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Steven Rostedt (Red Hat) 633f6f58af tracing: Remove duplicate checks for online CPUs
Some trace events have conditions that check if the current CPU is online or
not before recording the tracepoint. That's because certain trace events are
in locations that can be called as the CPU is going offline and when RCU no
longer monitors it (like kfree and friends). The check was added because
trace events require RCU to be active.

This is a trace event infrastructure issue and not something that individual
trace events should worry about. The tracepoint.h code now has added a check
to see if the current CPU is considered online, and it only does the
tracepoint if it is. There's no more need for individual trace events to
also include this check. It is now redundant.

Cc: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-08 11:19:28 -05:00
Shreyas B. Prabhu 649b8de2f7 tracing/mm: don't trace mm_page_pcpu_drain on offline cpus
Since tracepoints use RCU for protection, they must not be called on
offline cpus.  trace_mm_page_pcpu_drain can be called on an offline cpu
in this scenario caught by LOCKDEP:

     ===============================
     [ INFO: suspicious RCU usage. ]
     4.1.0-rc1+ #9 Not tainted
     -------------------------------
     include/trace/events/kmem.h:265 suspicious rcu_dereference_check() usage!

    other info that might help us debug this:

    RCU used illegally from offline CPU!
    rcu_scheduler_active = 1, debug_locks = 1
     1 lock held by swapper/5/0:
      #0:  (&(&zone->lock)->rlock){..-...}, at: [<c0000000002073b0>] .free_pcppages_bulk+0x70/0x920

    stack backtrace:
     CPU: 5 PID: 0 Comm: swapper/5 Not tainted 4.1.0-rc1+ #9
     Call Trace:
       .dump_stack+0x98/0xd4 (unreliable)
       .lockdep_rcu_suspicious+0x108/0x170
       .free_pcppages_bulk+0x60c/0x920
       .free_hot_cold_page+0x208/0x280
       .destroy_context+0x90/0xd0
       .__mmdrop+0x58/0x160
       .idle_task_exit+0xf0/0x100
       .pnv_smp_cpu_kill_self+0x58/0x2c0
       .cpu_die+0x34/0x50
       .arch_cpu_idle_dead+0x20/0x40
       .cpu_startup_entry+0x708/0x7a0
       .start_secondary+0x36c/0x3a0
       start_secondary_prolog+0x10/0x14

Fix this by converting mm_page_pcpu_drain trace point into
TRACE_EVENT_CONDITION where condition is cpu_online(smp_processor_id())

Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-05-28 18:25:18 -07:00
Shreyas B. Prabhu 1f0c27b50f tracing/mm: don't trace mm_page_free on offline cpus
Since tracepoints use RCU for protection, they must not be called on
offline cpus.  trace_mm_page_free can be called on an offline cpu in this
scenario caught by LOCKDEP:

     ===============================
     [ INFO: suspicious RCU usage. ]
     4.1.0-rc1+ #9 Not tainted
     -------------------------------
     include/trace/events/kmem.h:170 suspicious rcu_dereference_check() usage!

    other info that might help us debug this:

    RCU used illegally from offline CPU!
    rcu_scheduler_active = 1, debug_locks = 1
     no locks held by swapper/1/0.

    stack backtrace:
     CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.1.0-rc1+ #9
     Call Trace:
       .dump_stack+0x98/0xd4 (unreliable)
       .lockdep_rcu_suspicious+0x108/0x170
       .free_pages_prepare+0x494/0x680
       .free_hot_cold_page+0x50/0x280
       .destroy_context+0x90/0xd0
       .__mmdrop+0x58/0x160
       .idle_task_exit+0xf0/0x100
       .pnv_smp_cpu_kill_self+0x58/0x2c0
       .cpu_die+0x34/0x50
       .arch_cpu_idle_dead+0x20/0x40
       .cpu_startup_entry+0x708/0x7a0
       .start_secondary+0x36c/0x3a0
       start_secondary_prolog+0x10/0x14

Fix this by converting mm_page_free trace point into TRACE_EVENT_CONDITION
where condition is cpu_online(smp_processor_id())

Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-05-28 18:25:18 -07:00
Shreyas B. Prabhu e5feb1ebaa tracing/mm: don't trace kmem_cache_free on offline cpus
Since tracepoints use RCU for protection, they must not be called on
offline cpus.  trace_kmem_cache_free can be called on an offline cpu in
this scenario caught by LOCKDEP:

