These are the last users in the tree.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
Change the interface used by set_voltage() to report the selected value
to the regulator core in terms of a selector used by list_voltage().
This allows the regulator core to know the voltage that was chosen
without having to do an explict get_voltage(), which would be much more
expensive as it will generally access hardware.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
It is a good tone to reset driver data after unbinding the device.
Also set up drivers owner.
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
The BuckWise DC-DC convertors in WM831x devices support switching to
a second output voltage using the logic level on one of the device
pins. This is intended to allow rapid voltage switching for uses like
cpufreq, replacing the I2C or SPI write used to configure the voltage
of the regulator with a much faster GPIO status change.
This is implemented by keeping the DVS voltage configured as the
maximum voltage permitted for the regulator. If a request is made
for the maximum voltage then the GPIO is used to switch to the DVS
voltage, otherwise the normal ON voltage is updated and used. This
follows the idiom used by most cpufreq drivers, which drop the
minimum voltage as the core frequency is dropped but use a constant
maximum - raising the voltage should normally be fast, but lowering
it may be slower.
Configuration of the DVS MFP on the device should be done externally,
for example via OTP.
Support is present in the hardware for monitoring the status of the
transition using a second GPIO. This is not currently implemented
but platform data is provided for it - the driver currently assumes
that the device will be configured to transition immediately - but
platform data is provided to reduce merge issues once it is.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
The WM831x series of PMICs include a single DC-DC boost convertor.
This adds basic support for this convertor.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The WM831x series of PMICs provide two optional outputs for
controlling external devices during power sequencing, for example
an external regulator. While in essence these are GPIOs the
hardware presents them as DCDCs with very little control so
provide support via the regulator API in that fashion.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The WM831x series of devices all have 3 DC-DC buck convertors. This
driver implements software control for these regulators via the
regulator API. Use with split hardware/software control of individual
regulators is not supported, though regulators not controlled by
software may be controlled via the hardware control interfaces.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>