Commit Graph

5 Commits

Author SHA1 Message Date
David Howells 965475acca KEYS: Strip trailing spaces
Strip some trailing spaces.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-14 10:29:44 +01:00
David Howells 5ac7eace2d KEYS: Add a facility to restrict new links into a keyring
Add a facility whereby proposed new links to be added to a keyring can be
vetted, permitting them to be rejected if necessary.  This can be used to
block public keys from which the signature cannot be verified or for which
the signature verification fails.  It could also be used to provide
blacklisting.

This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE.

To this end:

 (1) A function pointer is added to the key struct that, if set, points to
     the vetting function.  This is called as:

	int (*restrict_link)(struct key *keyring,
			     const struct key_type *key_type,
			     unsigned long key_flags,
			     const union key_payload *key_payload),

     where 'keyring' will be the keyring being added to, key_type and
     key_payload will describe the key being added and key_flags[*] can be
     AND'ed with KEY_FLAG_TRUSTED.

     [*] This parameter will be removed in a later patch when
     	 KEY_FLAG_TRUSTED is removed.

     The function should return 0 to allow the link to take place or an
     error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the
     link.

     The pointer should not be set directly, but rather should be set
     through keyring_alloc().

     Note that if called during add_key(), preparse is called before this
     method, but a key isn't actually allocated until after this function
     is called.

 (2) KEY_ALLOC_BYPASS_RESTRICTION is added.  This can be passed to
     key_create_or_update() or key_instantiate_and_link() to bypass the
     restriction check.

 (3) KEY_FLAG_TRUSTED_ONLY is removed.  The entire contents of a keyring
     with this restriction emplaced can be considered 'trustworthy' by
     virtue of being in the keyring when that keyring is consulted.

 (4) key_alloc() and keyring_alloc() take an extra argument that will be
     used to set restrict_link in the new key.  This ensures that the
     pointer is set before the key is published, thus preventing a window
     of unrestrictedness.  Normally this argument will be NULL.

 (5) As a temporary affair, keyring_restrict_trusted_only() is added.  It
     should be passed to keyring_alloc() as the extra argument instead of
     setting KEY_FLAG_TRUSTED_ONLY on a keyring.  This will be replaced in
     a later patch with functions that look in the appropriate places for
     authoritative keys.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-11 22:37:37 +01:00
David Howells f5895943d9 KEYS: Move the flags representing required permission to linux/key.h
Move the flags representing required permission to linux/key.h as the perm
parameter of security_key_permission() is in terms of them - and not the
permissions mask flags used in key->perm.

Whilst we're at it:

 (1) Rename them to be KEY_NEED_xxx rather than KEY_xxx to avoid collisions
     with symbols in uapi/linux/input.h.

 (2) Don't use key_perm_t for a mask of required permissions, but rather limit
     it to the permissions mask attached to the key and arguments related
     directly to that.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
2014-03-14 17:44:49 +00:00
David Howells fbf8c53f1a KEYS: Fix UID check in keyctl_get_persistent()
If the UID is specified by userspace when calling the KEYCTL_GET_PERSISTENT
function and the process does not have the CAP_SETUID capability, then the
function will return -EPERM if the current process's uid, suid, euid and fsuid
all match the requested UID.  This is incorrect.

Fix it such that when a non-privileged caller requests a persistent keyring by
a specific UID they can only request their own (ie. the specified UID matches
either then process's UID or the process's EUID).

This can be tested by logging in as the user and doing:

	keyctl get_persistent @p
	keyctl get_persistent @p `id -u`
	keyctl get_persistent @p 0

The first two should successfully print the same key ID.  The third should do
the same if called by UID 0 or indicate Operation Not Permitted otherwise.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephen Gallagher <sgallagh@redhat.com>
2013-11-06 14:01:51 +00:00
David Howells f36f8c75ae KEYS: Add per-user_namespace registers for persistent per-UID kerberos caches
Add support for per-user_namespace registers of persistent per-UID kerberos
caches held within the kernel.

This allows the kerberos cache to be retained beyond the life of all a user's
processes so that the user's cron jobs can work.

The kerberos cache is envisioned as a keyring/key tree looking something like:

	struct user_namespace
	  \___ .krb_cache keyring		- The register
		\___ _krb.0 keyring		- Root's Kerberos cache
		\___ _krb.5000 keyring		- User 5000's Kerberos cache
		\___ _krb.5001 keyring		- User 5001's Kerberos cache
			\___ tkt785 big_key	- A ccache blob
			\___ tkt12345 big_key	- Another ccache blob

Or possibly:

	struct user_namespace
	  \___ .krb_cache keyring		- The register
		\___ _krb.0 keyring		- Root's Kerberos cache
		\___ _krb.5000 keyring		- User 5000's Kerberos cache
		\___ _krb.5001 keyring		- User 5001's Kerberos cache
			\___ tkt785 keyring	- A ccache
				\___ krbtgt/REDHAT.COM@REDHAT.COM big_key
				\___ http/REDHAT.COM@REDHAT.COM user
				\___ afs/REDHAT.COM@REDHAT.COM user
				\___ nfs/REDHAT.COM@REDHAT.COM user
				\___ krbtgt/KERNEL.ORG@KERNEL.ORG big_key
				\___ http/KERNEL.ORG@KERNEL.ORG big_key

What goes into a particular Kerberos cache is entirely up to userspace.  Kernel
support is limited to giving you the Kerberos cache keyring that you want.

The user asks for their Kerberos cache by:

	krb_cache = keyctl_get_krbcache(uid, dest_keyring);

The uid is -1 or the user's own UID for the user's own cache or the uid of some
other user's cache (requires CAP_SETUID).  This permits rpc.gssd or whatever to
mess with the cache.

The cache returned is a keyring named "_krb.<uid>" that the possessor can read,
search, clear, invalidate, unlink from and add links to.  Active LSMs get a
chance to rule on whether the caller is permitted to make a link.

Each uid's cache keyring is created when it first accessed and is given a
timeout that is extended each time this function is called so that the keyring
goes away after a while.  The timeout is configurable by sysctl but defaults to
three days.

Each user_namespace struct gets a lazily-created keyring that serves as the
register.  The cache keyrings are added to it.  This means that standard key
search and garbage collection facilities are available.

The user_namespace struct's register goes away when it does and anything left
in it is then automatically gc'd.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Simo Sorce <simo@redhat.com>
cc: Serge E. Hallyn <serge.hallyn@ubuntu.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
2013-09-24 10:35:19 +01:00