    ===============================
    [ INFO: suspicious RCU usage. ]
    4.1.0-rc1+ #9 Not tainted
    -------------------------------
    include/trace/events/kmem.h:148 suspicious rcu_dereference_check() usage!

    other info that might help us debug this:

    RCU used illegally from offline CPU!
    rcu_scheduler_active = 1, debug_locks = 1
    no locks held by swapper/1/0.

    stack backtrace:
    CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.1.0-rc1+ #9
    Call Trace:
      .dump_stack+0x98/0xd4 (unreliable)
      .lockdep_rcu_suspicious+0x108/0x170
      .kmem_cache_free+0x344/0x4b0
      .__mmdrop+0x4c/0x160
      .idle_task_exit+0xf0/0x100
      .pnv_smp_cpu_kill_self+0x58/0x2c0
      .cpu_die+0x34/0x50
      .arch_cpu_idle_dead+0x20/0x40
      .cpu_startup_entry+0x708/0x7a0
      .start_secondary+0x36c/0x3a0
      start_secondary_prolog+0x10/0x14

Fix this by converting kmem_cache_free trace point into
TRACE_EVENT_CONDITION where condition is cpu_online(smp_processor_id())

Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-05-28 18:25:18 -07:00
Namhyung Kim 9fdd8a875c tracing, mm: Record pfn instead of pointer to struct page
The struct page is opaque for userspace tools, so it'd be better to save
pfn in order to identify page frames.

The textual output of $debugfs/tracing/trace file remains unchanged and
only raw (binary) data format is changed - but thanks to libtraceevent,
userspace tools which deal with the raw data (like perf and trace-cmd)
can parse the format easily.  So impact on the userspace will also be
minimal.

Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Based-on-patch-by: Joonsoo Kim <js1304@gmail.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/1428298576-9785-3-git-send-email-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-04-13 11:44:52 -03:00
Vlastimil Babka 99592d598e mm: when stealing freepages, also take pages created by splitting buddy page
When studying page stealing, I noticed some weird looking decisions in
try_to_steal_freepages().  The first I assume is a bug (Patch 1), the
following two patches were driven by evaluation.

Testing was done with stress-highalloc of mmtests, using the
mm_page_alloc_extfrag tracepoint and postprocessing to get counts of how
often page stealing occurs for individual migratetypes, and what
migratetypes are used for fallbacks.  Arguably, the worst case of page
stealing is when UNMOVABLE allocation steals from MOVABLE pageblock.
RECLAIMABLE allocation stealing from MOVABLE allocation is also not ideal,
so the goal is to minimize these two cases.

The evaluation of v2 wasn't always clear win and Joonsoo questioned the
results.  Here I used different baseline which includes RFC compaction
improvements from [1].  I found that the compaction improvements reduce
variability of stress-highalloc, so there's less noise in the data.

First, let's look at stress-highalloc configured to do sync compaction,
and how these patches reduce page stealing events during the test.  First
column is after fresh reboot, other two are reiterations of test without
reboot.  That was all accumulater over 5 re-iterations (so the benchmark
was run 5x3 times with 5 fresh restarts).

Baseline:

                                                   3.19-rc4        3.19-rc4        3.19-rc4
                                                  5-nothp-1       5-nothp-2       5-nothp-3
Page alloc extfrag event                               10264225     8702233    10244125
Extfrag fragmenting                                    10263271     8701552    10243473
Extfrag fragmenting for unmovable                         13595       17616       15960
Extfrag fragmenting unmovable placed with movable          7989       12193        8447
Extfrag fragmenting for reclaimable                         658        1840        1817
Extfrag fragmenting reclaimable placed with movable         558        1677        1679
Extfrag fragmenting for movable                        10249018     8682096    10225696

With Patch 1:
                                                   3.19-rc4        3.19-rc4        3.19-rc4
                                                  6-nothp-1       6-nothp-2       6-nothp-3
Page alloc extfrag event                               11834954     9877523     9774860
Extfrag fragmenting                                    11833993     9876880     9774245
Extfrag fragmenting for unmovable                          7342       16129       11712
Extfrag fragmenting unmovable placed with movable          4191       10547        6270
Extfrag fragmenting for reclaimable                         373        1130         923
Extfrag fragmenting reclaimable placed with movable         302         906         738
Extfrag fragmenting for movable                        11826278     9859621     9761610

With Patch 2:
                                                   3.19-rc4        3.19-rc4        3.19-rc4
                                                  7-nothp-1       7-nothp-2       7-nothp-3
Page alloc extfrag event                                4725990     3668793     3807436
Extfrag fragmenting                                     4725104     3668252     3806898
Extfrag fragmenting for unmovable                          6678        7974        7281
Extfrag fragmenting unmovable placed with movable          2051        3829        4017
Extfrag fragmenting for reclaimable                         429        1208        1278
Extfrag fragmenting reclaimable placed with movable         369         976        1034
Extfrag fragmenting for movable                         4717997     3659070     3798339

With Patch 3:
                                                   3.19-rc4        3.19-rc4        3.19-rc4
                                                  8-nothp-1       8-nothp-2       8-nothp-3
Page alloc extfrag event                                5016183     4700142     3850633
Extfrag fragmenting                                     5015325     4699613     3850072
Extfrag fragmenting for unmovable                          1312        3154        3088
Extfrag fragmenting unmovable placed with movable          1115        2777        2714
Extfrag fragmenting for reclaimable                         437        1193        1097
Extfrag fragmenting reclaimable placed with movable         330         969         879
Extfrag fragmenting for movable                         5013576     4695266     3845887

In v2 we've seen apparent regression with Patch 1 for unmovable events,
this is now gone, suggesting it was indeed noise.  Here, each patch
improves the situation for unmovable events.  Reclaimable is improved by
patch 1 and then either the same modulo noise, or perhaps sligtly worse -
a small price for unmovable improvements, IMHO.  The number of movable
allocations falling back to other migratetypes is most noisy, but it's
reduced to half at Patch 2 nevertheless.  These are least critical as
compaction can move them around.

If we look at success rates, the patches don't affect them, that didn't change.

Baseline:
                             3.19-rc4              3.19-rc4              3.19-rc4
                            5-nothp-1             5-nothp-2             5-nothp-3
Success 1 Min         49.00 (  0.00%)       42.00 ( 14.29%)       41.00 ( 16.33%)
Success 1 Mean        51.00 (  0.00%)       45.00 ( 11.76%)       42.60 ( 16.47%)
Success 1 Max         55.00 (  0.00%)       51.00 (  7.27%)       46.00 ( 16.36%)
Success 2 Min         53.00 (  0.00%)       47.00 ( 11.32%)       44.00 ( 16.98%)
Success 2 Mean        59.60 (  0.00%)       50.80 ( 14.77%)       48.20 ( 19.13%)
Success 2 Max         64.00 (  0.00%)       56.00 ( 12.50%)       52.00 ( 18.75%)
Success 3 Min         84.00 (  0.00%)       82.00 (  2.38%)       78.00 (  7.14%)
Success 3 Mean        85.60 (  0.00%)       82.80 (  3.27%)       79.40 (  7.24%)
Success 3 Max         86.00 (  0.00%)       83.00 (  3.49%)       80.00 (  6.98%)

Patch 1:
                             3.19-rc4              3.19-rc4              3.19-rc4
                            6-nothp-1             6-nothp-2             6-nothp-3
Success 1 Min         49.00 (  0.00%)       44.00 ( 10.20%)       44.00 ( 10.20%)
Success 1 Mean        51.80 (  0.00%)       46.00 ( 11.20%)       45.80 ( 11.58%)
Success 1 Max         54.00 (  0.00%)       49.00 (  9.26%)       49.00 (  9.26%)
Success 2 Min         58.00 (  0.00%)       49.00 ( 15.52%)       48.00 ( 17.24%)
Success 2 Mean        60.40 (  0.00%)       51.80 ( 14.24%)       50.80 ( 15.89%)
Success 2 Max         63.00 (  0.00%)       54.00 ( 14.29%)       55.00 ( 12.70%)
Success 3 Min         84.00 (  0.00%)       81.00 (  3.57%)       79.00 (  5.95%)
Success 3 Mean        85.00 (  0.00%)       81.60 (  4.00%)       79.80 (  6.12%)
Success 3 Max         86.00 (  0.00%)       82.00 (  4.65%)       82.00 (  4.65%)

Patch 2:

                             3.19-rc4              3.19-rc4              3.19-rc4
                            7-nothp-1             7-nothp-2             7-nothp-3
Success 1 Min         50.00 (  0.00%)       44.00 ( 12.00%)       39.00 ( 22.00%)
Success 1 Mean        52.80 (  0.00%)       45.60 ( 13.64%)       42.40 ( 19.70%)
Success 1 Max         55.00 (  0.00%)       46.00 ( 16.36%)       47.00 ( 14.55%)
Success 2 Min         52.00 (  0.00%)       48.00 (  7.69%)       45.00 ( 13.46%)
Success 2 Mean        53.40 (  0.00%)       49.80 (  6.74%)       48.80 (  8.61%)
Success 2 Max         57.00 (  0.00%)       52.00 (  8.77%)       52.00 (  8.77%)
Success 3 Min         84.00 (  0.00%)       81.00 (  3.57%)       79.00 (  5.95%)
Success 3 Mean        85.00 (  0.00%)       82.40 (  3.06%)       79.60 (  6.35%)
Success 3 Max         86.00 (  0.00%)       83.00 (  3.49%)       80.00 (  6.98%)

Patch 3:
                             3.19-rc4              3.19-rc4              3.19-rc4
                            8-nothp-1             8-nothp-2             8-nothp-3
Success 1 Min         46.00 (  0.00%)       44.00 (  4.35%)       42.00 (  8.70%)
Success 1 Mean        50.20 (  0.00%)       45.60 (  9.16%)       44.00 ( 12.35%)
Success 1 Max         52.00 (  0.00%)       47.00 (  9.62%)       47.00 (  9.62%)
Success 2 Min         53.00 (  0.00%)       49.00 (  7.55%)       48.00 (  9.43%)
Success 2 Mean        55.80 (  0.00%)       50.60 (  9.32%)       49.00 ( 12.19%)
Success 2 Max         59.00 (  0.00%)       52.00 ( 11.86%)       51.00 ( 13.56%)
Success 3 Min         84.00 (  0.00%)       80.00 (  4.76%)       79.00 (  5.95%)
Success 3 Mean        85.40 (  0.00%)       81.60 (  4.45%)       80.40 (  5.85%)
Success 3 Max         87.00 (  0.00%)       83.00 (  4.60%)       82.00 (  5.75%)

While there's no improvement here, I consider reduced fragmentation events
to be worth on its own.  Patch 2 also seems to reduce scanning for free
pages, and migrations in compaction, suggesting it has somewhat less work
to do:

Patch 1:

Compaction stalls                 4153        3959        3978
Compaction success                1523        1441        1446
Compaction failures               2630        2517        2531
Page migrate success           4600827     4943120     5104348
Page migrate failure             19763       16656       17806
Compaction pages isolated      9597640    10305617    10653541
Compaction migrate scanned    77828948    86533283    87137064
Compaction free scanned      517758295   521312840   521462251
Compaction cost                   5503        5932        6110

Patch 2:

Compaction stalls                 3800        3450        3518
Compaction success                1421        1316        1317
Compaction failures               2379        2134        2201
Page migrate success           4160421     4502708     4752148
Page migrate failure             19705       14340       14911
Compaction pages isolated      8731983     9382374     9910043
Compaction migrate scanned    98362797    96349194    98609686
Compaction free scanned      496512560   469502017   480442545
Compaction cost                   5173        5526        5811

As with v2, /proc/pagetypeinfo appears unaffected with respect to numbers
of unmovable and reclaimable pageblocks.

Configuring the benchmark to allocate like THP page fault (i.e.  no sync
compaction) gives much noisier results for iterations 2 and 3 after
reboot.  This is not so surprising given how [1] offers lower improvements
in this scenario due to less restarts after deferred compaction which
would change compaction pivot.

Baseline:
                                                   3.19-rc4        3.19-rc4        3.19-rc4
                                                    5-thp-1         5-thp-2         5-thp-3
Page alloc extfrag event                                8148965     6227815     6646741
Extfrag fragmenting                                     8147872     6227130     6646117
Extfrag fragmenting for unmovable                         10324       12942       15975
Extfrag fragmenting unmovable placed with movable          5972        8495       10907
Extfrag fragmenting for reclaimable                         601        1707        2210
Extfrag fragmenting reclaimable placed with movable         520        1570        2000
Extfrag fragmenting for movable                         8136947     6212481     6627932

Patch 1:
                                                   3.19-rc4        3.19-rc4        3.19-rc4
                                                    6-thp-1         6-thp-2         6-thp-3
Page alloc extfrag event                                8345457     7574471     7020419
Extfrag fragmenting                                     8343546     7573777     7019718
Extfrag fragmenting for unmovable                         10256       18535       30716
Extfrag fragmenting unmovable placed with movable          6893       11726       22181
Extfrag fragmenting for reclaimable                         465        1208        1023
Extfrag fragmenting reclaimable placed with movable         353         996         843
Extfrag fragmenting for movable                         8332825     7554034     6987979

Patch 2:
                                                   3.19-rc4        3.19-rc4        3.19-rc4
                                                    7-thp-1         7-thp-2         7-thp-3
Page alloc extfrag event                                3512847     3020756     2891625
Extfrag fragmenting                                     3511940     3020185     2891059
Extfrag fragmenting for unmovable                          9017        6892        6191
Extfrag fragmenting unmovable placed with movable          1524        3053        2435
Extfrag fragmenting for reclaimable                         445        1081        1160
Extfrag fragmenting reclaimable placed with movable         375         918         986
Extfrag fragmenting for movable                         3502478     3012212     2883708

Patch 3:
                                                   3.19-rc4        3.19-rc4        3.19-rc4
                                                    8-thp-1         8-thp-2         8-thp-3
Page alloc extfrag event                                3181699     3082881     2674164
Extfrag fragmenting                                     3180812     3082303     2673611
Extfrag fragmenting for unmovable                          1201        4031        4040
Extfrag fragmenting unmovable placed with movable           974        3611        3645
Extfrag fragmenting for reclaimable                         478        1165        1294
Extfrag fragmenting reclaimable placed with movable         387         985        1030
Extfrag fragmenting for movable                         3179133     3077107     2668277

The improvements for first iteration are clear, the rest is much noisier
and can appear like regression for Patch 1.  Anyway, patch 2 rectifies it.

Allocation success rates are again unaffected so there's no point in
making this e-mail any longer.

[1] http://marc.info/?l=linux-mm&m=142166196321125&w=2

This patch (of 3):

When __rmqueue_fallback() is called to allocate a page of order X, it will
find a page of order Y >= X of a fallback migratetype, which is different
from the desired migratetype.  With the help of try_to_steal_freepages(),
it may change the migratetype (to the desired one) also of:

1) all currently free pages in the pageblock containing the fallback page
2) the fallback pageblock itself
3) buddy pages created by splitting the fallback page (when Y > X)

These decisions take the order Y into account, as well as the desired
migratetype, with the goal of preventing multiple fallback allocations
that could e.g.  distribute UNMOVABLE allocations among multiple
pageblocks.

Originally, decision for 1) has implied the decision for 3).  Commit
47118af076 ("mm: mmzone: MIGRATE_CMA migration type added") changed that
(probably unintentionally) so that the buddy pages in case 3) are always
changed to the desired migratetype, except for CMA pageblocks.

Commit fef903efcf ("mm/page_allo.c: restructure free-page stealing code
and fix a bug") did some refactoring and added a comment that the case of
3) is intended.  Commit 0cbef29a78 ("mm: __rmqueue_fallback() should
respect pageblock type") removed the comment and tried to restore the
original behavior where 1) implies 3), but due to the previous
refactoring, the result is instead that only 2) implies 3) - and the
conditions for 2) are less frequently met than conditions for 1).  This
may increase fragmentation in situations where the code decides to steal
all free pages from the pageblock (case 1)), but then gives back the buddy
pages produced by splitting.

This patch restores the original intended logic where 1) implies 3).
During testing with stress-highalloc from mmtests, this has shown to
decrease the number of events where UNMOVABLE and RECLAIMABLE allocations
steal from MOVABLE pageblocks, which can lead to permanent fragmentation.
In some cases it has increased the number of events when MOVABLE
allocations steal from UNMOVABLE or RECLAIMABLE pageblocks, but these are
fixable by sync compaction and thus less harmful.

Note that evaluation has shown that the behavior introduced by
47118af076 for buddy pages in case 3) is actually even better than the
original logic, so the following patch will introduce it properly once
again.  For stable backports of this patch it makes thus sense to only fix
versions containing 0cbef29a78.

[iamjoonsoo.kim@lge.com: tracepoint fix]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>	[3.13+ containing 0cbef29a78]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:06 -08:00
KOSAKI Motohiro 52c8f6a5ae mm: get rid of unnecessary overhead of trace_mm_page_alloc_extfrag()
In general, every tracepoint should be zero overhead if it is disabled.
However, trace_mm_page_alloc_extfrag() is one of exception.  It evaluate
"new_type == start_migratetype" even if tracepoint is disabled.

However, the code can be moved into tracepoint's TP_fast_assign() and
TP_fast_assign exist exactly such purpose.  This patch does it.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:10 +09:00
Srivatsa S. Bhat f92310c187 mm/page_alloc.c: fix the value of fallback_migratetype in alloc_extfrag tracepoint()
In the current code, the value of fallback_migratetype that is printed
using the mm_page_alloc_extfrag tracepoint, is the value of the
migratetype *after* it has been set to the preferred migratetype (if the
ownership was changed).  Obviously that wouldn't have been the original
intent.  (We already have a separate 'change_ownership' field to tell
whether the ownership of the pageblock was changed from the
fallback_migratetype to the preferred type.)

The intent of the fallback_migratetype field is to show the migratetype
from which we borrowed pages in order to satisfy the allocation request.
So fix the code to print that value correctly.

Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:19 -07:00
David Howells a1ce39288e UAPI: (Scripted) Convert #include "..." to #include <path/...> in kernel system headers
Convert #include "..." to #include <path/...> in kernel system headers.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
2012-10-02 18:01:25 +01:00
Wen Congyang 85f2a2ef1d tracing: Don't call page_to_pfn() if page is NULL
When allocating memory fails, page is NULL. page_to_pfn() will
cause the kernel panicked if we don't use sparsemem vmemmap.

Link: http://lkml.kernel.org/r/505AB1FF.8020104@cn.fujitsu.com

Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable <stable@vger.kernel.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-09-20 15:51:16 -04:00
Konstantin Khlebnikov b413d48aa7 mm-tracepoint: rename page-free events
Rename mm_page_free_direct into mm_page_free and mm_pagevec_free into
mm_page_free_batched

Since v2.6.33-5426-gc475dab the kernel triggers mm_page_free_direct for
all freed pages, not only for directly freed.  So, let's name it properly.
 For pages freed via page-list we also trigger mm_page_free_batched event.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:41 -08:00
Mel Gorman 33906bc5c8 vmscan: tracing: add trace events for kswapd wakeup, sleeping and direct reclaim
Add two trace events for kswapd waking up and going asleep for the
purposes of tracking kswapd activity and two trace events for direct
reclaim beginning and ending.  The information can be used to work out how
much time a process or the system is spending on the reclamation of pages
and in the case of direct reclaim, how many pages were reclaimed for that
process.  High frequency triggering of these events could point to memory
pressure problems.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:59 -07:00
Li Zefan 53d0422c2d tracing: Convert some kmem events to DEFINE_EVENT
Use DECLARE_EVENT_CLASS to remove duplicate code:

   text    data     bss     dec     hex filename
 333987   69800   27228  431015   693a7 mm/built-in.o.old
 330030   69800   27228  427058   68432 mm/built-in.o

8 events are converted:

  kmem_alloc: kmalloc, kmem_cache_alloc
  kmem_alloc_node: kmalloc_node, kmem_cache_alloc_node
  kmem_free: kfree, kmem_cache_free
  mm_page: mm_page_alloc_zone_locked, mm_page_pcpu_drain

No change in functionality.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
LKML-Reference: <4B0E286A.2000405@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-26 09:14:02 +01:00
Mel Gorman 0d3d062a6e tracing, page-allocator: add trace event for page traffic related to the buddy lists
The page allocation trace event reports that a page was successfully
allocated but it does not specify where it came from.  When analysing
performance, it can be important to distinguish between pages coming from
the per-cpu allocator and pages coming from the buddy lists as the latter
requires the zone lock to the taken and more data structures to be
examined.

This patch adds a trace event for __rmqueue reporting when a page is being
allocated from the buddy lists.  It distinguishes between being called to
refill the per-cpu lists or whether it is a high-order allocation.
Similarly, this patch adds an event to catch when the PCP lists are being
drained a little and pages are going back to the buddy lists.

This is trickier to draw conclusions from but high activity on those
events could explain why there were a large number of cache misses on a
page-allocator-intensive workload.  The coalescing and splitting of
buddies involves a lot of writing of page metadata and cache line bounces
not to mention the acquisition of an interrupt-safe lock necessary to
enter this path.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:34 -07:00
Mel Gorman e0fff1bd12 tracing, page-allocator: add trace events for anti-fragmentation falling back to other migratetypes
Fragmentation avoidance depends on being able to use free pages from lists
of the appropriate migrate type.  In the event this is not possible,
__rmqueue_fallback() selects a different list and in some circumstances
change the migratetype of the pageblock.  Simplistically, the more times
this event occurs, the more likely that fragmentation will be a problem
later for hugepage allocation at least but there are other considerations
such as the order of page being split to satisfy the allocation.

This patch adds a trace event for __rmqueue_fallback() that reports what
page is being used for the fallback, the orders of relevant pages, the
desired migratetype and the migratetype of the lists being used, whether
the pageblock changed type and whether this event is important with
respect to fragmentation avoidance or not.  This information can be used
to help analyse fragmentation avoidance and help decide whether
min_free_kbytes should be increased or not.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:34 -07:00
Mel Gorman 4b4f278c03 tracing, page-allocator: add trace events for page allocation and page freeing
This patch adds trace events for the allocation and freeing of pages,
including the freeing of pagevecs.  Using the events, it will be known
what struct page and pfns are being allocated and freed and what the call
site was in many cases.

The page alloc tracepoints be used as an indicator as to whether the
workload was heavily dependant on the page allocator or not.  You can make
a guess based on vmstat but you can't get a per-process breakdown.
Depending on the call path, the call_site for page allocation may be
__get_free_pages() instead of a useful callsite.  Instead of passing down
a return address similar to slab debugging, the user should enable the
stacktrace and seg-addr options to get a proper stack trace.

The pagevec free tracepoint has a different usecase.  It can be used to
get a idea of how many pages are being dumped off the LRU and whether it
is kswapd doing the work or a process doing direct reclaim.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:34 -07:00
Li Zefan d0b6e04a4c tracing/events: Move TRACE_SYSTEM outside of include guard
If TRACE_INCLDUE_FILE is defined, <trace/events/TRACE_INCLUDE_FILE.h>
will be included and compiled, otherwise it will be
<trace/events/TRACE_SYSTEM.h>

So TRACE_SYSTEM should be defined outside of #if proctection,
just like TRACE_INCLUDE_FILE.

Imaging this scenario:

 #include <trace/events/foo.h>
    -> TRACE_SYSTEM == foo
 ...
 #include <trace/events/bar.h>
    -> TRACE_SYSTEM == bar
 ...
 #define CREATE_TRACE_POINTS
 #include <trace/events/foo.h>
    -> TRACE_SYSTEM == bar !!!

and then bar.h will be included and compiled.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4A5A9CF1.2010007@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-07-13 10:59:55 +02:00
Steven Rostedt 62ba180e80 tracing: add flag output for kmem events
This patch changes the output for gfp_flags from being a simple hex value
to the actual names.

  gfp_flags=GFP_ATOMIC  instead of gfp_flags=00000020

And even

  gfp_flags=GFP_KERNEL instead of gfp_flags=000000d0

(Thanks to Frederic Weisbecker for pointing out that the first version
 had a bad order of GFP masks)

[ Impact: more human readable output from tracer ]

Acked-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-05-26 20:31:14 +02:00
Steven Rostedt ad8d75fff8 tracing/events: move trace point headers into include/trace/events
Impact: clean up

Create a sub directory in include/trace called events to keep the
trace point headers in their own separate directory. Only headers that
declare trace points should be defined in this directory.

Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-14 22:05:43 -04:00